
SPOKE 1

FUTURE HPC & BIG DATA

FLAGSHIP 2:
Survey of state-of-the-art approaches

and gap analysis of Hardware platform
for acceleration

Accel-HW-Spec Requirement for HPC

EXECUTIVE SUMMARY

This document overviews the state-of-the-art approaches of hardware platforms for Deep Learning
accelerators for HPC systems, according to the main objectives described in the milestone #4, Spoke 1
- Flagship 2 WP2: Flagship on heterogeneous acceleration, architecture, tools, and software (Leader:
POLIMI).

Recent trends in deep learning (DL) imposed hardware accelerators as the most viable solution for
several classes of high performance computing (HPC) applications such as image classification, com-
puter vision and speech recognition. This survey summarizes and classifies the most recent advances
in designing DL accelerators suitable to reach the performance requirements of HPC applications. In
particular, we highlight the most advanced approaches to support deep learning accelerations includ-
ing not only GPU and TPU-based accelerators, but also design-specific hardware accelerators such as
FPGA-based and ASIC-based accelerators, Neural Processing Units, RISC-V based accelerators and co-
processors. The survey also describes accelerators based on emerging memory technologies and com-
puting paradigms, such as 3D-stacked Processor-In-Memory, non-volatile memories (mainly RRAM and
PCM) to implement in-memory computing, Neuromorphic Processing Units and accelerators based on
Multi-Chip Modules. The survey classifies the most influential architectures and technologies proposed
in the last 20 years, with the purpose to offer to the reader a wide perspective in the rapid evolving field
of deep learning. Finally, this survey provides some insights on the future challenging trends in DL
accelerators.

The survey is structured in different categories and sub-categories belonging to the areas of computer
architectures and hardware design. We start with Section 2 by providing an overview of deep learning
concepts and terminology. In Section 3, we then review the most significant acceleration solutions based
on GPUs and Tensor Processing Units. Section 4 introduces three types of hardware-based accelerators:
FPGA-based, ASIC-based and accelerators based on the open-hardware RISC-V Instruction Set Archi-
tecture. Section 5 describes DL accelerators based on emerging computing paradigm and technologies.
A final discussion on future trends on DL accelerators can be found in Section 6.

A Survey on Deep Learning Accelerators for Heterogeneous
HPC Platforms
CRISTINA SILVANO, DANIELE IELMINI, FABRIZIO FERRANDI, LEANDRO FIORIN,
and SERENA CURZEL, Politecnico di Milano, Italy
LUCA BENINI, FRANCESCO CONTI, and ANGELO GAROFALO, Università di Bologna, Italy
CRISTIAN ZAMBELLI, ENRICO CALORE, and SEBASTIANO FABIO SCHIFANO, Università
degli Studi di Ferrara, Italy
MAURIZIO PALESI, GIUSEPPE ASCIA, and DAVIDE PATTI, Università degli Studi di Catania,
Italy
STEFANIA PERRI, Università degli studi della Calabria, Italy
NICOLA PETRA and DAVIDE DE CARO, Università degli studi di Napoli Federico II, Italy
LUCIANO LAVAGNO and TEODORO URSO, Politecnico di Torino, Italy
VALERIA CARDELLINI and GIAN CARLO CARDARILLI, Università di Roma “Tor Vergata”, Italy
ROBERT BIRKE, Università degli Studi di Torino, Italy

Recent trends in deep learning (DL) imposed hardware accelerators as the most viable solution for several
classes of high performance computing (HPC) applications such as image classi�cation, computer vision
and speech recognition. This survey summarizes and classi�es the most recent advances in designing DL
accelerators suitable to reach the performance requirements of HPC applications. In particular, we highlight
the most advanced approaches to support deep learning accelerations including not only GPU and TPU-based
accelerators, but also design-speci�c hardware accelerators such as FPGA-based and ASIC-based accelerators,
Neural Processing Units, RISC-V based accelerators and co-processors. The survey also describes accelerators
based on emerging memory technologies and computing paradigms, such as 3D-stacked Processor-In-Memory,
non-volatile memories (mainly Resistive RAM - RRAM and Phase Change Memories - PCM) to implement
in-memory computing, Neuromorphic Processing Units and accelerators based on Multi-Chip Modules. The
survey classi�es the most in�uential architectures and technologies proposed in the last 20 years, with the
purpose to o�er to the reader a wide perspective in the rapid evolving �eld of deep learning. Finally, this
survey provides some insights on the future challenging trends in DL accelerators.

