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EXECUTIVE SUMMARY

This document overviews the state-of-the-art and provides a gap analysis about RISC-V platforms to
be deployed and used in HPC systems, according to the main objectives described in the milestone #4,
Spoke 1 - Flagship 1.

Chapter 1 briefly introduces the main purposes of HPC systems, their relevance in modern applications,
and describes the crucial aspects of RISC-V platforms in developing current and future exascale HPC
systems. Moreover, the Chapter highlights the main features and possible challenges of their integration
into modern HPC machines and the market.

Chapter 2 overviews the current status of HPC machines and discusses the two principal challenges
(efficiency and performance) of modern and future generations of HPC machines.

Chapter 3 surveys the major efforts and advances when considering RISC-V-based platforms to be
adopted in HPC machines. In particular, the analysis focuses on the architectural requirements and
needs of RISC-V platforms for mature adoption and deployment in HPC systems. The Chapter also
shows the main advantages, issues, and possible challenges in their deployment in HPC systems. This
Chapter is divided into three subsections to show the main aspects of RISC-V core/cluster architectures,
hardware accelerator trends and support, and the main features of the memory hierarchy and interconnect
networks.

Chapter 4 overviews the main solutions for modeling non-functional properties in HPC systems and
highlights the main challenges and open questions in the HPC domain, especially focusing on deploying
RISC-V platforms. This Chapter comprises four subsections that survey the main challenges regarding
reliability, thermal and power supply monitoring, energy efficiency, and performance.

Chapter 5 overviews several challenges and gaps in software stack support in current and future HPC
generations, focusing on run-time management and compiler support and software assistance of HPC
systems to emerging applications, such as decentralized machine learning workloads.

Finally, Chapter 6 provides concluding remarks and emphasizes the main research opportunities and
open questions.
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1 INTRODUCTION

High-Performance Computing (HPC) systems have evolved to be used in domains where physical experi-
mentation is prohibitively impractical (e.g., financial disaster modeling, deep space experimental models) [1],
[2], expensive (e.g., weather forecast) [3]–[5], or dangerous (e.g., atomic, biological, and chemical interac-
tions) [6], [7]. Furthermore, boosted by the pervasive globalization and digitalization of modern society, HPC
machines are now strategic assets for academia, industry, public institutions, and governments [8] in the sup-
port and development of crucial fields (i.e., from scientific leadership, and economic prosperity up to national
security) and strategic economic and technological trends, including the deployment and training of massive
artificial intelligence (AI) tools, the modeling and simulation of complex algorithms, the use in the industrial
domain (e.g., designing and operating digital twins and cloud services).

In general, the application domains of HPC systems are characterized by their huge complexity (i.e., com-
plex algorithms and massive data) and the demand for effective and extensive computational power resources
to perform increasingly accurate and complex simulations within acceptable time frames [9]. Modern HPC
machines exploit distributed computing strategies (partly inherited from the mainframe times), in combina-
tion with smart co-design techniques to effectively integrate and correctly operate hardware platforms and
software frameworks, prioritizing the operational throughput and performance of the complete system [10],
so aiming to achieve their nominal computational power and acceptable levels of performance efficiently (i.e.,
in terms of operations per watt) [11].

Furthermore, influenced by the market, the industry, supported by the academia, aggressively progresses
on three crucial features of modern and next-generation HPC machines: 1) the operational performance, 2)
the throughput, and 3) the energy efficiency. The first two features (performance and throughput) are directly
related to the computing capabilities of the HPC machines. An overview of the deployed HPC machines
shows that most modern and advanced systems (from 1997 until now) exploit the effective use and efficient
management of distributed commodity clusters with special equipment composed of multi-core processors,
special-purpose hardware accelerators (i.e., GPUs, APUs, TPUs, DPUs, or DLPs), specialized interconnect
systems, and memory storage [12]. Most HPC designs are based on clusters of high-end cores from several
leading companies in the semiconductors and microprocessor domain (e.g., Intel Cascade lake, Intel Skylake,
AMD EPYC, AMD Zen-2, AMD Zen-3, NEC Vector Engine, or Fujitsu ARM) to provide petascale and
exascale computing capabilities.

Regarding energy and power efficiency, several strategies for HPC machines have been investigated in re-
cent years involving improvements in the integration technologies (e.g., development of low-power cores) and
the management of the software and hardware layers for HPC systems. Some efforts, such as the Mont Blanc
2020 project[13]–[15] promoted and evaluated the development and use of low-power ARM-based System-
on-Chip (SoC) architectures for the HPC market by resorting to mature low-power ARM ISA architectures
and taking advantage of the dynamic and already available development and programming ecosystem. Other
initiatives, such as DEEP-ER, DEEP-SEA, and RED-SEA [16] projects, promote research activities focused
on specific features of current and next generations of exascale HPC systems. On the one hand, DEEP-ER ad-
dressed two significant challenges for exascale HPC machines: the speed bottleneck between I/O bandwidth
and core infrastructures and the development of resiliency mechanisms to recover corrupted tasks by hard-
ware faults. In addition, DEEP-SEA focuses on developing efficient software stack (from low-level drivers to
resource management and programming abstractions) environments for heterogeneous HPC systems. More-
over, RED-SEA aims to extend and adapt BXI interconnect technologies for the new generations of hybrid
and heterogeneous HPC machines.

A considerable amount of collaborative efforts (between industry and academia), national and regional
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initiatives (e.g., the European Processor Initiative, or EPI [17]) impulse and promote research activities and
innovations towards the democratization, development, adoption, and integration of open-sources architec-
tures (i.e., RISC-V) for new HPC machines, boosting the available access to the resources and the partial
availability of framework ecosystems for its development. In the European context, the EPI initiative is one
of the cornerstones of the EuroHPC Joint Undertaking, which focuses on pooling the Union’s and national
resources to deploy and develop the most powerful supercomputers within Europe, advise and suggest the
adoption of open-source architectures (with RISC-V as a main core solution) for the next generation of exas-
cale embedded HPC platforms [18]. Similarly, initiatives, such as the TEXTAROSSA Project aims to achieve
high performance and high energy efficiency on near-future exascale computing systems, specially targeting
the efficiency increase of computation with modern HW and new arithmetics, as well as providing methods
and tools for seamless integration of reconfigurable accelerators in heterogeneous HPC multi-node platforms
[19].

Another justification for selecting RISC-V architectures is that open-source hardware architectures promote
research and advances without economic and licensing restrictions and are less affected by external scenarios.
In this case, the global and neutral not-for-profit support for the RISC-V development by the academia, the in-
dustry, and a foundation with members worldwide assure technical support for the standardization of practices
(i.e., ISA extensions), meanwhile providing freedom for custom deployment scenarios (e.g., targeting perfor-
mance and throughput goals). Moreover, the organization maintains a high degree of neutrality concerning
geopolitical tensions and possible implications in technology concerning other dominant and proprietary ISA
technologies (e.g., x86 and ARM).

One of the key aspects of adopting RISC-V architectures lies in the efficiency improvements (i.e., power
and energy consumption) of the open-source Instruction Set Architectures (ISAs), which is a major inno-
vation in the field and aims to become a standard and universal ISA. Currently, the RISC-V architecture is
extremely popular and has been successfully adopted in mainly three representative fields: small IoT devices,
personal mobile devices, and warehouse-level computers [20] by many companies (Microchip [21], Google,
Qualcomm, Imagination [22], Intel [23], SiFive [24], Greenwaves [25], among others). Furthermore, new
start-ups and competitors (e.g., Tenstorrent [26], Ventana Micro Systems Inc. [27], and Alibaba [28]) are
adapting the RISC-V philosophy into the Edge, cloud, and HPC domains. A notable academic effort is
’Monte Cimone’ [8] that paves the way towards RISC-V-based cluster commodities. This cluster is a test
bed providing a first attempt to develop and evaluate the operational features of RISC-V-based cluster nodes.
Moreover, its deployment also faced challenges in terms of shared and coordinate operations of multi-node
and multi-cluster cores, as well as their interconnections. Furthermore, the deployment of this prototype sup-
ports the improvement, evaluation, analysis, and verification of storage mechanisms, and power monitoring
infrastructures, which are highly required in the HPC domain to face Non-Functional Properties (NFP) issues,
such as thermal and power monitoring or reliability features.

In most previous scenarios, the efficient evaluation of NFPs, such as dependability and thermal and power
supply monitoring, are commonly neglected, since they do not directly impact some application fields. How-
ever, a large set of NFPs must be analyzed and evaluated in the HPC domain to guarantee the correct operation
of their elements. Indeed, NFPs represent constraints a system faces to deliver its intended functionality or
service (e.g., dependability, reliability, thermal monitoring, power budget, etc.) since the operation of one
or more commodity clusters might be affected partially or permanently. The premature adoption of RISC-V
platforms for the HPC domain involves several challenges in their structural design, interconnection, support
for emerging architectural innovations, and domain-specific adaptations of hardware accelerators. Similarly,
open questions arise when considering clever and efficient strategies and methods to analyze and evaluate
non-functional properties. Both features (architecture and non-functional properties) must be investigated
and solved before RISC-V-based commodity clusters start production and become available in the market.

This document summarizes the state-of-the-art of platform requirements for HPC and analyzes the main
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research opportunities for RISC-V-based platforms focusing on the analysis of non-functional properties, in-
cluding reliability, thermal and power budget monitoring, energy efficiency, performance, temporal analysis,
and software stack support.

Chapter 2 describes the current status of machines and systems devoted to High-Performance Computing,
particularly focusing on the two main challenges that accademia and industry are facing currently (efficiency
and performance). Then, Chapter 3 overviews the most significant advances in RISC-V-based architectures
and their adoption to HPC machines. A second Section overviews and discusses the main features and
trends of modern architecture and design approaches of HPC computers, the adoption of hardware accelera-
tors, as well as, their main challenges and research opportunities. Furthermore, a third Section discusses and
overviews the main advantages and relevant issues in the memory hierarchy and interconnect technologies for
technologies used for the integration of HPC systems. In addition, Chapter 4 introduces the main characteris-
tics and challenges for modeling non-functional properties in HPC machines, mainly focusing on reliability,
power consumption, energy efficiency, performance, and temporal properties. Chapter 5 analyzes several
challenges and gaps in software stack support for current and future HPC generations, focusing on run-time
management and compiler support and software assistance of HPC systems to emerging applications, such
as decentralized machine learning. Finally, Chapter 6 provides concluding remarks and highlights the main
research opportunities and open questions.
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2 CURRENT HPC SCENARIO

It is widely acknowledged that the High Performance Computing (HPC) infrastructures play a strategic role
in many research and industry fields, ranging from weather forecasting to material science. In our society,
the digitalization has become more and more pervasive and high performance computers are at the base of
disruptive trends, like the deployments of artificial intelligence (AI) on large scale (e.g., training and infer
large machine learning models, like ChatGPT [29]) and the support to industrial use cases (e.g., to create
and maintain digital twins). For this reason, HPC systems represent strategic assets, not only for research
institutions and industries, but also for public entities and governments [30].

The key challenge in designing a new generation of HPC systems today and in the near future lies in in-
creasing the energy efficiency to support the growing performance demand of applications in a sustainable
power envelop in the era of the end of Dennard Scaling. While integrated circuits technology is still increas-
ing density, power consumption does not scale at the same rate. Power density is today one of the main
bottlenecks that can compromise performance when thermal design power limitations are reached.

The biggest source of power consumption in today’s HPC system is related to the data movement [31].
Moving data is overtaking computation and is becoming the most dominant cost in terms of energy consump-
tion and price. Future generations of HPC architectures will integrate compute and data on the same package
to avoid costly off-chip memory accesses in terms of latency and energy.

The performance race of supercomputers in the last six decades, focused on achieving the highest figures
in terms of Floating Point Operations per Seconds (FLOPS), is not more sustainable due to today’s techno-
logical walls, which limit the peak performance of HPC systems. For this reason, supercomputers are mainly
limited by memory performance, that degrades the computing capabilities on memory-intensive applications
that represent most of the scientific HPC codes. Disruptive technologies, such as quantum or neuromorfic
computing, may have an important impact in some specific application areas, but there is no silver bullet in
sight.

To address the efficiency challenges of HPC systems, both academia and industry are actively pursuing
architectural innovation and co-design strategies. These efforts aim to develop HPC systems that overcome
efficiency limitations by utilizing various forms of specialization and domain-specific adaptation. Rapid
evolution of Instruction Set Architectures (ISAs) is necessary to sustain architectural progress and domain
adaptation. The emergence of the RISC-V ISA, which is open, extensible, and does not require royalties, has
been a significant step towards accelerating innovation in this area. In addition, RISC-V offers an advantage
over dominant proprietary ISAs such as x86 and ARM, as it is maintained by a global non-profit foundation
with members from around the world. This ensures a high degree of neutrality with respect to geopolitical
tensions and technology limitations associated with proprietary ISAs.

At present, the development of high-performance 64bit RISC-V processors and accelerator chips is un-
derway. Various publications, including [32] and [8], have demonstrated promising prototypes and systems,
while products have been announced at a rapid pace [33]. It is reasonable to expect that high-performance
chips based on RISC-V will be available as production silicon within the next year. However, creating a
RISC-V-based HPC system requires more than just high-performance RISC-V chips. Many experts believe
that the RISC-V software stack and system platforms are still relatively immature, and will require several
more years of development effort before full applications can be run and optimized on a RISC-V-based HPC
system.

As we know, complex systems are more prone to failures compared to simple systems. In 2019, the Frontier
supercomputer broke the exascale barrier and became the first HPC system to be ranked in the Top500 list
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[11]. However, despite this achievement, the Frontier supercomputer is also facing reliability issues [34].
These issues primarily revolve around the system’s stability when handling highly demanding workloads,
particularly on the GPU accelerators that handle the majority of the system’s processing load. With a mean
time between failure of only a few hours, rather than days, it is clear that the resiliency of hardware and
software components is crucial for providing stable services of an acceptable quality.

It is now widely accepted that technological scaling, as dictated by Moore’s law, results in increased power
consumption and thermally-bound computing systems. This issue is particularly pressing for supercomputers
and data centers, which prioritize aggressive performance, integration density, and sustainable power budgets.
To address this problem, modern GPU accelerators and many-core processors in supercomputer systems are
equipped with thermal sensors and fine-grain power management support to modulate power consumption
based on current operating conditions. However, this flexibility is not fully utilized, as operating systems in
HPC installations prioritize maximum power to avoid performance imbalances across processing elements.
Furthermore, there are several non-idealities in the thermal characteristics of accelerators and large many-
core processors targeting the high-performance computing market, including thermal heterogeneity, thermal
capacitance, and thermal noise. These non-idealities worsen the efficiency of built-in reactive controllers and
make it challenging to find a stable, yet thermally safe, operating point.

Energy and power consumption are significant concerns for modern supercomputers and are expected to
be limiting factors for future installations. The high power density can negatively impact the performance,
and the total power consumption requires additional power for cooling. All of these factors affect the total
cost of ownership and operational costs, which can limit the budget for increasing supercomputer capac-
ity. Therefore, addressing the energy and power wall is crucial for achieving planned performance growth
in next generation of supercomputers. Similarly, the majority of HPC applications only utilize a small per-
centage of the potential performance available on modern supercomputers. The increasing complexity and
dimensionality of emerging heterogeneous supercomputing nodes make performance optimization even more
challenging. Optimization involves not only identifying code segments that are bottlenecks, but also deter-
mining the underlying causes and restructuring the code to improve performance. While simple timers can
be used to identify potential bottlenecks, more sophisticated measurements such as hardware performance
counters are needed to characterize the causes of the bottleneck. Diagnosing performance issues therefore
requires extensive knowledge of the hardware, compiler, and system software. However, most HPC appli-
cation developers are domain experts and should not be expected to have a detailed understanding of every
system on which they run their code. As a result, minimizing and characterizing performance bottlenecks on
today’s HPC systems using performance tools is a challenging and time-consuming task for most application
developers.

In conclusion, HPC systems play a crucial role in many research and industry fields, including the de-
ployment of artificial intelligence and the support for industrial use cases. However, the main challenge for
designing new HPC systems lies in increasing energy efficiency while sustaining the growing demand for
performance. The data movement is now the biggest source of power consumption in today’s HPC systems.
At the same time, the most recent semiconductor technologies used to build HPC devices, as well as their
complexity, make it increasingly hard to guarantee the reliability of HPC systems. To overcome these chal-
lenges, academia and industry are actively pursuing architectural innovation and co-design strategies. The
emergence of the RISC-V ISA offers a significant step towards accelerating innovation in this area. However,
creating a RISC-V-based HPC system requires more than just high-performance RISC-V chips, as the soft-
ware stack and system platforms are still relatively immature. Furthermore, energy and power consumption
are significant concerns for modern supercomputers, and addressing the energy and power wall is crucial for
achieving planned performance growth.
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3 OPEN SOURCE HARDWARE AND DESIGN
TECHNIQUES

This Chapter reviews and analyze the main trends in the industry and academy for the design of processor-
based systems for the HPC domain. The overview includes the current scenarios of RISC-V architecture
design, the current design trends of hardware accelerators, and interconnections systems. Moreover, A set of
opportunities are identified to improve the development for current and future generations of HPC machines.