1 INTRODUCTION
Since the advent of the Exascale era, we have witnessed the convergence between High Performance
Computing (HPC) and Arti�cial Intelligence (AI). The ever increasing computing power of HPC
systems and their ability to manage large amounts of data made the development of more and more
sophisticated machine learning (ML) techniques possible. Deep Learning (DL) is a subset of machine
learning and uses arti�cial Deep Neural Networks (DNNs) with multiple layers of arti�cial neurons
to attempt to mimic the human brain behavior by learning from large amounts of data. Thanks to
technological and architectural improvements, not only an increasing number of parallel high-end

Authors’ addresses: Cristina Silvano, cristina.silvano@polimi.it; Daniele Ielmini, daniele.ielmini@polimi.it; Fabrizio Ferrandi,
fabrizio.ferrandi@polimi.it; Leandro Fiorin, leandro.�orin@polimi.it; Serena Curzel, serena.curzel@polimi.it, Politecnico di
Milano, Italy; Luca Benini, luca.benini@unibo.it; Francesco Conti, f.conti@unibo.it; Angelo Garofalo, angelo.garofalo@
unibo.it, Università di Bologna, Italy; Cristian Zambelli, cristian.zambelli@unife.it; Enrico Calore, enrico.calore@fe.infn.it;
Sebastiano Fabio Schifano, sebastiano.fabio.schifano@unife.it, Università degli Studi di Ferrara, Italy; Maurizio Palesi,
maurizio.palesi@unict.it; Giuseppe Ascia, giuseppe.ascia@unict.it; Davide Patti, davide.patti@unict.it, Università degli
Studi di Catania, Italy; Stefania Perri, s.perri@unical.it, Università degli studi della Calabria, Italy; Nicola Petra, nicola.
petra@unina.it; Davide De Caro, dadecaro@unina.it, Università degli studi di Napoli Federico II, Italy; Luciano Lavagno,
luciano.lavagno@polito.it; Teodoro Urso, teodoro.urso@polito.it, Politecnico di Torino, Italy; Valeria Cardellini, cardellini@
ing.uniroma2.it; Gian Carlo Cardarilli, g.cardarilli@uniroma2.it, Università di Roma “Tor Vergata”, Italy; Robert Birke,
robert.birke@unito.it, Università degli Studi di Torino, Italy.

2 Cristina Silvano et al.

processors, but also co-processors such as graphics processing units (GPUs) and vector/tensor
computing units have been integrated into the nodes of HPC systems. This supercomputing power
enabled to speed up the automatic training phase of DNN models and their subsequent inference
phase in the target application scenarios.

The introduction of the pioneering AlexNet [150] at the ImageNet challenge in 2012, made clear
the need of acceleration during the training phase. Since then, a multitude of DNN models have
been developed for various tasks including image recognition and classi�cation, Natural Language
Processing, and Generative AI. These applications require specialized hardware accelerators, to
e�ciently handle the heavy computational demands of DNN algorithms. DL accelerators are
currently in use in several types of computing systems spanning from ultra-low-power and resource-
constraints devices on-the-edge up to servers, HPC infrastructures and data centers.
Scope of the survey. This survey is an attempt to provide an extensive overview of the most

in�uential architectures to accelerate DL for high-performance applications. The survey highlights
various approaches that support DL acceleration including GPU-based accelerators, Tensor Proces-
sor Units, FPGA-based accelerators and ASIC-based accelerators, such as Neural Processing Units
and co-processors on the open-hardware RISC-V architecture. The survey also includes accelerators
based on emerging technologies and computing paradigms, such as 3D-stacked PIM, emerging
non-volatile memories such as the Resistive switching Random Access Memory (RRAM) and the
Phase Change Memory (PCM), Neuromorphic Processing Units and Multi-Chip Modules.

Overall, we have reviewed the research on DL accelerators from the past two decades, covering
a signi�cant time span of literature in this �eld. We have described and referenced about 250 works
proposed for DL acceleration. Being DL acceleration such a proli�c and rapid evolving �eld, we
do not claim to cover exhaustively all the research works appeared so far, but we focused on the
most in�uential contributions. Moreover, this survey can be leveraged as a connecting point for
some previous surveys on accelerators on the AI and DL �eld [44, 84, 109, 225] and other surveys
focused on some more speci�c aspects of DL, such as the architecture-oriented optimization of
sparse matrices [226] and the Neural Architecture Search [50].

Organization of the survey. The survey is structured in di�erent categories and sub-categories
belonging to the areas of computer architectures and hardware design. As shown in Figure 1, the
proposed classi�cation is based on several representative features of the accelerators, in order to
highlight their similarities and di�erences. To this aim, we organized the material in a way that all
research papers corresponding to multiple types of classi�cations are cited under each classi�cation.
For example, let us consider the work, , which primarily belongs to the sub-category - where it
makes its primary contribution. According to our classi�cation policy, this work could be cited
again in another sub-category . , where it makes its secondary contribution. Moreover, under each
classi�cation, we have selectively chosen the most notable and in�uential works and, for each
work, we focused on its innovative contributions.

The survey is structured as follows: Section 2 introduces some background on DL concepts
and terminology, while Section 3 reviews the most signi�cant acceleration solutions based on
GPUs and TPUs. Section 4 introduces three types of hardware-based accelerators: FPGA-based,
ASIC-based and accelerators based on the open-hardware RISC-V Instruction Set Architecture.
Section 5 describes DL accelerators based on emerging computing paradigm and technologies. A
�nal discussion on future trends on DL accelerators can be found in Section 6.

To conclude, we hope this survey could be useful for a wide range of readers, including computer
architects, hardware developers, HPC engineers, researchers, and technical professionals. A major
e�ort was spent to use a clear and concise technical writing style: we hope this e�ort could be
useful in particular to the young generations of master and PhD students. To facilitate the reading,
a list of acronyms is reported in Table 1.