3.1 RISC-V
RISC-V processors have been garnering attention in the high-performance computing industry in recent years.
This open, extensible, and royalty-free ISA is gaining traction as a potential alternative to proprietary ISAs
(x86 and ARM). RISC-V offers several advantages for HPC systems, including improved power efficiency,
scalability, and flexibility.

One of the key features of RISC-V is its modularity, which allows for greater flexibility in design [33].
The ISA is composed of a base set of instructions, with optional extension modules that can be added to
customize the processor for specific tasks. This modularity enables system designers to tailor the processor
to their specific requirements, rather than being limited by the fixed set of instructions offered by proprietary
ISAs. Additionally, RISC-V’s open and collaborative nature enables community-driven innovation and de-
velopment. This allows for a wider range of ideas and perspectives to be brought to the table, potentially
leading to faster progress and greater innovation in the HPC ecosystem.

With the continued growth of HPC systems, energy consumption has become a major concern. The RISC-V
ISA is designed to be highly configurable, allowing designers to select the specific instructions and extensions
that are most relevant to their application or workload. This modularity and extensibility enable RISC-V
processors to be highly optimized for specific tasks, resulting in better performance and energy efficiency.
Furthermore, RISC-V’s modular design allows for the implementation of specialized hardware accelerators,
which can extremely increase energy efficiency by offloading compute-intensive tasks from the processor.

While RISC-V shows promise as a potential alternative to proprietary ISAs, there are also challenges to be
addressed. One of the main concerns is the lack of a mature software ecosystem. While there are existing
software tools and libraries available for RISC-V, they are still in the early stages of development [8]. This
means that porting existing HPC applications to RISC-V may require significant effort and resources.

Another challenge is the lack of a standardized memory hierarchy. RISC-V does not specify a standard
memory hierarchy, leaving this to be determined by system designers. While this flexibility can be an advan-
tage for embedded systems, it can also make it more challenging to design and optimize memory systems for
HPC systems.

Despite these challenges, there is a growing interest in using RISC-V for HPC applications. The potential
benefits of RISC-V, such as modularity, energy efficiency, and collaborative development, make it an attrac-
tive option for HPC systems. As the software ecosystem and tooling continue to develop, the journey of
RISC-V processors to become a part of the HPC ecosystem is only in its initial stages.

12



3.2 Accelerators
Hardware accelerators, or Domain-Specific Architectures (DSAs), are special-purpose hardware structures
designed to boost the performance of complex operations in highly demanding tasks. Indeed, the design
efforts of the academy and industry promote hardware accelerators as solutions to overcome the challenges in
performance, power, and parallelism (i.e., Moore’s Law and Dennard scaling) of traditional general-purpose
CPU-based systems [32]. Modern hardware accelerators efficiently exploit parallelism and data handling
through specialized architectures and memory management strategies to increase performance and throughput
(several operations performed per cycle), so impulsing their adoption in modern and future generations of
HPC machines (used in around 35.8% of the top 500 HPC systems worldwide [12]). In fact, accelerators,
such as GPUs and FPGAs, are essential components in the architecture of modern HPCs due to the cost-
effective benefits ratio for complex workloads (in comparison to CPU-only commodity clusters). An analysis
reveals that the main accelerator architectures (most abundant in the market and academy) are systolic-arrays
cores (e.g., TPUs), vector processors and their variations (e.g., VLIW, GPUs [35]) that provide the best
trade-off among costs, performance, and power consumption [36]. Moreover, the same analysis suggests that
modern accelerators must include trans-precision capabilities (different operative numeric formats and data
sizes), since several applications can tolerate lower levels of precision in their computation. For example,
modern machine learning DSAs include support for 8INT, 8FP, 16FP, and 32FP with limited support for
16INT or fixed points formats. Similarly, in this field, no accelerators support 64FP, which can be considered
for specific domains, only. However, in other domains, such as HPC, supporting 64FP formats might be
mandatory. Interestingly, initial efforts have been performed to explore and integrate emerging numeric
formats, such as Posits and logarithmic, into the HPC domain [37]. However, it remains a vastly unexplored
field. As a preliminary conclusion, current accelerator design trends focus on parallel architectures and trans-
precision features, including extensive explorations in the open-source hardware domain.

In the HPCs, hardware accelerators can be divided into two main classes: i) discrete components inside
commodity clusters, and ii) on-chip co-processors. The former class refers to discrete, fully specialized,
massive accelerator devices connected to the host CPUs through intelligent and high-speed bus interfaces;
meanwhile, the latter class refers to co-processors and accelerators placed on-chip (inside the die) with the
host processors to support the execution of some specific tasks at the host level.

Discrete accelerators, such as those exploiting parallel architectures (GPUs, FPGAs, and TPUs), are partic-
ularly useful and play a crucial role in the HPC domain since they can perform many parallel computations
simultaneously and are crucial in several fields, including big-data analysis and machine learning. More in
detail, GPUs are the leading discrete accelerators employed in most advanced HPC systems, see Table 1.
Furthermore, GPUs have a prominent role as accelerators in modern generations of HPC machines, which
are no longer limited to graphics applications but extended as general-purpose data-parallel accelerators, and
use their software flexibility for fast deployment and adaptation to specific tasks. On the other hand, FPGAs
exploit hardware reconfigurability to implement specific structures and process complex tasks. Other accel-
erators (e.g., TPUs, APUs, DLPs, and DPUs) offer specific features for focused tasks and take advantage of
several binding domains, such as deep learning and finance applications.

On the other hand, on-chip accelerators directly interact with one or more processors to increase the per-
formance of specific operations. Industry and academia have made a notable effort to promote accelerator
development, taking advantage of open-hardware approaches, such as RISC-V architectures, and develop-
ing and supporting hybrid and specific ISA extensions for long-vector and SIMD paradigms (e.g., RISC-V
Vector extension). In [38], the authors introduced a new vector accelerator targeting inference operations for
machine learning by resorting to programmable units allowing SIMD operations. Other variations include
Vector and Systolic array architectures (VAS) that exploit cluster cores to process vector-like instructions
in spatial structural organizations. Similarly, authors in [39] explored the design and integration of clusters
of Digital-Signal-Processing cores (DSPs), exploiting SIMD paradigms to support the processing of appli-
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Table 1: Leading discrete accelerators used in HPC machines. Adopted from [12].
Accelerator In TOP 500 HPC systems System Share (%) Rmax (TFlops) Rpeak (TFlops) Cores

NVIDIA Tesla V100 68 13.6 226,796 443,631 4,688,680
NVIDIA A100 22 4.4 264,775 401,042 2,606,176

NVIDIA A100 SXM4 40 GB 16 3.2 167,209 229,444 1,693,672
NVIDIA Tesla V100 SXM2 11 2.2 90,370 180,163 2,031,440

NVIDIA A100 80GB 10 2 123,156 163,208 1,044,800
NVIDIA A100 40GB 10 2 62,683 101,052 660,740

AMD Instinct MI250X 9 1.8 1,525,179 2,261,385 11,713,152
NVIDIA Tesla P100 6 1.2 44,731 65,634 905,280

NVIDIA Volta GV100 4 0.8 269,439 362,565 4,408,096
NVIDIA A100 SXM4 80 GB 4 0.8 25,696 27,245 206,112
NVIDIA A100 SXM4 64 GB 2 0.4 178,205 260,734 1,488,672

NVIDIA Tesla K40 2 0.4 7,154 12,264 145,600
NVIDIA Tesla K40m 1 0.2 2,478 4,947 64,384

NVIDIA Tesla K40/Intel Xeon Phi 7120P 1 0.2 3,126 5,610 152,692
NVIDIA Tesla P100 NVLink 1 0.2 8,125 12,127 135,828
NVIDIA H100 80GB PCIe 1 0.2 2,038 5,417 5,920

Preferred Networks MN-Core 1 0.2 2,180 3,348 1,664
Nvidia Volta V100 1 0.2 21,640 29,354 347,776
NVIDIA Tesla K80 1 0.2 2,592 3,799 66,000

Intel Xeon Phi 31S1P 1 0.2 2,071 3,075 174,720
Deep Computing Processor 1 0.2 4,325 6,134 163,840

Intel Xeon Phi 5110P 1 0.2 2,539 3,388 194,616
NVIDIA Tesla K20x 1 0.2 3,188 4,605 72,000

Matrix-2000 1 0.2 61,445 100,679 4,981,760
PEZY-SC3 1 0.2 1,952 2,932 1,151,360

cations for the HPC domain (e.g., AI applications). In [40], the authors proposed FAUST, a Floating-point
co-processor based on a parallel deployment of cluster cores able to process individual tasks. Unfortunately,
the accelerator requires a considerable percentage of SoC area (around 40%). In [41], the authors proposed
a RISC-V compliant modular floating-point unit (deployed in parallel as independent units) that combines
SIMD paradigms with trans-precision capabilities obtaining a low power overhead (9% to 11%), but con-
siderable area overheads (around 33%). The unit includes support for special operations (e.g., square root).
Other cores, such as the Kunlun and Kunlun II are based on a coarse-grain re-configurable architecture (XPU),
which is a combination of configurable and customized logic (for tensor and vector operations) and sets of
cluster "tiny" cores for scalar operations exploiting SIMD paradigms. This accelerator provides comparable
performance to discrete designs in terms of AI computations and can be adapted in HPC domains [42].

Other modern accelerators architectures include variations to long-vector approaches (VPUs) with ISA
extension support (e.g., RISC-VV long-vector) to allow the development and adoption of long-vector-based
hardware accelerators in the open-hardware community since manufacturers promote similar architectures,
e.g., Intel, NEC, and Fujitsu. Most of these accelerators efficiently combine several Scalar Processing Units
(SPUs) with a few vector processing cores (VPUs), and other specific purpose accelerators, such as FMA
vector cores, to compute several different operands in parallel[43]. In Principle, these architectures follow a
VLIW philosophy and are more energy-efficient than classical SIMD. However, these require a high inter-
action and management from the compiler stack to allow kernel optimization and the efficient distribution
of resources per instruction. The ’Vitruvius+’ [44] long-vector accelerator is a VPU RISC-V-compliant co-
processor specially designed for the HPC domain, including Open Vector Interface (OVI) support for host
units (scalar cores) and offering equivalent capabilities to main competitors in the market, such as the Andes
NX27V [45], Alibaba T-Head Xuantie910 [46], and SiFive’s X280[47].

GPU architectures, including RISC-V ISA extensions, have also been investigated in the open-hardware
community. In [48], the author adapted the Single-Instruction Multiple-Thread (SIMT) philosophy (typical
of NVIDIA GPU devices) and extended it into RISC-V-based general-purpose CPUs to provide GPU capa-
bilities and operate several execution threads in parallel. In [49], the authors propose a RISC-V-compliant
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GPU architecture based on clusters comprising arrays of functional cores. Each core includes several func-
tional units to process individual threads in a SIMD manner. Moreover, each core includes a Near-Memory
approach to hide latency.

Data-flow accelerators are based on spatial systolic arrays (e.g., Eyerisss [50], [51], or Softbrain[52]) and
are effective for specific application domains, such as Deep learning, and might support highly demanded
operations in modern HPC systems. For example, the Intelligence Processing Cores (or IPUs) comprise
individual cores to process independent parallel program threads in the machine learning application but have
demonstrated a promising future in the HPC domain[53].

Other application-specific open-source accelerators include the Nvidia Deep Learning Accelerator (NVDLA),
a scalable, configurable DSA for machine-learning inference. Its ISA, software stack, and several implemen-
tation models are all open and can be adapted to HPC machines [54]. The Versatile Tensor Accelerator (VTA)
is a programmable and customizable application-specific (deep learning) open-hardware accelerator using a
RISC-like programming abstraction to describe operations at the tensor level. Its architecture is based on
systolic arrays implementing the General Matrix Multiply (GEMM) algorithm [55]. Other accelerator vari-
ations include Custom Function Units (CFUs) [56] that are tightly coupled into the pipeline of a CPU and
add new custom instructions (RISC-V ISA extensions) to complement the CPU’s standard functions (such as
arithmetic/logic operations). Moreover, the CFU adoption on high-programmable platforms (FPGAs) is sup-
ported by a rich ecosystem of inter-operable, app-optimized CFU cores and libraries and the straightforward
development of app-optimized SoCs. Other emerging methods for designing hardware accelerators exploit
new paradigms and technologies, such as Processing In-Memory (or PIMs).

In addition, several authors have proposed frameworks to face issues related to the linking and intercon-
nection of accelerators to host CPU cores, simplifying their integration into CPUs and SoC designs. Authors
in [57] proposed a framework to explore multi-RiSC-V cores and multi-cluster systems (Network-on-Chip,
or NoC architectures). Similarly, in [58], the authors proposed a framework for the design exploration of
many-core architecture based on RISC-V processors and custom accelerators. The communication structure
employs a 2D mesh NoC. Authors in [59] proposed Andromeda, a framework for the design space exploration
of cluster and many-core systems using RISC-V cores as main operative units. Authors in [60] proposed a
configurable framework and platform for designing and developing heterogeneous systems based on 32 or 64-
bit RISC-V cores, targeting the deployment in FPGAs. In [61], the authors proposed the ESP framework to
quickly integrate particular purpose co-processors, accelerators, and central CPU units. The Chipyard frame-
work [62] allows the interconnection and use of hardware accelerators for custom SoC design. The frame-
work supports hardware IP units such as the Berkeley Out-of-Order Machine (BOOM)[63], NVDLA[54], the
Ariane core[64], the Hwacha Vector-Fetch Architecture [65], DSP modules, domain-specific accelerators,
memories modules, and peripherals.

A general overview of all current design trends of efficient DSAs suggests that spatial accelerators based
on vector architectures (i.e., GPUs, long-vector), systolic arrays, and PIM cores provide higher throughput
and are exceptionally efficient for specific operations and domains. Thus, it is clear that modern and future
HPC machines require one or a constellation of more efficient hardware accelerators (on-chip and discrete)
to improve performance and reduce power consumption. Similarly, the lack of flexible standards for on-chip
connection infrastructures still requires further investigation, mainly when targeting the HPC domain.

Modern DSAs face several challenges grouped into three main aspects: i) memory wall, ii) reconfigurabil-
ity, and iii) software support [36].

DSAs are well-known for performance improvement. Unfortunately, massive performance requires inge-
nious methods to feed the cores with enough data to provide acceptable throughput levels. The main chal-
lenges resort to memory bottlenecks (memory access latency and bandwidth), which aggravates considering
the high parallelism of modern accelerators. Current solutions resort to structural strategies to link functional
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cores with memory sources. In [66], the authors exploit memory-rich architectures to allocate as much mem-
ory as possible near the computing units. Another strategy (Near-Memory Computing) divides the memory
resources, and it organizes sets of functional units with memory/registers banks, limiting memory move-
ments (a standard solution in GPUs and vector processors). Emerging approaches, such as PIMs, involve
integrating and fusing computational units and memory sources. In this case, new technologies are required
for implementation and are still in the research stages. Although the previous solutions contribute to solving
memory issues in modern accelerators, the constant need to increase processing capabilities suggests that
clever solutions are still required, even more when considering clusters of processing cores, constellations of
accelerators, and memories sharing information among the processing units with their implicit performance
bottlenecks and coherency issues.

Current and future application scenarios demand improvements in the programmability, productivity, and
adaptability of DSAs [36]. In the first case, the efficiency of DSAs can be improved by adapting their internal
functions for each workload by using some levels of reconfigurability. Current generations of DSAs use
fine-grain reconfigurability based on FPGAs. However, fine-grain levels might not always be required, so
emerging approaches, such as coarse-grain architectures, might simplify the DSA configuration by handling
arrays of cores and units while preserving the performance. Other options include DSA supporting fast
reconfigurable logic as a valuable architectural component to provide custom functions. Similarly, another
design approach includes Self-Similar Accelerator Architectures that hierarchically integrates accelerators
to improve performance and handle the application complexity (i.e., TPUs in modern GPUs and intelligent
engines in FPGAs).

One open question arises about the compiler and software stack support for modern and future generations
of DSAs. The increasing complexity of applications and the DSAs architecture suggest that new efficient
mechanisms for preserving performance can be required (e.g., speculative parallelism or streaming support
for memory addressing in hardware), as well as approaches to reduce the programmer’s effort to handle par-
allelism and undesirable effects during the compilation (e.g., transparent parallelizing compilers, efficiency
programming ecosystems, and natural programming models in software), which are still missing in the open-
source domain for HPC-like accelerators. Other open research areas include supporting unified virtual mem-
ory mechanisms and cache memory coherency at deep levels (mainly targeting high-bandwidth accelerators)
to boost the performance of on-chip DSAs. In addition, handling and managing HPC infrastructures for sev-
eral users impose challenges in virtualizing physical DSAs and cores of large commodity clusters comprising
several accelerators. Some initial solutions include remote API management [67] (in discrete accelerators)
and general scheduler controllers (for on-chip DSAs). All previous design challenges can be directly affected
by non-functional properties, such as dependability and thermal and power budget issues.

3.3 Memory and Interconnect
The potentially imminent adoption of RISC-V based SoCs in the HPC sector is leveraged by its open standard
and free instruction set architecture [68]–[72], together with the possibility to include application-specific
functions in the design, that can be accessed by adding custom instructions in the standard RISC-V instruction
set [71].

Therefore, it is expected that RISC-V based SoCs will be increasingly employed for a significant spectrum
of possible applications, out of which stand highly autonomous systems (such as unmanned robots and vehi-
cles), that are nowadays receiving huge economical investments [73], [74]. However, such highly autonomous
systems interact with human beings, thus the need to guarantee their functional safety and reliability emerges.
This need of course translates to all electronics that operates the system. In fact, electronic systems for highly
autonomous applications have strong requirements in terms of reliability and functional safety, which have
been formalized by several international standards (e.g., the ISO 26262 [75], the ISO/PAS 21448 [76], the
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ANSI/RIA R15.06 [77], and other standards that are currently under development).

However, due to technology scaling, high performance SoCs possibly used to implement electronic systems
have become more and more vulnerable to faults affecting its operation in the field [78]. Therefore, guarantee-
ing the required high levels of reliability and functional safety that are mandated for highly autonomous sys-
tems represents nowadays a great technological challenge, that has to be faced to enable a smarter world [79].
In particular, faults affecting high performance SoCs used within autonomous systems represent one of the
main threats to system’s reliable and safe operation in the field [75], [78], thus constituting one of the limits
to their evolution to higher autonomy levels.

As for any other high performance SoC, also RISC-V based SoCs make a massive use of cache memories
(up to 80% of the chip area), in order to eliminate the memory bottleneck effect, thus enabling significant
performance increase [68]–[71]. Therefore, it is expected that among all possible faults, soft errors affecting
cache memories will be of major concern for RISC-V based SoCs implemented by scaled technologies [80].

Traditionally, in order to increase the reliability of high performance SoCs in the field, Error Correcting
Codes (ECCs) are adopted to protect cache memories against soft-errors [81]–[84]. The adoption of ECCs
mandate the addition of proper encoding/decoding blocks to the cache memory array. Due to the limited
area of these additional blocks compared to the cache array, the occurrence of permanent faults (i.e., mainly
bridging faults) possibly affecting such additional blocks in the field is typically neglected. Therefore, the
encoding/decoding blocks are typically not protected against possible faults affecting themselves. While this
risk has been considered acceptable so far, this is no longer the case in the perspective of high performance
SoCs to be used in highly autonomous systems (e.g., highly autonomous vehicles, robots, etc.), due to their
strong requirements in terms of reliability and functional safety [75]. In fact, it can be expected that faults
affecting the encoder/decoder blocks of ECCs may result in a mis-correction, even if the original word read
from the cache was error-free. In this case, the decoder will produce an incorrect output word, that will be
propagated throughout the system, thus compromising the SoC reliability, with a dramatic impact on system’s
functional safety.

In order to cope with this problem, some solutions have been presented in the literature to prevent the
catastrophic consequences of permanent faults affecting ECC’s encoding/decoding blocks [85]–[87], that can
be adopted for SoCs employed for safety critical components of highly autonomous systems.

In particular, in [85], the Authors propose the adoption of differential EXOR gates to implement the Syn-
drome Generator inside the Decoder and the Encoder of ECCs based on parity check bits. The solution
enables to detect faults affecting the Syndrome Generator and the Encoder, but it does not guarantee the
detection of faults affecting all other blocks implementing the Decoder of the ECC (e.g., the Syndrome De-
coder, the Corrector, etc.). In [86], [87], the Authors propose the adoption of normal checkers (i.e., of the kind
described in [88], [89]) to make the encoding/decoding blocks self-checking with respect to internal faults.
More in details, the information bits produced at the output of the Decoder are first re-encoded by using an
additional encoding block, in order to regenerate the word read from the cache (received at the input of the
Decoder). The regenerated word is subtracted (modulo 2) from the word read from the cache (at the Decoder
input) in order to generate an error word. For the case of a fault-free Decoder, the error word resulting from
such a subtraction should be equal to the word generated by the Syndrome Decoder block inside the Decoder.
Based on this property, the Authors propose to detect the presence of faults affecting the encoding/decoding
blocks of the ECCs, by using a two-rail code checker to compare the generated error word with the word at
the Syndrome Decoder output [87]. The solution is effective in detecting faults affecting the encoding/decod-
ing blocks of the considered ECCs. However, they imply a significant impact on performance (which may be
over 100%, depending on the considered ECC), and they also require a non-negligible cost in terms of area
and power overhead.

In order to fill the gap between the practical requirements and the state of the art regarding efficient solutions
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to prevent the catastrophic consequences of permanent faults affecting ECC’s encoding/decoding blocks of
modern SoCs (e.g. based on the RISC-V architecture), There are several opportunities to analyze, at the
electrical level, the effects of permanent faults (such as resistive bridgings and stuck-ats) possibly affecting
the ECCs’ encoding/decoding blocks during their operation in the field. In fact, it is also possible to introduce
metrics to evaluate the risks of the considered faults’ effects on functional safety, thus identifying the most
critical faults. The performed analyses and metrics will enable to develop low-cost innovative approaches
to detect, during the SoC in-field operation, the occurrence of those faults that can compromise system’s
functional safety, thus enabling the activation of possible recovery mechanisms to re-establish the SoC correct
operation.

In addition to the above memory reliability issues, the interconnections of modern SoCs implemented with
aggressively scaled technologies are also becoming increasingly prone to bridging/open and crosstalk faults
[90]–[103].

In fact, as technology scales down, the area of wires is continuously shrinking, resulting in higher current
densities and a consequently increased likelihood of electromigration phenomena, that may potentially give
rise to bridging/open faults [90], [96]–[98]. In addition, inter-wire spacing in bus lines features a sensible
decrease as technology scales down: wires are closer to each other, and their aspect ratio is reducing, being
the wires relatively higher and thinner than with previous technologies [91]–[95]. Consequently, crosstalk
is playing an increasingly dominant role as a bus speed limiting factor [89], [91], [104], [105]. If crosstalk
affects bus lines of a synchronous system, incorrect data may be sampled by the flip-flops at the receiver side
of the bus and propagated through the system, causing an incorrect SoC behavior [93].

As for bridging/open faults, some models have been presented in the literature to estimate the trend over
time of bridging/open faults’ resistance increase in wires effected by electromigration [90], [96], with the
main goal to estimate the Mean-Time-To-Failure (MTTF) of wires. In addition, some solutions have been
proposed to detect bridging/open faults during post-manufacturing testing, or during possible periodic test
performed in the field by Logic-Built Self -Test (LBIST) structures, when the block being tested is idle or
power-off [99]–[103].

In [96], the authors present a physics-based model to estimate electromigration in ICs’ power supply net-
works. The model accounts for process, voltage, and temperature variations across the die, but may be
computationally expensive if used to estimate electromigration in large complex SoCs, like modern RISK-V
processors. In [90], the Authors show that the dynamics of stresses and atom fluxes in metal lines due to
electromigration is the same as the dynamics of voltages and currents in certain RC circuits. Then, the paper
presents a methodology that enables to model the wire resistance increase over time (due to electromigration)
by simply simulating (at the electrical level) the corresponding equivalent RC circuit of the considered wire.

In [99], the Authors propose a simple model at the electrical level that enables to estimate the delay in-
crease of combinational circuits affected by bridging/open faults. In [100], [101], the Authors extend the
model presented in [li03] to account also for delay uncertainties caused by process parameter variations oc-
curring during fabrication. In [102], [103], the Authors propose a testing methodology that enables to detect
bridging/open faults with a reduced number of test patterns. The proposed methodology is based on the
propagation of voltage pulses (with a given fixed duration) through the data-paths of the circuit being tested.
As shown in the paper, in fault-free data-paths the pulses are propagated without attenuation, while they are
attenuated (or not propagated at all) in data-paths affected by bridging/open faults, thus exposing the presence
of the faults. Compared to alternative approaches aimed at detecting bridging faults, this approach requires a
smaller number of test patters.

A limit of all above approaches for bridging/open faults’ detection is that they cannot be performed while
the SoC is performing useful operations in the field (i.e., while running some safety critical application of an
autonomous systems). They can only be adopted to test the SoC periodically, when it is idle or power-off.
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Therefore, these techniques cannot avoid the impact of bridging/open faults on SoCs’ reliability, thus they
cannot guarantee the levels of reliability required for the SoCs employed for safety critical applications.

In order to fill this gap in the state of the art, additional analyses and evaluations are required on the resis-
tance increase over time of interconnections of modern SoCs (e.g., SoCs based on the RISC-V architecture)
under different operating/stress conditions. It is expected that this analysis will enable to identify conditions
that can be used/exploited to develop low cost approaches for the early detection of bridging/open faults in
the field, before they can affect the correct operation of the SoC.

As for crosstalk faults, some techniques have been proposed in the literature to reduce the crosstalk-induced
delay uncertainty in bus lines of high performance microprocessors, with the goal to guarantee signal in-
tegrity [89], [91]–[95], [104], [105]. Traditional approaches to reduce the effects of crosstalk are based on
the insertion of repeaters, or shielding lines (e.g., those belonging to the power distribution network) between
bus wires [104]. However, these techniques typically require non-negligible costs in terms of area overhead.

In [89], [105], the authors propose a low-cost and self-checking monitor that is able to detect late transitions
at the outputs of bus lines. A possible limitation of this solution is that their effectiveness may be impacted
by process parameter variations occurring during fabrication, as well as by aging phenomena (like Bias
Temperature Instability, or BTI) affecting the propagation delay of buffers/repeaters of the bus lines during
the SoCs lifetime.

In [91]–[93], the Authors propose approaches based on ECCs to correct incorrect data that, due to crosstalk,
may be sampled by the flip-flops (FFs) at the receiver side of the bus lines. They employ the Dual Rail and
the Hamming codes, and enable to correct single errors. However, these solutions require the addition of
extra bus lines for the check bits, with a consequent non-negligible area increase. Additionally, due to the
increased impact of crosstalk in modern SoCs, it is expected that more than single errors can be generated at
the receiver side of the bus lines, which may be not correctable by these solutions.

In [94], the authors present a monitor to detect crosstalk faults affecting the interconnects of Field Pro-
grammable Gate-Arrays (FPGAs). The proposed detector requires low area overhead and features self-
checking ability, but it may be not straightforwardly applicable to bus interconnects different from those
of FPGAs (like those of SoCs based on the RISC-V architecture).

Finally, in [95] the authors propose a design strategy to reduce the propagation delay of bus lines at very
low costs in terms of power consumption and power-delay product. However, as for traditional approaches
for crosstalk reduction, the solution in [95] requires the insertion of additional repeaters in the bus lines,
with possible consequent non-negligible area overhead increase. Therefore, as far as we are concerned, the
solutions presented in the literature to mitigate the detrimental effects of crosstalk in bus interconnections
may not be able to guarantee, for modern SoC implemented in scaled technologies, the required levels of
reliability for safety critical applications.

In order to fill the gap in the state of the art, new analyses and evaluations would contribute to understand at
the electrical level, the crosstalk effects in scaled interconnections of modern SoCs (e.g., SoCs based on the
RISC-V architecture), considering also the impact of aging phenomena (such as Bias Temperature Instability
–BTI) affecting the buffers/repeaters of the bus lines during the SoCs lifetime. Based on the results of such
an analysis, it is expected that innovative and low-cost approaches for crosstalk detection will be devised.

3.4 Direct cooling techniques

Cooling electronic components using a closed-loop liquid circuit applied directly to or near the surface of
the chip is not a new technology. This approach has been used in the past, mainly on mainframe or high-
performance computing systems commonly found in supercomputer facilities. In recent years, cost-effective
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versions of direct cooling using water have been developed and sold to the personal computer market, catering
to customers who seek to maximize performance. Nowadays, a modified version of this technology is avail-
able for the commercial server market. Direct cooling provides a more efficient method of transferring heat
from hot components to the building’s chilled water loop and then outside with minimal additional energy
consumption, compared to first transferring heat to the air and then to the building’s chilled water system. In
addition, in a direct cooling system, the water temperature returning after cooling the IT equipment is much
higher than typically found in data centers. This provides more opportunities for heat reuse or the ability to
reject the heat to the atmosphere using a dry cooler, which eliminates the need for a cooling tower or chiller
plant in most climates. Direct cooling systems typically require an external energy source to circulate the
fluid in the loop. The general scheme is illustrated in Figure ??, where the main components of the loop can
be identified.

Figure 1: general scheme of direct cooling

The cooling process consists of two coupled loops. The secondary loop typically consists of a liquid
coolant, such as water or a specialized fluid, that is pumped through a heat exchanger in close proximity to
the CPUs or other heat-generating components. The heat from the CPUs is transferred to the coolant in the
secondary loop, which is then carried away to the primary loop for dissipation. The primary loop, on the
other hand, typically consists of a separate cooling medium, such as air or water, which is used to remove the
heat from the secondary loop. The primary loop may pass through a cooling tower or other heat dissipation
device where the heat is transferred to the environment. The two loops couple within a cooling distribution
unit (CDU), which is a heat exchanger, designed to transfer heat from the secondary to the primary loop.

There are two types of direct cooling: i) single or ii) two-phase. Two-phase systems use latent and sensible
heat with an evaporator and condenser. In a steady state, sub-cooled fluid flows from the condenser to the
heat-sink, and hot fluid or vapor is evacuated in the cold heat exchanger. A Rankine vapor compression
cycle can also be used. In direct contact cooling, a collecting tank is needed to ensure the fluid is in a liquid
state before it returns to the evaporator. Single-phase cooling systems, known as liquid cooling, are perhaps
the simplest and most commonly used configuration. The physical principle of this technology is relatively
straightforward and, in its classic configuration, is the best-known technology. The working fluid is heated in
the heat sink and flows through the transport lines, ideally adiabatically, to the cold heat exchanger. A pump
is used to move the fluid into the loop, and it must be designed to ensure an adequate mass flow rate and the
necessary pressure head to counterbalance all the pressure drops in the circuit. Some accessories, such as an
expansion vessel and valves, must be provided to ensure smooth functioning. Figure 2a shows a conceptual
diagram of the system.

Two-phase cooling systems are divided into two categories with different physical working principles and
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(a) scheme of single phase cooling (b) scheme of two-phase cooling

thermodynamic characteristics. In pumped two-phase technology, the evaporator operates at a higher tem-
perature than the condenser, and a pump is installed on the liquid line. In vapor compression technology, the
evaporator can operate at a lower temperature than the condenser due to the use of the Rankine cycle, and a
compressor is used on the vapor line. Although the concept scheme for this technology is similar to single-
phase cooling systems, the operating principle is completely different. Here, latent heat is used to extract heat
from the hot source. Figure 2b shows the concept scheme of a pumped two-phase cooling system. When
a free surface tank is used as a reservoir and saturation conditions are imposed, sub-cooled liquid from the
condenser enters it.

Nowadays, there are many examples of systems that use this direct liquid cooling in the HPC market. Here
are a few:

• Atos Bull Sequana XH3000: a liquid-cooled supercomputer that uses a specialized coolant to directly
cool the processor and memory components. The system is designed for HPC workloads and can scale
up to hundreds of thousands of cores;

• Lenovo Neptune: a liquid-cooled server that is designed to support HPC workloads. It uses a direct-
to-chip cooling system that circulates coolant directly through the processor package, allowing for high
power densities and more efficient cooling. The system can cool up to two processors per server;

• Cray Shasta: a liquid-cooled supercomputer that uses direct-to-chip cooling technology. It features
a unique cooling system that circulates coolant directly through the processor package, allowing for
higher power densities and more efficient cooling. The system can provide up to 400 kW of cooling
per cabinet.

• CoolIT Systems Rack DCLC: a liquid-cooled system that is designed for data center and HPC appli-
cations. It features a modular design that can be easily integrated into existing data center infrastructure
and can provide up to 100 kW of cooling per rack.

All of the above systems are single-phase direct cooling.

In Italy, the Tier0 flagship system Leonardo, developed by CINECA and installed at the Bologna Big Data
Technopole, is provided with a complex direct liquid cooling system. Leonardo is based on the Atos XH2000
platform technology. Its computing racks are 95% direct liquid cooled by water at 37°C inlet temperature.
More precisely, supercomputer circuits heat the cooling liquid up to 47°C. The cooling liquid is sent out
to adiabatic disposers, 2250 kWf dry-coolers, bringing the temperature down to 37°C. The cooling process
is based on water evaporation, reaching a Power Usage Effectiveness (PUE) of less than 1.1. The cooling
system works in a closed circuit to avoid water waste.
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4 NON-FUNCTIONAL PROPERTIES MODELING

The Non-Functional Properties (NFPs) are associated with several constraints a system faces to implement
and deliver its intended functionality or service. In HPC machines, the dimensions of the system and their
implicit complexity for managing and handling the distributed operation of software applications demand the
modeling of several functional and non-functional properties allowing monitoring of the correct operation of
the system. Some crucial NFPs for complex software systems include reliability, fault-tolerance, security,
availability, efficiency, and scalability.