A Survey on Deep Learning Accelerators for Heterogeneous HPC Platforms 3

Survey Organization
§§§ 2 DL Background

Concepts & Terminology
§§§ 3 GPU- & TPU-based Accelerators

GPU-based Accelerators
GP-GPU Architectures
GPU-based HPC Systems

TPU-based Accelerators
Google TPUs
Intel & Habana Labs TPUs
Graphcore Accelerators

§§§ 4 Hardware Accelerators
Recon�gurable Hardware Accelerators
ASIC-based Accelerators

Neural Processing Units
Single-chip NPU

EDA Frameworks
RISC-V based Accelerators

ISA extensions for DL
Vector Co-processors
Memory-coupled NPUs

§§§ 5 Emerging Accelerators
Arithmetic Datapaths
Sparse Matrices Accelerators
3-D Stacked PIM

Hybrid Memory Cube
High Bandwidth Memory
3-D Stacked Accelerators

In-Memory computing with RRAM & PCM
Full-digital Neuromorphic Accelerators
Multi-Chip Modules

Hybrid Memory Cube
High Bandwidth Memory
3-D Stacked Accelerators

§§§ 6 Open Challenges & Conclusions

Fig. 1. Organization of the survey

2 DEEP LEARNING BACKGROUND: CONCEPTS AND TERMINOLOGY
DL [157, 231] is a subset of ML methods which uses arti�cial DNNs for automatically discovering
the representations needed for feature detection or classi�cation from large data sets, by employing
multiple layers of processing to extract progressively higher level features. DNNs mimic the human
brain functionalities, in which neurons are interconnected with each other to receive information,
process it, and pass it to other neurons. As shown in Figure 2a, in a way similar to the brain’s
neuron, the simple model of a perceptron (arti�cial neuron) receives information from a set of
inputs, and apply a nonlinear function F (activation function) on a weighted (W) sum of the inputs
(X) [228]. DNNs are composed of a number of layers of arti�cial neurons (hidden layers), organized
between the input layer, which brings the initial data into the system, and the output layer, in
which the desired predictions are obtained (see Figure 2b). In feed-forward networks, the outputs of
one layer become the inputs of the next layer in the model, while in recurrent networks, the output
of a neuron can be the input of neurons in the same or previous layers. The term “deep” in DNNs

Table 1. List of acronyms

Acronym Acronym Acronym

AI: Arti�cial Intelligence ASIC: Application Speci�c Integrated Circuit BRAM: Block Random Access Memory
CMOS: Complementary Metal Oxide Semiconductor CNN: Convolutional Neural Network CPU: Central Processing Unit
DL: Deep Learning DP: Double Precision DNN: Deep Neural Network
DRAM: Dynamic Random Access Memory EDA: Electronic Design Automation FLOPS: Floating Point Operations per Second
FMA: Fused Multiply-Add FPGA: Field-Programmable Gate Array GEMM: General Matrix Multiply
GP-GPU: General-Purpose Graphics Processing Unit GPU: Graphics Processing Unit HBM: High Bandwidth Memory
HDL: Hardware Description Language HLS: High Level Synthesis HMC: Hybrid Memory Cube
HPC: High-Performance Computing MLP: Multi-Layer Perceptron NPU: Neural Processing Unit
IMC: In-Memory Computing IoT: Internet of Things ISA: Instruction Set Architecture
MCM: Multi-Chip Module ML: Machine Learning NDP: Near Data Processing
NN: Neural Network NoC: Network on Chip PCM: Phase Change Memory
PCU: Programmable Computing Unit PIM: Processing In-Memory PULP: Parallel Ultra Low Power
QC: Quantum Computing QML: Quantum Machine Learning QNN: Quantized Neural Network
QPU: Quantum Processing Unit RAM: Random Access Memory RRAM: Resistive RAM
RISC: Reduced Instruction Set Computer RNN: Recurrent Neural Network SoC: System on Chip
SP: Single Precision SIMD: Single Instruction Multiple Data SIMT: Single Instruction Multiple Thread
SNN: Spiking Neural Network SRAM: Static Random Access Memory TPU: Tensor Processing Unit
TNN: Ternary Neural Network VPU: Vector Processing Unit VRAM: Video Random Access Memory

4 Cristina Silvano et al.

(a)

(b)

Fig. 2. Model of a perceptron (artificial neuron) (a) and of a multi-layer DNN (b).