The research community and the industry have invested considerable efforts in developing and proposing
approaches to represent and describe NFPs for HPCs. In most cases, the NFPs are modeled to extract and
represent one or more properties resorting to specific abstractions levels (e.g., mainly at high-level software)
or through cross-layer strategies (the combination and interaction of several abstractions levels, such as hard-
ware and software) [106]–[108].

This Chapter first overviews the current strategies for reliability evaluation in HPC machines and analyzes
several challenges and opportunities to improve the reliability of these systems. Then, Section 4.2 reviews
the current thermal and power supply strategies for HPC and possible challenges in modern HPC generations.
In addition, Section 4.3 analyses energy efficiency implications on memory management and by exploring
approximate computing approaches. Section 4.4 reviews the current trends on performance evaluation and
their main challenges. Finally, Section 4.5 analyzes current trends of temporal properties for HPC machines.

4.1 Reliability
Modern HPC machines are progressively scaling according to the required performance of data-massive and
operation-intensive applications. In such complex HPC systems, the resilient operation of hardware and
software components is crucial to provide services with acceptable quality and accuracy. The increasing size
of today’s HPC systems (e.g., numbers of processors and hardware accelerators, communication links, and
integrated circuit sockets) also increases the probability of system failures. Some studies showed that the
system’s size influences its failure rate more than the hardware type per commodity cluster. In addition, the
high density and dimension of their components and the considerable complexity of HPC machines impulse
reliability challenges at local and global levels since software and hardware components’ fault rates differ
from those of the HPC system during their operative lifetime [109].

Reliability analyses and evaluations into real HPC machines reveals that a considerable percentage of error
sources are due to hardware component in HPC systems (from 53% to 64%)[109]. Thus, methods and
strategies to model, evaluate, and quantify the system’s state and identify possible anomalies are mandatory
when adapting recent processor architectures, such as RISC-V-based SoCs. Authors in [110] proposed three
main guidelines to improve the reliability and resilience of HPC machines: i) identification of the factors
affecting the fault rates in HPC systems, ii) the need for fault detection and error mitigation mechanisms for
HPC systems, and iii) the overheating as a critical source affecting the reliability of the HPC machines.

In the first case, the equipment’s technology, the system size, and the target applications are essential in
selecting effective resilience mechanisms to maintain acceptable fault rate levels in HPCs. Moreover, the
high complexity of the system and the possible effects of fault and error propagation demands detection and
correction mechanisms with low overhead, suggesting their development and deployment at the hardware
level. Finally, overheating is a critical parameter in commodity clusters and a source of unreliable opera-
tion. Thus, HPC machines must prevent overheating while preserving the balance between power/energy and
performance.
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4.1.1 Terminology

Several terms have specific meanings in the context of the reliability and resilience of HPC systems and are
used to distinguish from the several sources of possible effects. We briefly summarize the reliability-related
concepts to maintain a clear understanding of the terminology used in this document.

In general, the resilience of a system refers to the capability to recover or prevent failures (“flexibility and
survivability in the face of unexpected events” [70]). In detail, resilience can be divided into two main con-
cepts: Reliability and Availability. The former refers to the probability of failures appearing in the system and
the “the probability that a system or component will perform its intended function for a prescribed time and
under stipulated environmental conditions” [70]; meanwhile, the latter conveys the probability of a failure
affecting the functionality of a system or the running application. In both cases, the source of the failures
might be associated with hardware, software, or a combination of both. At the system level (e.g., commodity
cluster or HPC machine), a failure is an event affecting the intended operation of the system, causing the
corruption of the results of an HPC application. Moreover, errors are observable effects corrupting a part
of the system’s state and mainly arise at the software level (e.g., incorrect data from software operations).
The errors can be divided into corrected when mitigation mechanisms remove error effects and uncorrected
when the error remains in the system. In addition, the faults are the sources of errors at the hardware level.
They mainly represent incorrect logic states in the circuits caused by damages originated from manufactur-
ing defects or external sources (e.g., radiation, electromagnetism, or temperature variations) that physically
corrupt the hardware components permanently (e.g., accelerated aging, wear-out, electromigration, or Time-
Dependent-Dielectric-Breakdown) or transitory (e.g., bit-flips, or Single-Event Upsets) [111]. Another key
concept is safety that is generally mandatory in high-reliable systems and is defined as “the ability to avoid
damages to people, things and environments” [70],

4.1.2 Fine-Grain Reliability Issues in Modern Hardware Platforms for HPC

The adoption of RISC-V processors has significantly increased in recent years, mainly due to its open standard
and free instruction set architecture [68]–[72]. In addition, application-specific functions can be added to a
RISC-V SoC design, and accessed by adding custom instructions to the standard RISC-V instruction set. This
is proven to be a driving factor for a broader adoption of RISC-V in the HPC sector [71].

However, RISC-V SoCs for HPC will require their implementation in scaled microelectronic technologies,
hence it is expected that they will suffer reliability problems associated with technology miniaturization
[68]. This poses significant challenges to designers of RISC-V SoCs that will have to be used in electronic
systems for highly autonomous applications, especially those for safety critical applications (e.g., autonomous
vehicles, robots, etc.).

In particular, the technology scale continuously reduces power supply voltages (and consequently noise
margins) and internal node capacitances, as well as in an increase of operating temperature, that will continue
to increase SoCs susceptibility to faults (both transient and permanent) and aging phenomena (such as Bias
Temperature Instability, or BTI) [68]–[71], [112]–[115].

As for transient faults (TFs), their likelihood is expected to increase with technology scaling [114], [116],
[117]. They are generated by energetic particle hits (in particular, Alpha particles and neutrons) that, affecting
nodes of datapaths and memory blocks of SoCs, can give rise to soft errors, with a potential catastrophic
impact on the SoC correct operation.

Power supply noise is another phenomenon that is also expected to give rise to considerable signal integrity
problems in scaled technologies [115], [118]. In fact, as the integration density increases, the number of
devices switching simultaneously increases as well. This causes an increase in the noise affecting the power
supply networks (i.e., Simultaneous Switching Noise, SSN), due to both resistive and inductive voltage drops,

23



with a considerable decrease of noise margins of the whole SoC.

In addition, bridging faults and opens in the interconnects due to electromigration have recently emerged
as a major reliability issue for modern complex ICs, like RISC-V based SoCs. This because with technol-
ogy scaling, the area of wires shrink, with a consequent increase in current densities [90], [96]–[98], and a
consequent increase in the likelihood of occurrence of electromigration.

Moreover, modern ICs implemented with aggressively scaled technologies are also becoming increasingly
prone to aging mechanisms, such as bias temperature instability (BTI) [112], [119]. BTI increases the ab-
solute value of transistors’ threshold voltage over time, thus resulting in the degradation of their driving
strength. In data-paths, such a threshold voltage increase may lead to a delayed transition of a signal at the
input of an output flip-flop. In case of critical timing paths, this signal may reach its stable final value later
than expected and violate the setup time of the output flip-flop, thus resulting in the generation of an error
at the flip-flop output, possibly compromising the SoC correct operation. Additionally, it has been shown
that BTI also negatively impacts the susceptibility of ICs to soft errors [120]. This because by increasing
the absolute value of the transistor threshold voltage over time, BTI also reduces the entity of the restoring
current of the transistors driving circuit nodes. As a result, the likelihood of transient fault generation due to
particle hits significantly increases over time [112], [120].

Several approaches exist in the literature to design reliable, safe and resilient systems despite the presence
of faults and aging phenomena. For instance, reliability can be guaranteed using Error Correcting Codes
(ECCs) for memory blocks [121], and Modular Redundancy (MR), or On-Line Testing and Recovery, for
logic [122]. In addition, safety can be guaranteed by employing proper monitoring schemes to detect the
system’s erroneous behavior, and reaction strategies to be activated (e.g., at the system level) after detection,
to reduce the risks associated with the detected erroneous behavior [123]. Resiliency can be obtained through
the adoption of proper hardening design approaches [rossi09], to reduce the system’s likelihood to exhibit an
incorrect behavior, once affected by faults.

However, such solutions may require high costs in terms of area overhead (higher than 200% in some
cases) and power consumption. Therefore, alternative solutions requiring lower costs have been presented in
the literature (e.g., those in [113], [115], [124], [125]).

In [124], the authors propose an on-line testing approach for the control logic of high performance micro-
processors. Rather than adding information redundancy (in the form of error detecting codes), the approach
uses the information redundancy (referred to as Function-Inherent Codes) that the microprocessor control
logic typically inherently has, due to its required functionality. This solution allows to achieve on-line testing
at very low costs in terms of area and power consumption, and with a lower or similar impact on system
performance compared to traditional on-line testing approaches. However, the percentage of possible faults
occurring in the field that can be detected by this solution is lower than that achievable by using traditional
on-line testing approaches.

In [115], the authors propose a methodology to detect transient faults and power supply noise in General-
Purpose Graphics Processing Units (GPGPUs). The methodology is based on temporal redundancy, where
instructions are re-executed on idle functional units of the GPGPU. The methodology requires low area
and power overhead, as well as low impact on performance. However, its effectiveness mainly relies on
the large redundancy/parallelism present on GPGPUs, so that it may be not straightforwardly applicable to
other kinds of processors, like RISC-V based SoCs. Similarly, In [125], the authors present an aging sensor to
monitor performance degradation at the output of critical datapaths, caused by BTI affecting pMOS transistors
(i.e., Negative BTI, or NBTI), which at the time of the publication were the dominant aging phenomena.
However, these solutions may be not effective in detecting BTI affecting nMOS transistors (i.e., Positive BTI,
PBTI), whose impact on performance degradation became comparable to that of NBTI for modern SoCs
implemented by deeply scaled technologies. In [113], the authors present a strategy that enables to reduce the
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impact of BTI on the susceptibility to soft errors of standard and low-cost robust latches. This is achieved at a
limited increase in terms of area overhead, power consumption, and with no impact on the latch input-output
delay. A possible limit of this approach is that it may be not applicable to all kinds of latches and memory
cells.

As far as we are concerned, existing approaches in the literature have been demonstrated sufficient to
guarantee the required levels of reliability, safety and resiliency of SoCs employed in current, partially au-
tonomous systems. However, these techniques may not be able to guarantee the more stringent requirements
in terms of reliability, safety and resiliency required for SoCs for the HPC domain and in highly autonomous
systems employed for safety critical applications (such as unmanned robots and vehicles) [114].

4.1.3 Testing HPC systems

The test of HPC machines usually consists of several procedures (hundreds of tests) intended to identify
possible software errors and hardware faults affecting the system. Moreover, these testing methods also de-
termine the commodity clusters’ operative state and support the subsequent correction stages of the system.
Several experts agree that modern HPCs need low error rates in their components (e.g., in CPUs and GPUs)
and suggest that focused, extensive, and exhaustive testing might be required [126]. However, an exhaus-
tive hardware testing of HPC machines can hardly be performed due to the complexity and the number of
components involved in their operation.

Classical testing techniques generally focus on the high-level abstraction of the available HPC system
models and mainly target the software stack. Those techniques include profiling and regression testing (e.g.,
ReFrame [127]), that have been an essential step of any software development and integration cycle in HPCs.
Other approaches include acceptance tests, that consist of several stages, as detailed in the following.

In [128], the authors describe an acceptance test comprising two stages: i) hardware acceptance testing
(HWA) and ii) final integration testing (FI). The first stage consists of hardware diagnostics (usually per-
formed by manufacturers of integrator companies) to ensure that each component (e.g., processors, memory,
interconnect) meets the required specifications for the HPC system. The second stage (FI) included three
elements: functionality testing (FT), performance testing (PT), and stability testing (ST). The FT ensures that
the software stack (e.g., scheduler, compilers, and libraries) operate correctly. The PT checks the execution
and scale of applications to achieve nominal performance. The ST ensures that the HPC system supports the
execution of diverse workloads continuously and for an extended period.

The regression testing is typically customized and ad-hoc, focusing on the correctness and quality oper-
ation of the software/application running on top of the HPC system. Moreover, some basic functionality
features of several hardware components of the HPC systems can also be checked. Interestingly, this strategy
targets the identification of functional and non-functional errors and failures after composition changes (e.g.,
enhancements, patches, or configuration changes in the system). Unfortunately, the exhaustive evaluation of
hardware components is not a priority for the test.

In contrast, hardware acceptance tests evaluate the functional operation of the system’s components (e.g.,
boundaries of new technologies) and are usually performed during the configuration and setup steps of the
HPC machine but require information only available to the manufacturer or the system integrator (e.g., Intel,
Nvidia, Cray). However, the coverage of hardware acceptance tests is not specified, possibly limiting their
effectiveness for all components. It is worth noting that functional hardware tests are not usually deployed
during the production stage of commodity clusters.

The other tests (functionality, performance, and stability tests) mainly focus on verifying the status of the
software layers on top of the system. Other typical functional software testing approaches (e.g., sanity checks
and benchmarks [129]) allow observing some features in the HPC machine, such as the performance or the
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variation in precision in the components (e.g., the Variety framework [130]). Unfortunately, most approaches
directly neglect hardware and component testing.

Profiling and production monitoring mechanisms usually collect information from clusters (e.g., current,
energy, power) to evaluate the status ("health") of the components in the HPC system, and might support
functional testing goals in the system. The collected monitoring information might serve as preliminary
testing and guide the identification of faulty nodes for later check, evaluation, and mitigation goals [131],
[132]. However, the measured parameters are collected independently for all components, which might
not capture the overall behavior of the HPC system under realistic workloads [133]. The HPC monitoring
methods include in-field sensors, such as Built-In Self-Test (BIST) modules in analog and power electronics
equipment widely used to measure electric parameters (e.g., power impedance and noise spectrum [20], [134].

4.1.4 Hardening solutions for HPC systems

Fault-tolerance mechanisms for hardening HPC equipment have been exhaustively analyzed, and most cur-
rent guidelines divide the hardening solutions into two main approaches: 1) hardware and 2) software. In
the first case, the hardware fault-tolerance solutions require special structures to detect and correct errors. In
HPCs, this approach mainly targets the interconnect infrastructures and the memories of commodity clusters.
In both cases, modern standard error mitigation techniques, such as Error Correcting Codes (ECCs) [135]–
[137] are highly employed with minimal hardware and performance overheads. The same approach has been
extended to the complete memory hierarchy of cluster processors and hardware accelerators [138]. In addi-
tion, ECC-based hardening can be extended to the intra-node interconnect infrastructure. Similarly, hardware
redundancy and spare units are hardening alternatives [139], [140]. Other techniques include dynamic voltage
and frequency scaling and shutdown mechanisms for CPUs, accelerators, and ASICs, as strategies to prevent
and reduce hardware faults arising from overheating issues [110].

Software hardening solutions are highly flexible since they only resort to software-based strategies. These
are implemented by modifying the application code or cleverly managing the configuration of the system or
the application. The software-based gardening strategies can be classified as i) Reactive and ii) Proactive.
The former technique aims to minimize the application’s impact in the presence of faults in one or more
components of the HPC system; meanwhile, the latter technique focuses on predicting faults and failures
states complemented with corrective actions based on migration techniques [141].

The reactive mechanisms include software checkpoints and restarting mechanisms [142], [143] that rely on
statistical properties of failures in the system to correct possible operative errors of the applications [109],
[144]. Other software-based hardening techniques include a complete or partial duplication of the application
(i.e., in terms of code and execution). The Sentinel [145] approach consists of a compiler-based framework
that combines code profiling with fuzzing engines to identify the most vulnerable code blocks per appli-
cation for later compacted replication. Some duplicating strategies focus on smart and optimized program
duplication to exploit idle hardware in commodity clusters. Other strategies combine checkpoints with code
duplication to harden applications. In [146], the authors propose Hauberk for GPUs, that combines in-field
profiling information with software error detectors (for loop and non-loop portions of code) to identify and re-
cover from errors on those variables prone to propagate errors and corrupt the results of a program, meanwhile
minimizing its impact in performance. Other fault-tolerance approaches involve the clever division of tasks
per application and the management of task scheduling, which is complemented with partial cancellation
and restarting of tasks [147], [148]. On the other hand, authors in [149] propose proactive methods for task
migration from faulty commodity clusters (or unhealthy nodes) into failure-free ones. This approach resorts
to virtualization techniques of operating systems, health monitoring mechanisms, and load-based migration
strategies. Other hardening mechanisms include algorithmic-based fault tolerance [150], [151], speculative
execution, or forward recovery [152].

26



4.1.5 Opportunities for improving the reliability in HPC systems

Regarding fine-grain technology issues of hardware platforms, there are several challenges and research op-
portunities to develop innovative monitoring approaches and design techniques for modern SoCs (e.g., SoCs
based on the RISC-V architecture), that will enable to achieve higher levels of reliability, safety and resiliency
than existing solutions. The effectiveness of the developed approaches for enhanced reliability, safety and re-
siliency with respect to likely faults and aging phenomena affecting modern SoCs might be verified by means
of cross-layer approaches (i.e., combination of electrical level simulations and architectural-level fault injec-
tion campaigns).

The current functional testing strategies for HPCs are based on high-level software approaches focused
on verifying the software layers and the complete system state. However, hardware testing (focused on the
underlying architecture of the commodity clusters, such as processors and hardware accelerators) is barely
deployed during the production stages of the HPC by restrictions on their time execution or the availability
of effective hardware tests due to the lack of hardware details. Interestingly, both restrictions can be solved
in open-hardware environments, such as those based on RISC-V platforms for HPCs, and represent an out-
standing opportunity to improve the effectiveness of functional testing mechanisms for HPCs, allowing the
merging of performance and functional test goals (typical of HPC system tests) with hardware testing goals.
The availability of the hardware architecture in combination with the adaption of functional testing strategies
for hardware, such as the Software-Based Self-Test (SBST) [153], might contribute to designing more effec-
tive testing routines considering the architectural features of all hardware elements composing the commodity
clusters (processors, accelerators, and intra-node interconnect infrastructures).

Other opportunities to improve HPC reliability include exploring and adapting hardware-based hardening
solutions for the execution cores (processors and hardware accelerators) by exploring and adapting mitigation
strategies, such as flexible Built-In Self-Repair mechanisms, reconfigurable mechanisms, Design Diversity
approaches for hardware accelerators, and Error-Correcting structures.

4.2 Thermal & Power Supply
4.2.1 Thermal Management

Reliable and environmental-friendly operation of HPC infrastructure requires proper thermal management
at the level of the individual chip for all processors and accelerators. To be able to perform computation,
digital integrated circuits draw electrical power and generate heat that has to be dissipated to keep operating
temperature sufficiently low for reliable operation.

CMOS integrated circuits are prone to thermal runaway [154] since part of their power consumption, static
power, increases as temperature increases, potentially generating a positive feedback loop. High operating
temperatures impact system reliability and lead to failures over prolonged time, even in the absence of ther-
mal runaway [155]. Additionally, thermal cycling [156] due to computation-dependent, time-varying power
consumption further impact reliability.

In the HPC environment, thermal management directly impacts the computational performance due to the
so called Dark Silicon issue [157] as a heat dissipation solution capable of dissipating the maximum system
power consumption is often either not technically possible or not economically feasible. To prevent damage to
the integrated circuits, the heat dissipation solution is complemented with a run-time thermal control strategy
that adapts the operating power consumption - and consequently achievable performance - to the thermal
state of the chip. Turbo Boost is a commercial implementation of such a thermal management policy for Intel
processors.

Heat dissipation solutions use mechanisms to facilitate heat transfer from the integrated circuits and other
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power dissipating components to the outside environment. Air cooling uses heat sinks to increase the heat
exchange surface area, and possibly fans to increase air flow. Liquid cooling improves heat dissipation further
by replacing air with a suitable coolant liquid. Immersion heating is possible, where the entire computing
device is immersed in the cooling fluid, but it is often more practical to apply liquid cooling in a localized
way through heat exchangers in thermal contact with the highest power dissipating components. In this case,
it is important to validate that sufficient cooling is provided to the rest of the system components. Pumps
are required to ensure sufficient coolant liquid flow. Evaporative cooling is the next generation cooling
solution utilizing latent heat of vaporization to further improve heat dissipation. These systems require similar
components to liquid cooling, but use refrigerant fluids with a suitable boiling point and provide a significant
increase in dissipation heat flux compared to conventional alternatives.

Run-time thermal management improves the cooling system efficiency and compensates its limitations uti-
lizing temperature sensors, a control algorithm and actuators to keep temperature under control. Actuators
are divided in two categories: those that can increase the cooling system dissipation heat flux, such as in-
creasing fan or pump speeds, and those that reduce the dissipated power, such as DVFS. The former type
of actuators are used to improve cooling energy efficiency by reducing the power used by the cooling sys-
tem and improving PUE. The latter kind of actuators are instead needed despite their impact on computation
performance due to the aforementioned Dark Silicon issue. There is a wide corpus of academic research on
thermal management policies due to the possibility of obtaining performance gains by maximizing the use of
the available cooling system capacity [158]. Additionally, low-overhead thermal control policies is another
area which promises further performance gains [159].

Thermal simulation is the main tool used for the design, verification, and validation of the heat dissipation
solution [160]. Due to its central role and challenging behavior in the design of cooling systems, several
methodologies and tools have been developed by the academic community, so improving simulation perfor-
mance and accuracy is a crucial subject of on-going research.

4.2.2 Power Supply Regulation

A main limitation to the computational performance of modern RISC-V system-on-chip (SoCs) processors is
power consumption [161]–[164]. In particular, battery lifetime and maximum operating temperature (as-
sociated to a maximum power consumption) constraint the computational performance of modern SoCs
[161], [164]. Consequently, power management strategies, such as Dynamic Voltage and Frequency Scaling
(DVFS), are usually adopted to increase the performance-per-watt of complex SoCs [165]. These strategies
usually employ an integrated Power Control Unit (PCU), that monitors the activity of different power domains
and that, based on such activities, determines the optimum voltage for each domain.

Efficient DVFS techniques require that the voltage of each power domain can be controlled individually.
This can be achieved by employing different Voltage Regulator (VR) circuits. The possibility to have a
large number of power domains within a SoC has been enabled by the availability of VRs implemented
on the SoC itself (usually referred to as Fully Integrated Voltage Regulators - FIVRs), rather than on the
motherboard outside the die [161]–[164]. FIVRs do not require extra I/O pins on the die (as it is the case
for VRs’ implemented on the motherboard), and they can be placed close to their respective loads, thus
minimizing the power dissipated in interconnections [162]–[164]. Moreover, FIVRs enable faster transitions
between different values of supplied voltages (power states), thus enabling to implement more efficient power
management strategies.

In modern SoCs, FIVRs are typically implemented by means of a Buck topology DC-DC switch-mode
converter [162]–[164], that receives as input a desired reference voltage (encoded as a digital word) from
the PCU, and generates an output voltage (i.e., the power supply voltage) that is proportional to the received
reference. The main components of a FIRV are the switching devices, a low-pass filter, and a FIVR Control
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Module. Except for the low-pass filter, the remaining FIVR components are implemented within the SoC die,
thus they suffer from the same reliability problems as the other SoC components, due to technology scaling
[162]–[164]. In particular, process parameter variations occurring during fabrication, faults and aging phe-
nomena (such as Bias Temperature Instability - BTI) are some important problems that may cause significant
variations of the FIVR output voltage, and of the FIVR response to load or reference voltage changes. Such
undesired variations of FIVR output voltage and response time may exceed the maximum limits required for
the correct operation of the SoC that the FIVR is powering, with consequent possible catastrophic effects if
the SoC is running safety critical applications (e.g., autonomous cars or robots interacting with humans).

In order to prevent such catastrophic consequences, some approaches have been presented in the literature
to detect/prevent the occurrence of incorrect power supply voltages (e.g., those described in [75], [162], [163],
[166]–[169]).

The solution suggested in the ISO 26262 standard [75] continuously monitors the FIVR output voltage
during its operation in the field, and generates an alarm signal in case it differs from the desired reference
voltage coming from the PCU. In particular, this solution employs an Analog-to-Digital Converter (ADC)
[170] to convert the FIVR output voltage into a digital word, that is then compared to the digital word coming
from the PCU (that encodes the desired reference voltage). A limit of this solution is that it may be very
expensive in terms of area overhead (higher than the 100% of the FIVR area). In addition, this solution is not
able to monitor/detect variations of the response time of the FIVR to load or reference voltage changes.

Instead, in [162], [163] the authors present some Design for Test (DfT) structures that, if included in the
SoC, enable to characterize some specific FIVR key performance parameters (e.g., the response time of the
FIVR to load or reference voltage changes, the FIVR efficiency, the output voltage ripple, etc.). However,
the characterization enabled by the proposed DfT structures cannot be performed for each fabricated chip
because of its high cost in terms of time. Therefore, it is performed only for a small set of fabricated SoCs.
Moreover, even testing the FIVR performance parameters of all fabricated chips would not guarantee the
correct operation of the FIVRs in the field. In fact, the impact of faults and aging mechanisms occurring in
the field will not be detected if the FIVRs are only tested after fabrication.

In [166], the authors proposed a detector capable of detecting power supply variations (power supply noise)
by revealing the increase in the delay of gates powered by such a monitored supply voltage. These detectors
present low-cost in terms of area and power overhead and are effective in detecting power droops. Properly
modified versions of such detectors might be employed to detect slow transient responses of the FIVR to load
(or reference voltage) variations, or the presence of an excessive ripple on the FIVR output voltage. However,
these detectors may be not able to detect the possible occurrence of stable incorrect FIVR output voltages.

In [167], [171], the authors present a self-checking monitor that is able to detect faults affecting the control
circuitry and the power switches of DC-AC converters employed in photovoltaic PV systems. This is achieved
at low cost by measuring the harmonic content of the current delivered by the converters to the load. Properly
modified versions of this monitor might be employed to detect excessive reductions of the FIVR power
efficiency, but they may be not effective in detecting, for instance, the inability of the FIVR to keep the output
voltage at the desired value.

In [168], [169], the authors present a solution to monitor the power supply voltage by using Tunable Delay
Lines (TDLs) that are configured as ring oscillators to generate the clock (CK) signal for a counter. The
counter counts the number of CK periods in a given time interval. Since the propagation delay of the delay
elements composing the TDL is proportional to the voltage of their power supply, the final count of the
counter is proportional to the power supply voltage. A limit of these solutions is that they may be expensive
in terms of area overhead. In addition, the propagation delay of the delay elements composing the TDL is
susceptible to process parameter variation occurring during fabrication. Therefore, a complex calibration
phase would be needed in order to be able to employ these solutions to monitor the FIVR output voltage
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during in-field operation.

Finally, accurate analyses at the electrical level of the effects of the most likely faults and BTI phenomena
possibly affecting a FIVR in the field is missing in the literature. In addition to such analyses, proper metrics
enabling to evaluate the severity of the effects of such faults and aging phenomena are not presented in the
literature, and would be needed in order to develop efficient monitoring schemes to detect the occurrence of
incorrect FIVR output voltages during its in-field operation.

In order to fill the gap in the state of the art regarding efficient monitoring solutions for power supply
voltages powering modern SoCs (e.g. based on the RISK-V architecture), the project partners plan to analyze,
at the electrical level, the effects of the most likely faults and BTI phenomena possibly affecting a FIVR
during its operation in the field. In this phase, the partners also plans to introduce metrics to evaluate the
severity of such effects on the SoC correct operation. The performed analyses and metrics will enable to
study the existence of possible correlations between performance parameters of the FIVR and other circuit
parameters (e.g., input/output/ currents/voltages of the FIRV), that could enable to develop, in a successive
phase, low-cost monitors to detect variations of power supply voltage exceeding the limits required for the
correct operation of the SoC that the FIVR is powering

4.3 Energy Efficiency
Global warming caused by greenhouse gas emissions is one of the main concerns for both developed and de-
veloping countries. In a fast growing Information and Communication Technology industry, current energy
efficiency methodologies are not sufficient for new raising problems such as optimization of complex dis-
tributed systems. Existing studies claimed that 78.7 million metric tons of CO2 are produced by datacenters,
which is equal to 2% of global emissions [172]. CDCs in the United States consumed 100 billion kilowatt
hours (kWh) in 2015, which is sufficient for powering Washington, DC [173] for a year. The consumption
of electricity will reach 150 billion kWh by 2022, that is, increase by 50% [173]. Moreover, energy con-
sumption in CDCs can be increased to 8000 terawatt hours (TWh) in 2030 if controlled mechanisms are not
identified [174]. Due to underloading and overloading of resources in infrastructure (cooling, computing,
storage, networking, etc.), the energy consumption in Cloud and HPC datacenters is not efficient and the
energy is consumed mostly while some of the resources are in idle state, which increases the cost of Cloud
and HPC services [173].

Carbon footprints produced by CDCs are the same as that of the aviation industry. Currently, between 80
and 95 million metric tons of CO2 are produced by datacenters, which corresponds to about 3% of the global
emissions, overtaking the aviation industry [172]. Big cloud providers, like Google, Amazon and Microsoft,
are working to reach zero-emissions cloud-based services. Renewable energy, heat waste utilization and
sustainable cooling mechanisms are the current focus for the so-called green cloud.

Energy consumption is not related to an unique aspect of a datacenter: on average, processors take about
50% - 55% of the available energy, while more than 20% is taken by the storage, and the remaining 30% is
consumed by cooling, memory and network. Therefore, underloading and overloading of the resources lead
to an energy waste and inefficiency of the data center. A resource in idle state continue to consume a relevant
amount of energy. Resource management policies and computing architectures and algorithms are the key
element and focus of current research, albeit they remain challenging.

The current research on sustainable Cloud and HPC computing is organized into several categories: appli-
cation design, sustainability metrics, capacity planning, energy management, virtualization, thermal-aware
scheduling, cooling management, renewable energy, waste heat utilization, and approximate computing.

The Cloud and HPC infrastructures need continuous monitoring in order to perform predictions and esti-
mations for the different aspects. Sustainability metrics are becoming essential, but every year researchers try
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to define new metrics or use different combination of metrics to reach new sustainability levels [173]. The
following are environmental-related metrics:

• Resource Utilization (RU): defined as the execution time of workloads with respect to the uptime of
the resource

• Carbon Usage Efficiency (CUE): the CO2 emissions over the total energy consumed

• Energy Reuse Effectiveness (ERE): i.e. the energy reused and consumed by cooling, lighting and
other IT devices over the total energy consumed

• Green Energy Coefficient (GEC): the fraction of green energy consumed over the total energy con-
sumed by the datacenter

• Cooling System Efficency (CSE): the amount of cooling capacity per unit of energy consumed to
maintain the datacenter

• Energy Consumption (EC): the amount of electricity consumed by a resource to complete the execu-
tion of an application

• Energy Efficiency (EE): the number of executed workloads over the total energy consumed to execute
the workloads

• Power Usage Effectiveness (PUE): the energy consumed by the ICT devices over the total energy
consumed by all the Data Center devices including the cooling devices.

Current challenges to improve energy efficiency (EE) and energy consumption (EC) need the interaction
of several factors, including the evaluation and monitoring of resources utilization, software design, cooling
systems, and temperature monitoring. Different metrics need to be monitored, such as PUE and RU. In fact,
EC can be improved by working at three levels:

1. Software level (Deep Power Down)

2. Hardware level (Processor instruction set)

3. Intermediate level (energy-aware provisioning of resources)

4.3.1 Memory Management

In general computing systems, memory is considered to the second-largest power consumer after the proces-
sors, responsible for up to 40% of total system’s power consumption.

Researchers proposed different management techniques to optimize the power consumption of this compo-
nent. In this document we will focus our attention on the optimization at the level of the paging algorithms
in a system with two levels of memory (e.g., main memory–disks).

Green paging is a fundamental variant of the classic paging problem in which we allow memory capacity
to vary over time under the control of the paging algorithm, between a maximum of k and a minimum of k/p
pages. Accessing a page in memory takes one unit of time, while a page fault takes s � 1 units. The goal
is to minimize, rather than the total time (equivalently, number of faults) taken to service a sequence of page
requests, the integral of memory capacity over that time—a quantity we call memory impact. The main basis
for this model lies in the increasing importance of energy consumption for both mobile and supercomputing
platforms: modern hardware can dynamically turn off portions of the memory, both at the main memory
and processor cache layers, so that instantaneous power consumption is proportional to the amount of active
memory—and total energy consumption is proportional to its integral over time. It is crucial to observe that
minimizing power by minimizing active memory does not necessarily minimize energy, i.e. the integral of
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power over time, since less memory may yield disproportionately longer executions. Also, note that below a
certain capacity, other costs may become dominant; hence our choice of a minimum capacity below which no
substantial savings can be realized. Another basis for such models lies in the popularity of virtualization/cloud
computing services, that allow one to rent computational resources on demand; minimizing the integral of
memory capacity “rented” for a computation minimizes monetary cost.

The first to address a similar problem was Chrobak [175], allowing the paging algorithm to determine
both the capacity and the contents of the memory on any given request, with the goal of minimizing a linear
combination of the total number of faults and the average capacity over all requests. This problem has been
investigated by López-Ortiz and Salinger [176] and later, in the more general version where pages have
sizes and weights, by Gupta et al. [177]. It turns out [178], [179] that one can effectively decouple page
replacement from memory allocation: even if the latter is chosen adversarially, a number of well-known
paging algorithms like LRU or FIFO sport O(1) competitive ratios (i.e., they perform within a constant factor
of the optimal offline algorithm) with O(1) resource augmentation (as in classic paging). Thus, green paging
is essentially a problem of memory allocation: once memory is allocated, one can simply use LRU for page
replacement, as it will incur a cost within a constant factor of what is achievable with (half) that memory
capacity.

Agrawal et al. [180], [181] showed that the optimal competitive ratio for deterministic online green paging
is O(log p). However, many questions remain open, such as whether we can break this logarithmic barrier by
using randomization or by leveraging (machine-learning) predictions about future page requests.