refers to the use of a large number of layers, which results in more accurate models that capture
complex patterns and concepts.
There are two phases in DNNs’ operations: training, and inference. In the training phase, the

neural network model is fed on a curated data set so that it can “learn” everything it needs to
about the type of data it will analyze. In the case of supervised learning, a large set of examples and
their corresponding labels indicating the correct classi�cation are passed as input to the DNN. A
forward pass is executed, and the error against the correct labels is measured. Then, the error is
used in the DNN’s backward pass to update the weights. This loop is performed repeatedly, until
the DNN model achieves the desired accuracy. In unsupervised learning, the DNN uses unlabeled
data to create an encoded self-organization of weights and activations that captures patterns as
probability densities. With semi-supervised learning, during training a small amount of labeled data
is combined with a large amount of unlabeled data. In the inference phase, the trained DNNmodel is
used to make predictions on unseen data. When it comes to deployment, the trained model is often
modi�ed and simpli�ed to meet real-world power and performance requirements. The two phases
present di�erent computational characteristics. On the one hand, the training phase of a model is
computationally expensive, but usually performed only once. On the other hand, the trained model
is used for predictions on multiple input data, often under strict latency and/or energy constraints.
Three general types of DNN are mostly used today: Multi-Layer Perceptrons (MLPs), Con-

volutional Neural Networks (CNNs), and Recurrent Neural Networks (RNNs). MLPs [228] are
feed-forward ANNs composed of a series of fully connected layers, where each layer is a set of
nonlinear functions of a weighted sum of all outputs of the previous one. On the contrary, in a CNN
[158], a convolutional layer extracts the simple features from the inputs by executing convolution
operations. Each layer is a set of nonlinear functions of weighted sums of di�erent subsets of
outputs from the previous layer, with each subset sharing the same weights. Each convolutional
layer in the model can capture a di�erent high-level representation of input data, allowing the
system to automatically extract the features of the inputs to complete a speci�c task, e.g., image
classi�cation, face authentication, and image semantic segmentation. Finally, RNNs [231] address
the time-series problem of sequential input data. Each RNN layer is a collection of nonlinear func-
tions of weighted sums of the outputs of the previous layer and the previous state, calculated when
processing the previous samples, and stored in the RNN’s internal memory. RNN models are widely
used in Natural Language Processing (NLP) for natural language modeling, word embedding, and
machine translation.
Each type of DNN is especially e�ective for a speci�c subset of cognitive applications, and,

depending on the speci�c task, a model composed of a mix of the above mentioned three types
of neural network can be deployed. Depending on the target application, and on the resource
constraints of the computing system, di�erent DNN models have been deployed.

A Survey on Deep Learning Accelerators for Heterogeneous HPC Platforms 5

On the one hand, DNNs such as AlexNet[150] and the most recent GoogLeNet[256] are composed
of tens of layers, with millions of weights to be trained and used in every prediction, requiring
tens to hundreds of megabytes (or even gigabytes) of memory for their storage. The calculation
of the weighted sums requires a large number of data movements between the di�erent levels of
the memory hierarchy and the processing units, often posing a challenge on the available energy,
memory bandwidth, and memory storage of the compute architecture.

On the other hand, Tiny machine learning (TinyML) DNN models [284] have been investigated
to run on small, battery-operated devices like microcontrollers, trading o� prediction accuracy
with respect to low-latency, low-power and low-bandwidth model inference of sensor data on edge
devices.

3 GPU- AND TPU-BASED ACCELERATORS
3.1 GPU-based accelerators
GPUs are speci�c-purpose processors introduced to compute e�ciently graphics-related tasks,
such as 3D rendering. They became widely used since the nineties as co-processors, working
alongside CPUs, to o�oad graphics-related computations. The introduction of programmable
shaders into GPU architectures, increased their �exibility paving the way for their adoption to
perform general-purpose computations. Despite being speci�cally designed for computer graphics,
their highly-parallel architecture is well suited to tackle a wide range of applications. Consequently,
in the early 2000s, GPUs started to be used to accelerate data-parallel computations not necessarily
related to graphics, which could bene�t from their architecture as well. This practice is commonly
referred as General-Purpose computing on GPUs (GP-GPU) and started to be increasingly popular
since the early 2010s with the advent of the CUDA language.

The technological development of the last ten years signi�cantly increased the compute power
of GPU devices, which due to their highly parallel nature, are incidentally very well suited to
accelerate neural networks training algorithms. The availability of such compute power allowed
more complex neural network models to become practically usable, fostering the development of
DNNs.
The impressive results obtainable with DNNs in the context of AI, followed by signi�cant

investments in this market sector, induced hardware manufacturers to modify GPU architectures
in order to be even more optimized to compute such workloads, as an example implementing the
support for lower-precision computations. This lead to a de-facto co-design of GPU architectures
and neural network algorithms implementations, which is nowadays signi�cantly boosting the
performance, accuracy and energy e�ciency of AI applications.

3.1.1 GP-GPU Architectures. In this sub-section, we review the basic features of NVIDIA GPU
architectures to boost the performance of HPC and Deep Learning applications. The hardware
architecture of a GPU is based on a multicore design of processing elements called Streaming
Multiprocessors (SM). Each SM in turn includes a number of compute units, called CUDA-cores in
NVIDIA jargon, to execute at each clock-cycle multiple warps, i.e. groups of 32 operations called
CUDA-threads processed by the Single Instruction Multiple Thread (SIMT) fashion. SIMT execution
enables di�erent threads of a group to take di�erent branches (with a performance penalty). By
varying CPU threads, context switches among active CUDA-threads are very fast. Typically one
CUDA-thread processes one element of the data-set of the application. This helps to exploit the
available parallelism of the algorithm and to hide the latency by swapping among threads waiting
for data coming from memory and threads ready to run. This structure remained stable across
generations, with several enhancements implemented in the most recent architectures making
available more registers addressable to each CUDA-thread. Considering each generation of NVIDIA