4.3.2 Approximate Computing

Approximate Computing (AxC) proved to be a very promising one [182]. The idea behind AxC is that several
applications do not need to be executed on “accurate” and thus “energy-expensive” hardware. AxC aims to
reduce the hardware’s precision to save energy consumption. Interestingly, the reduced precision leads to
applications providing less accurate but still good enough results while reducing by orders of magnitude
the required energy [183], [184]. Such applications are intrinsically resilient to noise and errors affecting
the computation (i.e., because of the less precise hardware). Indeed, the inherent resiliency property tightly
depends on the application domain.

Well-known examples are algorithms dealing with noisy real-world input data (e.g., image processing, sen-
sor data processing, speech recognition, etc.) or with outputs that require human interpretation, such as digital
signal processing of images or audio; also data analytics, web search, and wireless communications exhibit
an equivalent property [185]–[187]. Other examples are iterative applications that process large amounts
of information, sample data, stop the convergence procedure early, or apply heuristics [188]. Most of the
proposed techniques try to define new methods to generate alternative versions of specific components (hard-
ware or software) with fewer resources. For example, several proposals of approximate arithmetic operations
[189]–[191]. Such variants differ from speculative implementations because they do not focus on generating
alternatives but restoring the possible introduced error [192]–[194]. Other techniques generate variants by
considering a high-level description of the application or its implementation at a low-level [185]. Moreover,
existing approaches target only implementations at a specific level of the computing stack, i.e., software or
hardware.

Approximation techniques can be applied to all the computation stack levels. Figure 3 divides approxima-
tion techniques into three groups that define their implementation level: Software, architecture, and hardware.
As Figure 3 shows, some approximation methods can be implemented on multiple levels. For example, Load
value approximation can be implemented by purely software approaches or at memory control units. Figure
3 presents only some of the most used approximation methods and the most discussed in the literature. How-
ever, there are uncountable ways of approximating an application, and the very definition of what is to be
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considered an approximation or not is debatable [195].
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Figure 3: Approximate computing classification (Figure adapted from [195])

The loop-perforation technique is an excellent software approximation example, achieving useful outputs
while not executing all the iterations of an iterative code. Similarly, task-skipping involves skipping code
blocks during run-time following previously defined conditions. Another approximation technique for soft-
ware applications is reducing the bit-width used for data representation. This technique mainly impacts the
memory footprint of the application. Indeed, data precision reduction can also impact the execution time
performance of the software, but that would depend on the hardware implementation of operations in use
by the application. Hardware-based approximation techniques usually make use of alternative speculative
implementations of arithmetic operators. An example of this approach is the implementation of variable
approximation modes on operators [196]. Hardware approximation is also present in the image processing
domain in the form of approximate compressors [197]. The techniques presented in Figure 3 are explained
in detail and with implementation examples below:

Function Skipping. In a system composed of tasks that complement each other to provide a final result,
some of the tasks can be skipped while maintaining a level of accuracy and error resiliency defined by the
user [198].

Memoization. Traditionally, memoization consists of saving outputs of functions for given inputs to be
reused later. Given that some input data are frequently reused, their calculated outputs can be stored and used
without needing to re-execute the function. Memoization can also approximate applications; if similar inputs
provide similar outputs for a given function, the already-calculated function output can approximately cover a
range of inputs. In [199], the authors propose approximate value reuse for memoization, providing a shallow
accuracy loss.

Loop-Perforation. In loop-based algorithms, loop perforation can reduce execution time and energy con-
sumption. An excellent example of this type of application is numerical algorithms. For example, calculating
an integral using the trapezoidal method consists of calculating the area of a high number of trapezoids under
the curve of a function, providing an approximation of the area beneath it. Reducing the number of calculated
trapezoids will make the final value less accurate, but the program will finish earlier and use less energy. The
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literature also presents techniques to apply this approximation method on general-use algorithms, filtering
out the loops that cannot be approximated and using loop-perforation on those that can [200]. Authors claim
that their approach typically delivers performance improvements greater than a factor of two while introduc-
ing an output deviation of less than 10%. Loop-perforation is an algorithm-based approximate technique, as
it only applies to loop-based code, limiting its applicability. It can be implemented both with software and
programmable hardware code. The difference is that, on programmable hardware, a loop might be imple-
mented as many circuits executing in parallel (one being each iteration of the loop) or one circuit re-executed
in a timeline. Therefore, the impact of loop perforation on software and hardware implementations can be
very different. In software, it will mainly impact the execution time of the application, while in hardware
implementation, it could also affect energy and area consumption.

Functional Approximation. Some systems have components that do not need to provide accuracy as much
as others. The idea is to take advantage of the fact that even inside an algorithm, some components affect
less the final accuracy than others. Those components can be approximated to reduce energy consumption
and improve execution time performance [201]. The functional approximation can appear as alternative
speculative implementations of arithmetic operators on the architectural level. When applied to software
applications, approximate computing usually consists of inexact computations, which provide results with
lower accuracy than usual [202]. Most approximate computing techniques for software consist of modifying
the algorithm so that it executes approximately, providing a final result more rapidly. One of the problems
with a functional approximation is that it introduces errors in the system output that may be too big to be
acceptable. For example, the works at the architectural level of approximate operators [196] do not present a
significant hardware implementation area reduction compared to a traditional operator. The size of the used
area on programmable hardware devices directly impacts system reliability [203]. Therefore, the quality loss
(manifested as errors in some operation results) introduced by the approximation would only be acceptable
by safety-critical systems if it sharply reduced its area.

Read/Write Memory Approximation. It consists of approximating data loaded from or written into the
memory or the read/write operations themselves. This is primarily used on video and image applications,
where accuracy and quality can often be relaxed, to reduce memory operations [204], [205]. In [206], the
authors propose a technique that uses dynamic bit-width based on the application accuracy requirements,
where a control system determines the precision of data accesses and loads. The authors claim it can be
implemented in a general-processor architecture without hardware modifications by communicating with off-
chip memory via a software-based memory management unit. The approximation can also be applied to the
cache memory. If a load data cache is missed, the processor must fetch the data from the following cache
level or at the main memory. This can be a very time-consuming task. Load value approximation can be
used to estimate an approximate value instead of fetching the real one from memory. In [207], the authors
present a technique that uses the GPU texture fetch units to generate approximate values. This approximation
causes an error of less than 0.5% in the final image output while reducing the kernel execution time by
12%. In [208], the authors propose an approximation technique for multi-level cell STT-RAM memory
technologies by lowering its reliability to a user-defined accuracy loss acceptance. This memory technology
has a considerable reliability overhead, which can be reduced. They selectively approximate the storage data
of the application and reduce the error-protection hardware minimizing error consumption.

Data precision reduction. Data precision reduction is one of the techniques that can be implemented both
at a software and architectural level. Reducing the data precision of an application (i.e., the number of bits
used to represent the data) is a straightforward technique to reduce memory footprint. Reducing memory
usage also reduces energy consumption at the cost of accuracy (i.e., fewer data has to be transferred from/to
the memory). In [209], the authors show that reducing floating point precision on mobile GPUs can reduce
energy consumption with image quality degradation. This degradation, however, can be acceptable and even
unperceivable to the human eye. Lower memory utilization is suitable for safety-critical systems because it
reduces the essential and critical bit count, making them less susceptible to faults. Reducing the bit-width
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used for data representation is also a popular approximation method [210]. The way data precision reduction
can approximate software and FPGA applications is obvious: It is a matter of code modification. In software,
the precision of floating-point units can be easily modified using dedicated libraries or by merely changing the
variable type. The same can be done at VHDL/Verilog projects: A design can be adapted to process smaller
data vectors. Data precision reduction can improve area and energy costs for hardware projects, but frequently
does not present a high-cost reduction on software. For example, fixed-point arithmetic can approximate
mathematical functions, such as logarithm, on FPGA implementations providing low area usage [211]. On
software, however, it can increase the execution time of the application because all the operations and data
handling routines are implemented at the software level.

Use of Neural Networks. A neural network can learn how a standard function implementation behaves
with different inputs via machine learning. The neural network can implement approximate functions in a
complex system via software-hardware co-design. Traditional approximable codes can be transformed into
equivalent neural networks with lower output accuracy but better execution time performance [212].

Memory Access Skipping. Using a combination of the memoization and function skipping techniques, it
is likewise possible to skip memory accesses. Uncritical data can be omitted if it will not heavily damage the
output accuracy. Approximate neural networks can skip reading entire rows of their weight matrices if those
neurons are not critical, reducing energy consumption and memory access and improving performance [213].

Voltage Scaling. The supplied voltage level can be scaled at the circuit level, impacting the computation
timing of processing blocks inside the clock period. It affects the final result’s accuracy and energy con-
sumption [214]. In [214], the authors propose the voltage over scaling of individual computation blocks,
assuring that the accuracy of the results will “gracefully” scale with it. Voltage scaling can be implemented
dynamically in hardware. DVFS, for example, is a power management technique used to improve power
efficiency, reducing the clock frequency and the supply voltage of the processor [215]. DVFS can cause data
cells to be stuck with a specific value because it diminishes the threshold between a logical one and zero.
This type of approximation impacts the hardware integrity and the precision of the data. The voltage scaling
technique can be applied at the processor architecture level and programmable hardware. At the architectural
level, voltage scaling is implemented during the circuit design. Most FPGA manufacturers make the voltage
scaling of the device possible through easy-to-use design tools. Even though it will impact the performance
of a software application, it is not part of the software approximation group because its implementation has
no direct connection with software development.

Using Inexact/Faulty Hardware. Inexact and faulty hardware can be used at the architecture level to provide
an approximation. The literature presents a multitude of approximate adders proposals. One approach is to
remove the circuit’s carry chain to reduce delay and energy consumption. This can be done by altering the
subadders of a standard adder cell of n bits [216]. In [217], the authors presented an approximate 2 ⇥ 2
multiplier design that gives correct outputs for 15 of the 16 possible input combinations and uses half of the
area of a standard non-approximate multiplier.

As we can see, approximation techniques can be implemented in all the computation stacks and at many
abstraction levels. The functional approximation is an example of a technique applied at the software and
architectural computation stacks and implemented via software code modification, programmable hardware,
and circuit level. Loop perforation can also be achieved via code modification for embedded software and
programmable hardware (high-level synthesis, HLS) or directly with HDL project modifications. The way
the approximation techniques are technologically implemented also considerably impacts their performance.
Approximate computing at the software level is less presented in the literature than at the hardware level. This
is probably due to the origins of approximation being on energy consumption reduction and neural network
applications.
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4.3.3 More Computing Power

Supercomputers in the near future will be different from today’s HPC systems, because the process towards
more computing power will need a different approach from the traditional one of “scaling out by just adding
more building blocks”. This new attitude will need to rely on innovation across the software stack, considering
three important key challenges: i) performance at scale, ii) energy efficiency, and iii) resilience.

In fact, an exascale supercomputer will not be “yet another big machine”. With a cost of hundreds of
million euros, power consumption in the order of tens of megawatts and a lifetime that reaches a decade
at most, the management of those resources must be wise and at the same time very accurate, especially in
these days, when the usage of computational resources is increasingly related to reduced energy consumption,
maintaining the same performances and the same execution times (or most).

But even with the highest technological advancements, a post-exascale machine is expected to well exceed
the 20-30MW threshold that is the current upper bound of power consumption for exascale computing, and
could be even more than 30MW. A machine of this size will not be able to operate at full power consumption,
and energy consumption will become a primary concern to keep its environmental footprint and operational
costs at acceptable levels, without neglecting its original purpose: that is to provide computational capacity
to highly critical applications, to solve extremely resource hungry problems.

Problems that, focusing on the application side, pose big efforts to achieve scalable performance and high
system throughput. To make things even more challenging, next-generation HPC applications can no longer
be considered as computation or communication bound, thinking of them as monolithic blocks with fixed and
precise schemes.

The revolution of big data and machine learning, the emerging of edge Computing and Internet of Things
(IoT), with the scale of modern HPC systems and cloud data centers, are rapidly changing the way we solve
scientific problems. Novel computational patterns are rapidly evolving, where the solution of a problem may
require a workflow of diverse tasks like: performing simulations, data ingestion, data analytics, machine
learning, visualization, uncertainty quantification, verification, computational steering, and more. Existing
solutions may render the execution of such applications in a large-scale supercomputer either impossible, or
extremely suboptimal in terms of time to solution, due to the absence or inefficiencies of appropriate methods
to compose, deploy and execute workflows and due to their extreme requirements in I/O resources, which
cannot be met by the system capacity without holistic and sophisticated deployments [218].

That’s why collaborations, projects and new frameworks and software are emerging every day, to address
these issues and challenges. Related to this topic, at CINECA, we are using two software, developed respec-
tively by UniBO and CINECA itself. They are ExaMon [219] and COUNTDOWN [220].

ExaMon (Exascale Monitoring) is a data collection and analysis platform oriented to the management of
big data. Its main prerogatives are: i) to manage in a simple way heterogeneous data, both in streaming and
batch mode, and ii) to allow the access to these data through a common interface. This simplifies the usabil-
ity of data, supporting applications such as real time anomaly detection, predictive maintenance and efficient
resource and energy management, using techniques in the domain of machine learning and artificial intelli-
gence. Given its scalable and distributed nature, ExaMon is readily applicable to HPC systems, especially
exascale sized ones, which is also the primary use case it was designed on.

Instead, COUNTDOWN is a run-time library for application-agnostic energy saving, focusing MPI com-
munication primitives. In a nutshell, COUNTDOWN is a methodology and a tool for identifying and au-
tomatically reducing the power consumption of the computing elements during communication and syn-
chronization primitives, filtering out phases which would detriment the time to solution of the application.
Moreover, it is also an MPI tracer and a performance profiler used to collect and report information on the
application execution. This is done transparently to the user, without touching the application code nor re-
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quiring recompilation of the application. Its low overhead has values in the range that we expect for profiling
tools with performance counters (like Linux Perf) and multiplexing enabled.

As previously said, in fact, the most important thing to acquire, in future HPC systems, is to let the users run
their applications without degrade their time to solution, while reducing the energy consumption. In modern
CPUs, architectures are rapidly changing, and to understand if an application is performing efficiently, we
have to consider a lot of aspects, like the efficiency of the: superscalarity, out-of-order execution, access to
multi (and different) level caches, parallellism, and power consumption. And to tackle all these potentially
issues, we need specific tools and software, to get access to the underlying hardware, automatizing routines
for HPC users.

4.4 Performance
Performance analysis of High Performance Computing (HPC) applications is a critical aspect to ensure the
efficiency of computations and meet project deadlines. Performance models are used for this purpose, which
allow evaluating the performance of an application based on its characteristics and hardware properties. Clas-
sical performance models include Amdahl’s model, which evaluates the performance of an application based
on the degree of parallelism used. This model helps to identify the parts of the application that cannot be
parallelized and may represent a bottleneck for overall performance. Gustafson’s model is another classical
performance model, which evaluates the performance of an application based on the size of the problem.
In this case, the performance of the application is evaluated based on the time taken to solve a problem of
variable size, rather than based on processing speed.

4.4.1 Application Targeted Benchmarks

In addition, there are other models that go beyond the simple concept of parallelism and consider other aspects
that have a significant impact on performance, such as memory access. Such models are more suitable and
specific for evaluating the performance of an HPC application.

The Roofline Model is a graphical performance model used in HPC to visualize the performance limits
of a given hardware system. The model plots the performance achieved by a computation as a function of
operational intensity, which is the ratio of arithmetic operations performed to the data movement between the
processor and memory. The roofline model is useful for identifying performance bottlenecks and optimization
opportunities, such as improving memory access patterns or increasing arithmetic intensity [221].

The Cache-Aware Roofline Model is an extension of the Roofline Model that takes into account the perfor-
mance impact of caching. It provides a more detailed view of the system’s performance limits by including
the effect of caching on the memory bandwidth available to the computation. By considering the cache hi-
erarchy, this model enables more precise analysis and optimization of the performance of HPC applications
[222].

The Stencil Model is a performance model used specifically for applications that use stencil operations.
Stencil operations are a common computational pattern used in scientific computing applications, such as
simulations of fluid dynamics, heat transfer, and other physical phenomena. The stencil model characterizes
the performance of these applications by analyzing the memory access patterns and computational require-
ments of stencil operations. This model is useful for identifying optimization opportunities, such as improving
the locality of data access or reducing redundant computation[223].
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4.4.2 Hardware Targeted Benchmarks

While the previous models are aimed at measuring the performance of an application, it is also important to
remember some methodologies aimed at measuring the performance of an HPC computing system through
specific benchmarks.

Linpack: This model uses a matrix factorization algorithm to measure the processing speed of the system.
Linpack is often used to classify supercomputers based on their performance, using the "teraflops" metric,
which represents the number of trillions of floating-point operations the system can perform per second [224].

HPL: The High Performance Computing Linpack Benchmark is a performance test based on Linpack
that is used to evaluate the performance of supercomputers. HPL is used as the official metric for ranking
supercomputers in the TOP500 list [225].