6 Cristina Silvano et al.

architecture, some minor di�erences occurred. The C2050 and C2070 boards based on the Fermi
processor architecture di�er in the amount of available global memory. Both cards have a peak
performance of ⇡ 1 T�ops in single-precision (SP), and ⇡ 500 G�ops in double-precision (DP), and
the peak memory bandwidth is 144 GB/s.
The K20, K40 and K80 are boards based on the Kepler architecture. The K40 processor has

more global memory than the K20 and slightly improves memory bandwidth and �oating-point
throughput, while the K80 has two enhanced Kepler GPUs with more registers and shared memory
than K20/K40 and extended GPUBoost features. On the Kepler K20 and K40, the peak SP (DP)
performance is ⇡ 5 T�ops (⇡ 1.5 T�ops), while on the K80 the aggregate performance of the two
GPUs delivers a peak SP (DP) of ⇡ 5.6 T�ops (⇡ 1.9 T�ops). The peak memory bandwidth is 250
and 288 GB/s respectively for the K20X and the K40 while on the K80 the aggregate peak is 480
GB/s.
The P100 board is based on the Pascal architecture, engineered to tackle memory challenges

using stacked memory, a technology which enables multiple layers of DRAM components to be
integrated vertically on the package along with the GPU. The P100 is the �rst GPU accelerator to
use High Bandwidth Memory 2 (HBM2) to provide greater bandwidth, more than twice the capacity,
and higher energy e�ciency, compared to o�-package GDDR5 used in previous generations. The
SXM-2 version of P100 board also integrates the NVLinks, NVIDIA’s new high-speed interconnect
technology for GPU-accelerated computing signi�cantly increasing performance for both GPU-to-
GPU communications, and for GPU access to systemmemory. The P100 delivers a peak performance
of ⇡ 10.5 T�ops SP and ⇡ 5.3 in DP, while the peak memory bandwidth has been increased to 732
GB/s.
The Volta architecture has been developed and engineered for the convergence of HPC and AI.

Key compute features of Tesla V100 include new SM Architecture Optimized for Deep Learning,
integrating Tensor Cores designed speci�cally for deep learning. Also the Tesla V100 board integrate
second-generation of NVLink supporting up to 6 links at 25 GB/s for a total of 300 GB/s, and1
6GB of HBM2 memory subsystem delivering 900 GB/sec peak memory bandwidth provides 1.5x
delivered memory bandwidth versus Pascal GP100. Volta increases the computing throughput to
7.5 T�ops DP, and the memory bandwidth to 900 GB/s, respectively a factor 1.4X and 1.2X w.r.t.
the Pascal architecture.

The Ampere architecture adds powerful new generation of Tensor Core that boosts throughput
over V100 for Deep Learning applications running 10x faster. The peak performance in DP has been
increased to 9.7 TFlops, and to 19.5 TFlops using Tensor Core or single precision FP32 operations.
The A100 40 GB of high-speed HBM2memory with a peak bandwidth of 1555 GB/sec, corresponding
to a 73% increase compared to Tesla V100. It also support a third-generation of NVIDIA NVLink
with a data rate of 50 Gbit/sec per signal pair, nearly doubling the 25.78 Gbits/sec rate in V100.

TheHopper is the latest architecture developed byNVidia providing a new generation of streaming
multiprocessors with several new features. Tensor Cores are up to 6x faster chip-to-chip compared
to A100, the memory subsystem is based on HBM3 modules providing nearly a 2x bandwidth
increase over the previous generation, and integrate a fourth-generation of NVlinks providing a
3x bandwidth increase. The peak performance is boosted up to 24 TFlops in DP, and 48 TFlops
using FP64 tensor core and FP32 operations. The H100 SXM5 GPU raises the bar considerably
by supporting 80 GB (�ve stacks) of fast HBM3 memory, delivering over 3 TB/sec of memory
bandwidth, e�ectively a 2x increase over the memory bandwidth of A100 that was launched just
two years ago. The PCIe H100 provides 80 GB of fast HBM2e with over 2 TB/sec of memory
bandwidth. The H100 also introduces DPX instructions to accelerate the performance of Dynamic
Programming algorithms. These new instructions provide support for advanced fused operands
for the inner loop of many dynamic programming algorithms. This leads to dramatically faster

A Survey on Deep Learning Accelerators for Heterogeneous HPC Platforms 7

Architecture Fermi Kepler Kepler Kepler Pascal Volta Ampere Hopper
GPU GF100 GK110 GK110B GK210 ⇥ 2 P100 V100 A100 H100

Year 2011 2012 2013 2014 2016 2017 2021 2022

#SMs 16 14 15 13 ⇥ 2 56 80 108 132
#CUDA-cores 448 2688 2880 2496 ⇥ 2 3584 5120 6912 16896
Base clock (MHz) 1.15 735 745 562 1328 1370 1700 1600
Base DP (G�ops) 515 1310 1430 935 ⇥ 2 4755 7000 9700 30000

Total available memory (GB) 3 6 12 12 ⇥ 2 16 16 40 80
Memory bus width (bit) 384 384 384 384 ⇥ 2 4096 4096 5120 5120
Peak mem. BW (GB/s) 144 250 288 240 ⇥ 2 732 900 1555 3072

Table 2. Summary of hardware features of NVIDIA GPU architectures.

times-to-solution in disease diagnosis, logistics routing optimizations, and even graph analytics.
For a more complete description, we can refer to [1, 3, 18, 71, 107, 149], while the work in Table 2
summarizes just a few relevant parameters of NVIDIA GPU architectures.

GPUs can execute multiple, simultaneous computations. This enables the distribution of training
processes and can signi�cantly speed up the ML operations. With GPUs, you can accumulate many
cores that use fewer resources without sacri�cing neither e�ciency nor power.
When designing a deep learning architecture, the decision to include GPUs relies on several

factors as follows:
• Memory bandwidth: including GPUs can provide the bandwidth needed to accommodate
large datasets. This is because GPUs include dedicated video RAM (VRAM), enabling to
retain CPU memory for other tasks.

• Dataset size: GPUs in parallel can scale more easily than CPUs, enabling to process massive
datasets faster. The larger your datasets are, the greater the bene�t you can gain from GPUs.

• Optimization: a downside of GPUs is that optimization of long-running individual tasks is
sometimes more di�cult than with CPUs.

The performance of GPU accelerators could be compared in di�erent ways. As �rst approxi-
mation, their theoretical peak performance and memory bandwidth could be used, as shown in
Table 2. Anyhow several other architectural characteristics could a�ect the �nal performance of an
actual algorithm implementation. In fact, to get a better overview of their expected performance,
running a speci�c workload, it could be preferable to use reference benchmarks, possibly made
of representative sets of commonly used algorithms implementations. For this reason, di�erent
benchmarks have been developed, each of them able to test the obtainable performance with respect
to a given workload characteristic, or a given set of application kernels. In the context of machine
learning, one of the most used benchmark is MLPerf [181], which have a speci�c set of training
phase tasks [180]. Its results on two di�erent systems, embedding the latest GPU architecture and
its predecessor (i.e. Nvidia Hopper and Ampere) are shown in Table 4, highlighting on average an
approximate 2⇥ factor of performance improvement.

Di�erent vendors, like AMD and Intel, have also developed GP-GPU architectures mostly orien-
tend to HPC and more recently to AI computing. Yet the terminology used by di�erent vendors is
not the same, they share most of the hardware details. For example AMD names Compute Unit
what NVIDIA calls Streaming Multiprocessor and Intel calls Compute Slice or Execution-Unite (EU).
Further, NVIDIA names Warp the set of instructions scheduled and executed at each cycle, while
AMD uses the termWavefront, and Intel uses the term EU-Thread. Concerning the execution model,
NVIDIA uses the Single Instruction Multiple Thread (SIMT), while AMD and Intel use the Single

8 Cristina Silvano et al.

Instruction Multiple Data (SIMD) [140]. In Table 3, we report the main hardware features of the
three most recent GP-GPU architectures developed by NVIDIA H100 [18], AMD [15] and Intel [120].
We compare the peak performance related to the 32-bit single- and 64-bit double-precision, and the
peak performance achieved using half-precision.

3.1.2 GPU-based Platforms for AI. Over the last years, Nvidia deployed the DGX [196] line of server
and workstation platforms specialized in using GPUs to accelerate deep learning applications. The
DGX systems are based on high-performance commodity CPUs, and a set of GPUs interconnected
using a motherboard integrated network based on high speed NVLink [197] technology developed
by NVidia. The number of GPU modules varies from 4 to 16 Tesla daughter cards integrated into the
system using a version of the high-bandwidth SMX[219] socket solution. The DGX-1 server, the �rst
of DGX line, was announced in 2016, and it was �rst based on 8 Pascal cards, after upgraded to Volta,
interconneced by an NVLink mesh network. The Pascal based DGX-1 delivered 170 TFlops using
FP16 half-precision processing, while the Volta based upgrade increased this to 960 TFlops unsing
FP16 tensor computing. The DGX-2, the successor of DGX-1, was announced in 2018; it is based on
16 V100 32 GB GPU cards in a single unit interconnected by a NVSwitch [197] for high-bandwidth
GPU-to-GPU communications, and delivers nearly 2 PFlops using FP16 tensor processing, ans
assemble a total of 512 GB of HBM2 memory. The DGX Station is a workstation designed as a
deskside AI system that can operate completely independent without the typical infrastructure of a
datacenter. The DGX Station is a tower chassis, and the �rst available was including four Testa V100
accelerators each with 16 GB of HBM2 memory, delivering an aggregate computing performance
of nearly 500 TFops using FP16 tensor computing. The Ampere version of the DGX Station include
four A100 accelerators con�gured with either 40 or 80 GB of memory each, resulting either in
160 GB or 320 GB variants, and a peak FP16-tensor computing performance of approximately 1
PFlops. The DGX A100 server is the 3rd generation of DGX servers announced in 2002. It includes 8