Stream: This model evaluates system performance in terms of data transfer speed between memory and
the processor. Stream is often used to evaluate the performance of the system’s memory architecture [226].

NAS Parallel Benchmarks: This model includes a set of intensive computation kernels that are used to
evaluate system performance in terms of parallel computing [227].

SPEC: The Standard Performance Evaluation Corporation (SPEC) produces a series of benchmarks that
can be used to evaluate system performance in different areas, including HPC. SPEC benchmarks are widely
used in the industry to evaluate the performance of hardware systems [228].

4.4.3 Other relevant benchmarks

Other relevant benchmark suites targeting embedded and approximate computing features are also available.

PolyBench is a benchmark suite of 30 numerical computations with static control flow, extracted from op-
erations in various application domains (linear algebra computations, image processing, physics simulation,
dynamic programming, statistics, etc.). PolyBench features include:

1. A single file, tunable at compile-time, used for the kernel instrumentation. It performs extra operations
such as cache flushing before the kernel execution, and can set real-time scheduling to prevent OS
interference.

2. Non-null data initialization, and live-out data dump.

3. Syntactic constructs to prevent any dead code elimination on the kernel.

4. Parametric loop bounds in the kernels, for general-purpose implementation.

5. Clear kernel marking, using pragma-based delimiters.

PolyBench is currently available in C and in Fortran [229].

AxBench is a benchmark suite combined with the NPU compiler (NPiler) intended for use in approximate
computing research. It include seven premade benchmarks with the necessary annotations to work with the
NPU compilation workflow. The set of benchmarks covers both CPU and GPU applications. AxBench is
written in C++ and CUDA, and aims to provide a set of representative applications from various domains to
explore different aspects of approximate computing [230].

Finally, the UKMAC consortium collected a wide range of HPC mini-apps developed as part of collabora-
tions with a number of UK based institutions. The GitHub Page also reports several scientific papers showing
their value and effective usage for HPC benchmarking [231].
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4.5 Temporal Properties
In HPC, the common metric to measure performance is the throughput, expressed in FLOPS (FLoating-Point
Operations Per Seconds). In recent years, new application domains requiring an HPC infrastructure to run
are emerging. These include, for instance, use cases from automotive, smart city, healthcare, environmental,
and infrastructure monitoring. Application requirements in such domains include specific timing constraints,
similar to real-time applications running on embedded systems. The use-cases of two past EU projects,
MANGO [232] and RECIPE [233], included applications that have low-latency requirements, stricter than a
simple averaged throughput. Such applications included video-related applications, including medical imag-
ing, network packet management, and weather forecast and environmental monitoring for disaster predictions.

4.5.1 Mechanisms for isolating workloads

The isolation of workloads was considered a crucial method to prevent the propagation of misbehaviors.
One key notion was that of supply bound function sbf(t), which models the minimum amount of processing
available in any interval of length t [234]–[236].

The notion of supply function was then extended to contexts with parallelism, notably multiprocessors and
distributed systems.

On multiprocessors, Bini et al. [237] proposed a family of supply functions each one for every level of
possible parallelism. Later, such a general abstraction was simplified into the generalized multiprocessor
resource model (GMPR) to make it more simply implementable through periodic servers [238].

In the context of critical applications, a lightweight hypervisor was developed for embedded systems in
which the guest OS is aware of running in a virtualized environment [239].

4.5.2 Workload isolation in presence of mixed-criticality applications

Ekberg and Yi [240] determined the demand bound function of a set of mixed-criticality real-time tasks to
be scheduled by EDF. The main drawback of mixed-criticality is the penalty when scheduling low criticality
tasks. For this reason, adaptive schemes were proposed [241], [242] to mitigate this issue.

Mixed-criticality was also extended to the case of parallel machines [243]. For example, MC-fluid [241] is
an algorithm that assigns shares of processors to mixed-criticality tasks as function of their criticality too.

Methods to re-distributed unused budgets among tasks of different criticality were also proposed [244].

4.5.3 Probabilistic-WCET Estimations in HPC

Determining the Worst-Case Execution Time (WCET) of the tasks in HPC clusters is extremely difficult due
to many sources of temporal non-determinism present in modern hardware and to the high complexity of
such systems. A possible solution is to use measurement-based techniques, that infers the WCET from the
observation of the execution time rather than performing a static analysis of the software and hardware. The
use of probabilistic techniques to obtain the probabilistic-WCET (pWCET) in embedded systems dates back
to 2001 [245] and two surveys [246], [247] recap all the works in the last years. A preliminary study on the
use of pWCET for HPC has been published in 2020 [248]. How to design the computing platform and the
HPC cluster as a whole is an open problem.
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4.5.4 Intra-core interferences

Hyper-Threading (HT) in HPC cluster is very often disabled, due to the not simple performance implication.
Indeed, not all applications are able to exploit the hyper-threading, and for some it can have negative effects
on the performance [249]. In cloud computing, HT is generally beneficial as noted by Zhang et al. [250].
However, the same authors recognized that CPU-intensive and IO-intensive workload may be penalized by
HT. Several research works on real-time embedded systems investigated the interference between workload.
One example is the probabilistic copulas approach by Bernat et al. [251].

4.5.5 Impact of the Linux kernel on time-critical software

The Linux OS has become very complex during the years, in order to support a large number of hardware de-
vices and to provide several features to the software. Moreover, Linux is a general-purpose OS and, therefore,
focused more in providing high throughput rather than low latencies. The PREEMPT_RT kernel patch [252]
has been developed to reduce such latencies and its main feature is to allow the preemption inside kernel spin-
locks. The osnoise tool [253] has been recently developed to measure such latencies and their sources. How
the patch and Linux latencies in general impact on HPC time-critical software needs further investigation.

4.5.6 The timing problem of fault tolerance in HPC

In HPC, being resilient to transient and permanent faults is a necessary properties. Very often, such re-
silience is implemented via software techniques, such as checkpoint/restart [254] or proactive workload mi-
gration [255]. These techniques have a strong impact on the timing of application, in both normal execution
(e.g., the checkpoint overhead) and the time required to restore the execution after a fault. For real-time
workload, such overheads are potentially disruptive of the timing constraint satisfaction and requires novel
techniques to handle such faults.

4.5.7 Open challenges

Guaranteeing temporal determinism and bounded execution times in high-performance architectures is a
challenging issue at all levels of the computing continuum, from small embedded systems to HPC clusters.
Resource management and scheduling algorithms play a key role in the satisfaction of the temporal require-
ments of the software tasks. We can summarize the open challenges in the following research topics:

• Modeling the intra- and inter-core interferences of the workload so that timing upper-bounds can be
provided.

• Verifying the limits of partitioned systems and their positioning with respect to the alternative mixed-
criticality theory.

• Understanding the implications of using general-purpose software (such as Linux OS) when running
time-critical workload.

• Correctly managing the workload having fault-tolerance mechanisms in place, so that timing require-
ments are still met.

• Developing and novel WCET estimation methods and improving the existing ones.
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5 SOFTWARE SUPPORT

This section provides a state-of-the-art analysis related to software supports for HPC computing applications
and hardware platforms. The first part, described in Sect. 5.1, introduces a deep description of techniques to
make parallel applications self-adaptive and self-aware, and capable of reacting to dynamic workloads. In
the context of Federated Learning systems, a quite popular and hot research topic to train distributed ML/AI
models with privacy constraints, a comprehensive analysis of Federated Learning applications are provided
in Sect. 5.2, with special emphasis on support tools enabling Federated Learning on highly distributed and
parallel environments. Finally, the last part in Sect. 5.3 describes the compiler supports available for precision
tuning. The section is a deep dive into techniques able to trade floating-point precision and accuracy with
performance for a broad range of scientific HPC workloads.

5.1 Runtime Management
In the mid-00’s, Autonomic Computing [256] emerged as a promising paradigm to address the various needs
of complex applications and systems to deal with changing execution conditions, workloads and user re-
quirements. The general goal was the one of designing systems with the ability to expose different self-*
properties, such as self-adaptation, self-healing, self-protecting, self-optimizing and further on. A natural ap-
plication of this paradigm was related to the control of parallel and distributed applications, through runtime
systems capable of adapting several non-functional properties (e.g., performance and energy consumption)
of running applications as a response to dynamic and hardly predictable workloads. This can be done by
setting up a so-called MAPE control loop (Monitor-Analyze-Plan-Execute) consisting of: i) proper sensors
and monitoring facilities of non-functional properties; ii) an adaptation logic (e.g., ML/AI-driven or based on
logic formalisms) that derives periodic control actions; iii) a set of adaptation knobs, i.e., some actuators that
can be used to change the non-functional behavior of the system through reconfigurations. In this section we
describe the most relevant techniques to make parallel applications autonomic, and we briefly review some
of the research frameworks supporting self-adaptive parallel programming.

Hardware monitoring. Multi-core architectures expose different performance monitoring mechanisms
that often rely on hardware counters, such as the number of instructions issued per time unit (IPS) [257].
However, correlating the IPS (or other available counters) to the actual performance exhibited by the appli-
cation can be hard for end users. Furthermore, the direct use of hardware counters poses portability issues,
since not all the performance counters are available in all multi-core platforms. A better solution is to mon-
itor the level provided by the application using high-level metrics closer to the actual Quality of Service or
Experience (QoS/QoE) (e.g., monitoring the service time per request, the end-to-end latency, and so forth).
Such high-level monitoring data can be transmitted by the application to a manager component (within the
application or as a separate process) by instrumenting the application itself [258]. Although this approach
is more intrusive, it can be done by adding few monitoring primitives inside the code. Analogously, this
approach can be extended to monitor different non-functional properties such as power consumption, which
can be done by using external monitoring devices connected to the monitored platform or, rather, by using
hardware counters available in some architectures. This has led to a wide spectrum of monitoring tools [259],
[260] that can be used by instrumenting the application source code in a quite user-friendly manner.

Actuators and system knobs. In modern multi-core platforms, different reconfigurability options and
techniques (also called system knobs) are available. One is thread placement, applied through pinning direc-
tives that can be used to map threads onto cores in a highly configurable manner. This may have remarkable
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effects in the memory hierarchy exploitation [261] and can be used to control power consumption through
thread packing [262], i.e., by dynamically packing threads onto a smaller set of cores while shutting down
unused cores to save energy. Furthermore, it is an effective approach to control the interference of Operat-
ing System activities, which is often referred to as OS noise in the literature [263]. Another aspect is the
way used by a parallel runtime to implement synchronization primitives (e.g., mutexes, conditional variables
and others), which has been historically named concurrency control in the literature [264]. As a matter of
fact, switching between busy-waiting primitives, which are highly responsive but power hungry, and passive
waiting ones, which in contrast are energy saving but impaired by context switching overheads, plays a re-
markable role to trade performance with energy efficiency. To cope with dynamic workloads, concurrency
throttling [265] can be used to adapt the parallelism degree of the application (i.e., number of actively run-
ning threads). Since dynamically restructuring the design of generic applications in terms of threads and their
interaction can be a quite hard task, this technique plays nicely together with the Algorithmic Skeletons [266]
methodology, which fosters the design of parallel applications as composition of parallel patterns whose
parametric structure allows the degree of parallelism to be shrinked or enlarged quite easily. Furthermore,
modern multi-core CPUs provide Dynamic Voltage and Frequency Scaling (DVFS) supports to change the
operating frequency (and consequently the voltage) of the CPU during program execution. Although this can
be seldomly applied to individual cores (but rather to groups/islands of sibling cores or even entire CPUs),
DVFS can be relevant system knob available to parallel runtime environments to meet desired trade-offs
between performance and energy consumption [267].

Self-* autonomic parallel runtimes. One successful experience that brings together Autonomic Com-
puting and Algorithmic Skeletons was the so-called Bahavioural Skeleton approach [268], which was one of
the main results of the EU funded project GridCOMP. The idea underpinning this approach was to extend the
core concept of parallel skeletons (e.g., farm, pipeline, map, divide-and-conquer, stencils) to incorporate a
self-optimizing/self-adaptive manager component capable of adapting the behavior of the monitored skeleton
implementation to achieve desired non-functional goals from the overall execution (e.g., reaching a desired
throughput level, or keeping the end-to-end latency below a threshold). To do that, the manager dynamically
adapts the parallelism degree of the parallel program, enforcing the parametric definition of the used parallel
patterns. The adaptation logic was implemented through Event-Condition-Action (ECA) rules as in active
databases. The Behavioural Skeleton approach was a pioneering research whose most significant fallout was
to demonstrate that the exposition of the parallel structure of the program enables programmers to include in
the MAPE loop notable rules and efficient control policies with reduced design and engineering effort.

More recently, idea of Behavioural Skeletons has been applied to the FastFlow [269] parallel programming
framework. FastFlow provides the programmer with two main abstractions layers. The first one is composed
by high-level parallel patterns, which essentially represent Algorithmic Skeletons that can be combined and
nested to build the logic of a complex parallel program. The second level is related to parallel building blocks,
which represent lower-level components that can be used to build a directed graph of concurrent/parallel
entities executed by independent threads cooperating by pointer-sharing through lock-free Single-Producer
Single-Consumer queues. FastFlow provides several kinds of autonomic mechanisms with the potential of
restructuring the parallel program implementation at runtime in order to fulfill a desired QoS/QoE. In terms
of concurrency control, FastFlow can dynamically switch between busy-waiting synchronization (i.e., in
accessing shared queues) and more conservative suspension-based primitives. Furthermore, it provides a
user-friendly approach to control thread pinning of the application on the underlying cores of the machine.
In addition, FastFlow threads can be freezed and activated programmatically by sending special messages
through lock-free queues. This allows self-adaptive mechanisms able to control the parallelism degree of the
computation, to balance CPU utilization with performance and energy consumption.

The idea of dynamically reconfiguring parallel programs has been generalized by the Nornir C++ frame-
work [260] , which aims at providing an effective support to develop adaptive parallel programs on shared-
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memory systems. Nornir is capable of managing structured (based on skeletons such as FastFlow parallel
programs) or even unstructured parallel programs (e.g., written using other paradigms such as task-based
parallelism). It allows the developer to easily integrate a manager component in the application, to setup an
adaptation logic, and to steer the target non-functional parameters by using a set of default knobs such as
thread pinning and DVFS when available and supported by the multi-core platform.

In this landscape, autonomic parallel computing is still an evolving research field. The need of dynamically
reconfiguring parallel applications in an effective manner is a challenging problem exacerbates in case of
long-running applications, such as the ones in the stream processing domain. As described in a recent sur-
vey [270], self-adaptation strategies and techniques should address important features that are not adequately
supported by existing systems and tools. One direction is to support self-adaptation in scenarios where the
application has been decomposed in more than one parallel pattern or skeleton, possibly distributed in more
machines. Decentralizing the adaptation logic and the MAPE loop appears a strong requirement in this con-
text. Furthermore, structural changes of the applications, which might change the adopted composition of
patterns dynamically, have been rarely studied in the literature. Such advanced reconfigurations might pro-
duce significant improvements although possibly impaired by the need of a more complex set of runtime
mechanisms to enable a smooth switching from a skeleton to another one at runtime. Last but not least,
self-adaptation supports should also address the transparent offloading to accelerators of different kinds (e.g.,
GPUs and FPGAs), which can be profitable used to achieve better balancing between performance and energy
consumption in a broad space of platforms.

5.2 Support for Decentralized Machine Learning
Decentralized Machine Learning (DML) enables collaborative machine learning without centralized input
data. Federated Learning (FL) and Edge Inference (EI) are the most prominent examples of DML.

5.2.1 Federated Learning

Federated Learning has been proposed by McMahan et al. [271] as a way to develop better ML systems
without compromising the privacy of final users and the legitimate interests of private companies. Initially
deployed by Google for predicting the text input on mobile devices, FL has now been adopted by many other
industries such as mechanical engineering and health-care [272].

FL is a learning paradigm where multiple parties (clients) collaborate in solving a learning task using their
private data. Importantly, each client’s local data is not exchanged or transferred to any participant. In its
most common configuration, instead of moving the data, clients collaborate by exchanging their local models.
The aggregator collects the local models and aggregates them to produce a global model. The global model
is then sent back to the clients, who use it to update their local models. Then, using their private data further
update the local model. This process is repeated until the global model converges to a satisfactory solution or
a maximum number of rounds is reached.

There are two main federated learning settings: cross-device and cross-silo [273]. In cross-device FL, the
parties can be edge devices (e.g., smart devices and laptops), and they can be numerous (order of thousands or
even millions). Parties are considered not reliable and with limited computational power. In the cross-silo FL
setting, the involved parties are organizations; the number of parties is limited, usually in the [2,100] range,
and rich in resources ranging from server rooms to HPC centers [274]. Given the nature of the parties, it can
also be assumed that communication and computation are no real bottlenecks.