Model H100 Instinct MI250X Arc 770
Vendor NVIDIA AMD Intel

#physical-cores 132 220 32
#logical-cores 16896 14080 4096
Clock (GHz) 1.6 1.7 2.4
Peak perf. DP (TF) 30 47.9 4.9
Peak perf. SP (TF) 60 95.8 19.7
Peak perf. FP16 (TF) 120 383 39.3
Max Memory (GB) 80 HBM2e 128GB HBM2e 16GB GDDR6
Mem BW (TB/s) 2.0 3.2 0.56
TDP Power (Watt) 350 560 225

Table 3. Selected hardware features of most recent GP-GPU systems developed by NVidia, AMD and Intel

ImageNet KiTS19 OpenImages COCO LibriSpeech Wikipedia Go
ResNet 3D U-Net RetinaNet Mask R-CNN RNN-T BERT Minigo

8 ⇥ A100 30.8 25.6 89.1 43.1 32.5 24.2 161.6
8 ⇥ H100 14.7 13.1 38.0 20.3 18.2 6.4 174.6

Table 4. MLPerf Training v2.1 Benchmark Results (minutes)

A Survey on Deep Learning Accelerators for Heterogeneous HPC Platforms 9

Platform #GPUs FP16 Tensor F32 FP64

DGX1-P100 8x P100 – 85 42
DGX1-V100 8x V100 1000 124 62
DGX2 16x V100 2000 248 124
DGX-A100 Server 8x A100 2496 154 77
DGX-H100 Server 8x H100 16000 544 272

Supercomputer

Selene 2240x A100 698880 43120 21560
Eos 4608x H100 9216000 313344 156672

Table 5. Performance in TFlops of DGX based platforms; for H100 platforms, sparsity features are used.

A100 accelerators, and it is the �rst DGX server replacing the Intel Xeon CPUs with the AMD EPYC
CPUs, delivering a peak FP16-tensor computing performance of approximately 2.5 PFlops. The DGX
H100 Server has been announced in 2022, and it is the 4th generation of DGX servers. It includes 8
Hopper H100 cards delivering a total of 16 PFlops of FP16-tensor AI computing, and assembling a
total of 640 GB of HBM3memory. The DGX SuperPod is a high performance turnkey supercomputer
solution based on DGX hardware, combining high performance DGX compute nodes with fast
storage and high bandwidth networking, that can be used as building-block to assemble large
supercomputer systems. The Selene Supercomputer, installed at the Argonne National Laboratory,
is one example of a DGX SuperPod based system, built from 280 DGX A100 nodes. The new version
of SuperPod based on H100 DGX can scale up to 32 nodes, for a total of 256 H100 GPUs and 64
x86 CPUs. This gives the complete SuperPod a total 20TB of HBM3 memory, 70.4 TB/s of bisection
bandwidth, and up to 1 EFlop of FP8 and 500 PFlops of FP16 tensor AI compute. The Eos[195]
supercomputer announced in March 2022, designed, built, and operated by Nvidia, is based on 18
H100 SuperPods, for a total of 576 DGX H100 systems. This allows Eos to deliver approximately
18 EFlops of FP8 and 9 EFLOPs of FP16 compute, making Eos the fastest AI supercomputer in the
world. Table Table 5 summarizes the computing performance of few DGX systems. We report the
peak computing performance using tensor FP16 operations relevant for AI applications, and the
standard FP32 and FP64 relevant for many scienti�c applications.

3.2 TPU-based accelerators
Tensor Processing Units (TPUs) dedicated to training and inference have been proposed very
early after the emergence of the �rst large CNN-based applications. This is due to the observation
that these workloads are dominated by linear algebra kernels that can be refactored as matrix
multiplications (particularly if performed in batches) and that their acceleration is particularly
desirable for high-margin applications in datacenters. More recently, the emergence of exponentially
larger models with each passing year (e.g., the GPT-2, GPT-3, GPT-4 Transformer-based large
language models) required a continuous investment in higher-performance training architectures
in data centers.

Google showcased the �rst TPU [133, 134] at ISCA in 2017, but according to the original paper the
�rst deployment occurred in 2015 – just three years after the “AlexNet revolution”. The architecture
of the TPU is centered on a large (256⇥256) systolic array operating on signed or unsigned 8-bit
integers and targeting exclusively data center inference applications; this is coupled with a large
amount of on-chip SRAM for activations (24 MiB) and a high-bandwidth (30 GiB/s) dedicated
path to o�-chip L3 DRAM for weights. The next design iterations (TPUv2, TPUv3) [135] forced to

10 Cristina Silvano et al.

move from an inference-oriented design to a more general engine tuned for both inference and
training, employing the 16-bit BF16 �oating-point format, more cores (2 per chip) using each one
or two 4⇥ smaller arrays than TPUv1 (128⇥128, to reduce under-usage ine�ciencies). TPUv2/v3
also introduced high-bandwidth memory support, which results in more than 20⇥ increase in the
available o�-chip memory bandwidth.
In 2019, Habana Labs and Intel proposed Goya and Gaudi as microarchitectures for the accel-

eration of inference [182]. Goya relies on PCIe 4.0 to interface to a host processor and exploits a
design that uses a heterogenous approach comprising of a large General Matrix Multiply (GMM)
engine, TPUs, and a large shared DDR4 memory pool. Each TPU also incorporates its own local
memory that can be either hardware-managed or fully software-managed, allowing the compiler
to optimize the residency of data and reducing movement. Each of the individual TPUs is a VLIW
design that has been optimized for AI applications. The TPU supports mixed-precision operations
including 8-bit, 16-bit, and 32-bit SIMD vector operations for both integer and �oating-point. Gaudi
has an enhanced version of the TPUs and uses HBM global memories rather than the DDR used in
Goya, increasing the support towards b�oat16 data types and by including more operations and
functionalities dedicated for training operations.