Since its introduction, FL has mainly exploited the inner workings of neural networks and other gradient
descent-based algorithms by exchanging the model weights or the gradients computed during learning. While
this approach has been very successful, it rules out applying FL in contexts where other models would be
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preferred, either because they are more interpretable or because they are known to work better. For instance,
in the case of medical studies, data often comes in tabular form; examples are not numerous and distributed
among medical centers that need to respect hard privacy constraints. Also, medical doctors often require to
be able to interpret the inferred models. In these situations, decision trees or rule-based systems are often
preferred to neural networks; however, they cannot be readily applied without collecting the data in one
single place (e.g., [275]), which makes the whole process hard or impossible to implement due to the privacy
constraints mentioned above. Several industrial sectors can easily benefit from FL techniques, inter alia,
automotive, healthcare, and finance.

In the automotive industry, essential facets of vehicle and driver behavior can be inferred from user data
transmitted by a fleet of vehicles. However, the quantity of data produced by modern vehicles is substantial
(up to hundreds of gigabytes per day [276]), and it is not feasible to collect and store it in a centralized data
lake. Furthermore, user data is private, which raises privacy concerns about transferring and storing such data
on a central server.

Health systems have been collecting data about patients for decades by many healthcare providers. How-
ever, the data is often stored in silos, and health institutions are very cautious in sharing these pieces of infor-
mation, even with other health institutions. In many cases, a single patient is treated by multiple providers,
and the data collected by each provider is insufficient to provide a complete picture of the patient’s health.
It is then desirable to share the data across different providers to improve the quality of the treatment. FL
can solve this problem by allowing different providers to collaborate in training a model that can be used to
predict a patient’s health.

In many other cases, FL techniques have already proven effective. For instance, it has been used to identify
the electricity profile of residential households [277] or for fault diagnosis in mechanical engineering [278].

Different FL frameworks already exist on the market. They are generally agnostic concerning the under-
lying ML framework used to implement the trainable models, even if, to our knowledge, almost all of them
target DNNs, and support the master-worker federation schema only. An exception to the DNN-only rule
is the federated AdaBoost algorithm [279], which has been experimented with in a simulated distributed
setting. Also, there is still a widespread lack of attention concerning the performance of the distributed in-
frastructure and communication involved in the Federated process. In this section, we describe the main FL
frameworks representing the currently available research-oriented frameworks with their different aims and
characteristics.

OpenFL [280] is an open source FL framework developed by Intel®. It is the freely available version
of IntelFL, which, in comparison, offers more functionalities, security features, and user support. OpenFL
aims for the so-called cross-silo scenario, in which the federated training is carried out by a small number
of entities that possess a large amount of data and computational power. More specifically, it assumes that
the computational infrastructure of these edge nodes is reliable and powerful; thus, this scenario does not
deal specifically with issues such as huge scalability and unreliable devices. In this scenario, OpenFL is
designed to be secure and privacy-preserving via cryptographed communications and the Intel SGX enclave
technology, which should make the federated process cryptographed end-to-end. From a software engineering
perspective, OpenFL essentially adopts a master-worker approach, in which the central server acts as the
aggregator for the various clients (collaborators); the communication between these two entities is handled
by gRPC, which makes this software inherently synchronous. The primary use cases OpenFL aims for are
collaborations between hospitals, banks, or insurance companies, in which each entity holds a good quantity
of data and has the resources to carry out the FL process.

FLOWER [281], on the other hand, is developed by the University of Cambridge and targets the cross-
device scenario, in which the FL process is carried out by a large number of small and unreliable devices.
This is also the original scenario for which Google first introduced FL: to train a model capable of predicting

44



the words typed on the smartphone keyboard. It is easy to see that carrying on a FL process on thousands
or millions of mobile devices has inherently different challenges than the cross-silo scenario. First, devices
are unreliable, not always connected to the network, and provided with low computational power; this sums
up to the fact that it is not possible to use all devices simultaneously for the FL process. To deal with that,
FLOWER still implements a master-worker approach based on gRPC communications, but focuses more
on having light clients, keeping the communication at a minimum, and allowing to sample just a subset of
devices at each federated round. This way, FLOWER has been proven to scale up to thousands of devices
with little overhead.

Another fundamental open-source FL framework to mention is TensorFlow Federated (TFF). This frame-
work gained popularity mainly due to its intrinsic affinity with TensorFlow and its use in a paper from Sun
and many Google researchers, including McMahan, investigating backdoor attacks in the FL setting [282].
The possibility to simulate backdoor attacks directly with the features made available by TFF is indeed one
of the distinctive features of this framework, making it particularly suitable for FL research oriented towards
security and privacy, also due to its interoperability with the TensorFlow Privacy library, which implements
many Differential Privacy algorithms.

Moving on to the non-open-source software, IBM Federated Learning [283] is a proprietary FL frame-
work from IBM capable of supporting four different ML libraries: TensorFlow, PyTorch, SciKit-Learn, and
XGBoost. This framework is the only one reviewed here to support the federation of non-deep ML models.
However, since the framework code is unavailable, it is unclear how it handles these federated models not
based on gradient descent. Some recent work aims to understand how this is done [279], but the proprietary
nature of this software makes it impossible to investigate this question further.

Another closed-source FL framework developed by a hi-tech giant is NVIDIA Clara. Strictly speaking, this
is not exclusively an FL framework but a platform containing various libraries and frameworks for applying
AI to the medical domain. However, its FL features have recently been successfully applied [284] to a mobile
healthcare use case. NVIDIA Clara is an example of a domain-specific FL framework. The software design
takes advantage of a series of choices, like the focus on healthcare, the optimization for NVIDIA accelerators,
and the interconnected software environment, to find its strength not in generality, but specificity.

Swarm Learning [285] is an FL framework developed by HP with particular stress on a peer-to-peer struc-
ture of the federation. This decentralized structure and the Blockchain authenticated exchanges between peers
assure high-security standards and fault tolerance capabilities. Swarm Learning is the only FL framework in
this brief review that is not based on the Master-Worker approach.

Lastly, workflow managers have been used to implement FL architectures. [274] uses StreamFlow [286]
to run an FL pipeline described using the Common Workflow Language. The system tested on a federation
involving two HPC centers demonstrates that hybrid workflows are ready to provide adequate performance
in the FL field, enabling cross-HPC FL as a pluggable step in modern large-scale simulation pipelines.

5.2.2 Edge Inference

Inference in Neural Networks is much more lightweight than training. Relative performance varies signifi-
cantly between network architectures (e.g., convolutional networks tend to pay a slightly higher cost during
training) and between system architectures (e.g., executing the operations on GPU may change the relative
cost of training and inference). Roughly speaking, one may expect the inference cost to be about 1/3 of the
cost needed for performing a single training step of the same model on similarly sized data [287] due to addi-
tional loss and backward pass requires in the training phase. For this, the inference is generally computed on
a single (possibly SIMD/GPU/TPU accelerated) processing element. However, use cases consisting of a net-
work using ML both in the edge devices, co-located with data sources, and in several relay nodes that belong
to the data and control plane of the network also emerged. These use cases, termed here Edge Inference (EI),
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aim to distribute and adapt the inference load and complexity to the different device capabilities. In the data
plane, relay nodes can be used to further process, filter, or coalesce stream items, whereas in the control plane
they can be used to tackle reliability issues, such as shaky network conditions, churn of peers, and device
battery conditions.

5.2.3 RISC-V Support

Most of the above frameworks rely on the Python programming language to offer a familiar environment to
data scientists and delegate the heavy computations to heavily specialised libraries, e.g., Pytorch [288], Ten-
sorFlow [289], Scikit-learn [290] which rely on C/C++-based libraries to optimize the compute performance.
Consequently, these libraries need to be adapted to the different underlying hardware platforms to express
their full potential. Only recently, such libraries have been ported to the RISC-V ISA. Most notably [291]
provides the first publicly available RISC-V port of PyTorch able to run on commercially available RISC-V
silicon. Looking into the future, bsc-onednn rewrites performance critical functions of the OneDNN library
(used among others by PyTorch) to leverage the standardized, but not yet available, RISC-V extended vector
instructions. Differently, [292] proposes to build an accelerator based on RISC-V cores for (deep) ML tasks.

5.3 Compiler Support for Mixed Precision Computing
Many scientific applications can benefit in terms of performance and energy efficiency from reduced preci-
sion calculations [293], [294]. However, the problem of finding the precision mix that satisfies the accuracy
requirements while providing the maximum performance is not trivial. As such, automated end-to-end solu-
tions that can perform this process are necessary.

Precimonious [210] is a precision tuning tool that works with C/C++ source code and outputs the suggested
type changes in a json file. It uses delta-debugging [295] search algorithm to find a precision mix that has
better performance while maintaining enough accuracy. Precimonious uses dynamic analysis to verify that
the precision mix satisfies the requirements, which depends on having a representative dataset. Precimonious
only supports IEEE-754 floating-point types, which limits its use.

CRAFT [296], [297] is a source-to-source precision tuning tool that works with C/C++ code. It uses binary
search to determine the precision required at the given program level. It goes through the modules, functions,
basic blocks, and individual instructions in a breadth-first search fashion to refine the precision mix. CRAFT
uses dynamic analysis to verify that the precision mix satisfies the requirements, which depends on having a
representative dataset. The tool can potentially work with OpenMP. CRAFT only supports IEEE-754 floating-
point types, which limits its use.

FloatSmith [298], [299] is a source-to-source precision tuning tool that is based on CRAFT [296] and
that works with C/C++ code. FloatSmith integrates ADAPT [300] to narrow the search space for CRAFT
using static analysis. It uses CRAFT to further optimize the precision mix using different search strategies:
combinational, compositional, delta-debugging, hierarchical, hierarchical-compositional, and Genetic Search
Algorithm. FloatSmith uses dynamic analysis to verify that the precision mix satisfies the requirements,
which depends on having a representative dataset. The paper reports a successful test with OpenMP version
of LULESH benchmark [301]. FloatSmith does not support fixed-point types, which limits its use.

GeCoS + ID.Fix [302] is a source-to-source precision tuning tool that works with C/C++ code and targets
generic hardware platforms. It uses static analysis technique called value range propagation to infer the value
range of dependent variables based on user-annotated variables. However, it mostly focuses on floating point
to fixed point conversion to minimise the number of bits used during computation. Additionally, it does not
consider the possibility of a mixed precision output, with floating point and fixed point data types coexisting
in the same program.
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Daisy [303] is a precision tuning tool that targets generic platforms, supports fixed-point types, and pro-
vides formal guarantees on the result precision. It uses a combination of mixed-precision tuning with delta-
debugging algorithm and rewriting with a genetic algorithm to reduce the roundoff error. Daisy uses a static
error analysis with interval arithmetic and SMT [304], and a static heuristic performance cost function. Un-
fortunately, Daisy requires the program to be written in a Scala-based domain-specific language, and only
supports optimization of arithmetic kernels without conditionals or loops, which makes it unsuitable for op-
timizing programs that use OpenMP.

TAFFO [305] is a precision tuning tool based on LLVM [306] for optimizing C/C++ programs. This
paper introduces in TAFFO support for inter-procedural precision tuning of the programs parallelized with
OpenMP [307]. TAFFO is a precision tuning tool with user-defined scope based on variable annotations.
It performs static code analysis using user-provided range values to infer the algorithm properties and the
affected variables and statically validates the effect of the precision tuning step on the target values. It also
provides formal guarantees about error magnitude for programs without unbounded loops and gives an es-
timate when unbounded loops are present. It controls the overhead introduced by the type casting opera-
tors [308]. TAFFO is built as an LLVM pass and uses LLVM-IR as its input and output, so it can support
a wide variety of programming languages, although it is mainly targeted at programs written in C/C++. It
supports optimization using IEEE-754 [309] floating-point, and dynamic fixed-point types with a focus on
general-purpose computing platforms.

For the more detailed overview of the field we refer the reader to the recent surveys. Cherubin and
Agosta [310] surveys the software tools used at the different stages of precision tuning. Stanley-Marbell
et al. [294] introduces unified terminology for quality versus resource usage tradeoffs. It also surveys the
field categorizing both software and hardware approaches used on the different levels of the computing stack.
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6 CONCLUDING REMARKS

This document overviews the current state-of-the-art about HPC systems and highlights the major challenges
and also opportunities to be faced in the design, integration, operation and monitoring of modern and future
generation of HPC machines. The manuscript focuses on the issues of non-functional properties, such as
power budget, thermal efficiency, and reliability, to address possible solutions, opportunities and research
challenges in the HPC domain with special emphasis on current solutions and alternative approaches, such as
the RISC-V processor architecture.

In general, modern and future generations of HPC machines face several design and operative challenges,
including critical performance and energy efficiency targets. Moreover, other concerns, such as the depend-
ability features of the hardware components (e.g., premature aging caused by hardware faults due to transistor
technology integration), or system scheduling management (involving issues of thermal and power budgets)
must be considered as integral part in the design and operation of HPC systems. Interestingly, in all steps
of design and operation, the management of non-functional properties plays an important role in the final
operation of the system.

In fact, the current HPC scenario needs improvements in several areas. In particular, we analyzed and
discussed the two major design challenges of modern HPCs: i) Performance and ii) Energy efficiency. More-
over, we highlight how RISC-V-based platforms can be used as feasible alternative due to their improved
instruction set architecture, design flexibility and industrial support.

Modern RISC-V architectures, hardware accelerators, memory, and interconnect infrastructures involve
several major challenges in terms of design, integration and standardization for commodity clusters for HPC
machines. Interestingly, design factors, such as the ISA, architecture, and memory hierarchy might contribute
to solve performance challenges, such as memory performance bottleneck (memory-wall) in all the HPC
infrastructure. In addition, approaches of optimized operation and resource management are crucial for the
cluster’s integration.

In literature and industry, several trends and challenges in terms of hardware architecture for accelerators
are highlighted. In fact, the memory bottleneck still plays a major concern in the design of new accelerators
with near- and in-memory computing strategies to optimize the performance of current and future accelerators
generations. The exploration of numeric formats in the HPC domain is still vastly unexplored. Finally, due to
the complexity of the current hardware accelerators, flexible, programmable, and effective programming en-
vironments are demanded to handle the internal hardware complexity but allow the adaptation in performance
to different workloads or tasks. Moreover, hardware topology play an important role in the design of modern
hardware accelerators for specific and general workloads (importance of spatial, e.g., systolic arrays, SIMD,
and long vector-processor). In other structures, such as memory and interconnect infrastructures, reliability
challenges caused by technology scaling integration involve the analysis and the proposal of new techniques
and mechanisms.

In particular, HPC systems face several non-functional properties that affect their design, and operation. In
fact, we identified several challenges and research opportunities for current and future generations of HPC
systems in terms of reliability, thermal and power efficiency, performance and temporal properties.

In terms of reliability, we identified the need of complementary mechanisms to address the pseudo-exhaustive
testing of the internal components in commodity clusters, during setup and production stages (e.g., based on
effective and compacted software approaches), as well as their main implementation challenges. Interest-
ingly, the adoption of RISC-V architectures might contribute and provides a promising opportunity to de-
velop and evaluated effective solutions in this area. Similarly, in the hardware side, the insertion of hardening
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and error-correcting strategies are now standard for many components in the system (e.g., ECC codes in
memories and interconnect/communication systems). However, there are still opportunities to improve the
resilience of other hardware components by resorting to clever and smart in-field hardware structures to iden-
tify and correct faults and failures arising in HPC systems. Potential solutions might resort to complementary
combinations of Built-in self-repair, selective hardening mechanisms or the exploration of design diversity
solutions.

Furthermore, in terms of performance, the trends suggest that it is of paramount importance selecting a rep-
resentative set of benchmarks to properly tune the design methodologies for both the hardware platforms and
the resource management layer of the software stack. In fact, it is clear that the variability of the real work-
loads and the heterogeneity of the emerging platforms and of the operating conditions, make it impossible to
identify a vanilla solution to support design and evaluation of the proposed solutions.

Regarding efficiency, collaborations, projects and new software are now everyday subject material, to ad-
dress (and possibly tackle) the hot topic of reducing power and energy consumption, still keeping the same
(or even reducing the) time-to-solution of HPC applications, taking into account the new architectural and
computational trends. Several metrics need to be taken into account concurrently, considering not only the
performance but also encompassing non functional aspects such as the sustainability of the computing and
the effectiveness in the use of the electrical power.

The execution over HPC clusters challenges the establishment of temporal properties. Architectural fea-
tures such as speculative execution, simultaneous multithreading, and different level of caches make hard the
estimation of execution times. Among current techniques to mitigate these variabilities, it is worth recalling:
Linux SCHED_DEADLINE scheduling class which provides strong isolation, mixed-criticality constraint and
probabilistic WCET which allows weakening temporal requirements.

Finally, we identified the importance and main benefits of software mechanisms to support the run-time op-
eration and the power management of HPC infrastructures, as well as their interaction with HPC workloads.
Indeed, we analyzed the current mechanisms and solutions to trace and set performance and power consump-
tion features at software level (e.g., performance monitors, DVFS, self-adaptive/self-optimizing managers).
Similarly, new challenges and opportunities suggest that software and programming support for specific
workloads (e.g., machine learning) might demand clever solutions for scheduling and resource management.
In fact, the need of flexible and mature tools and frameworks to allow the precision tuning according to the
workloads involve the proposal of innovative solutions in the domain, including the management of hardware
settings, such as in host and hardware accelerators.
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