While Google and Intel rely on amixture of in-house designs and GPUs, the othermain data center
providers typically relied on NVIDIA GPUs, as discussed above, to serve Deep Learning workloads.
Starting from the Volta architecture [52] and continuing with Ampere [53] and Hopper [51, 72],
NVIDIA has embedded inside the GPU Streaming Multiprocessors the counterpart of smaller TPUs,
i.e., TensorCores. Following the GPU architectural template, NVIDIA TensorCores are small units,
designed to perform a 4⇥4⇥4 FP16 GEMM operation per cycle in Volta (doubled in Ampere and
quadrupled in Hopper, adding also support for other data types). Performance is then obtained by
parallelisation: each Streaming Multiprocessor includes eight TensorCores controlled by 32 threads;
and, depending on the speci�c chip, GPUs can contain tens of Streaming Multiprocessors.

GraphCore Colossus Mk1 and Mk2 IPUs [127, 147] target speci�cally the niche of Graph Neural
Networks (as well as DNNs and Transformers) training employing a tiled many-core architecture
of relatively simple processors. GraphCore focuses on a highly power- and cost-e�cient memory
hierarchy that does not rely on high-bandwidth o�-chip HBM, but on cheaper DRAM chips
combined with a large amount of on-chip SRAM (in the order of 1 GiB per chip). According to
GraphCore, this design achieves ⇠2⇥ the energy e�ciency of an NVIDIA Ampere GPU and ⇠3⇥
that of a Google TPUv3 on sustained workloads.

Concerning academic and research-proposed architectures, IBM Research focused on introducing
techniques to reduce the precision of data formats used for training [8, 272], introducing Hybrid-FP8
formats in training ASICs and tensor processors. A similar e�ort is performed by the authors of
Cambricon-Q [300], which also introduce further improvements to exploit the statistical properties
of tensors to minimize bandwidth consumption and maximize e�ciency. Finally, Gemmini [89, 94]
and RedMulE [259, 260] are e�orts to introduce tensor processor hardware IPs (respectively,
generated from a template and hand-tuned) that can be integrated inside System-on-Chips, similarly
to what NVIDIA does with TensorCores.

4 HARDWARE ACCELERATORS
Typical HPC workloads, like genomics, astrophysics, �nance, and cyber security, require the
elaboration of massive amount of data and they can take advantage of DL methods with results that
can surpass human ability [21, 95, 232, 247]. However, an ever-increasing computing power, a rapid
change of the data analysis approaches, and the introduction of novel computational paradigms
are needed. DL models rely on remarkable computational complexities that can be e�ciently
supported, without renouncing to a good trade-o� between speed, energy e�ciency, design e�ort,

A Survey on Deep Learning Accelerators for Heterogeneous HPC Platforms 11

and cost, by optimized hardware platforms which are able to provide high levels of parallelism and
a considerable amount of memory resources.

These platforms can be developed using CPUs, GPUs, FPGAs, CGRAs and ASICs [66, 69, 95, 170,
175, 266, 282]. CPUs may have higher cache size and higher on-chip bandwidth than GPUs and
recon�gurable architectures, but they show a limited ability to process large amounts of data in
parallel. On the other hand, with their high throughput and parallelism, GPUs are extremely e�cient
in terms of performance, but, as a drawback, they consume a lot of power and are much more
expensive than their counterparts. Heterogeneous computing platforms based on modern FPGAs
achieve moderate speed and consume less energy compared to GPUs, despite limited computing
and memory resources [66] [276] [266]. Conversely, ASICs take longer design times, require higher
design e�orts and do not o�er �exibility, but they provide optimum computational speed and
power consumption. A good trade-o� between speed, power consumption and design e�ort is
o�ered by CGRAs that exhibit near-ASIC energy e�ciency and performances with near-FPGA
recon�gurability level.

(a)

(b) (c)

Fig. 3. Dataflows in Deep Learning accelerators: (a) Weights stationary; (b) Output stationary; (c) Input
stationary.

Independently of the technology used, a common problem in the design of the accelerators is
the high energy cost and delay of accessing o�-chip DRAM memory, in particular considering the
signi�cant amount of data that the target applications need to process. As schematized in Figure 3,
several data reuse and stationary strategies can be exploited to reduce the number of accesses, each
strategy o�ering a certain bene�t [38, 100, 208, 212, 230, 251]. For example, in the weight stationary
data�ow, convolutional weights (i.e. the �lter coe�cients) are �xed and stored in the local memory
of the Processing Elements (PEs) and reused on the input activations uploaded step-by-step from
the external DRAM. Conversely, in the output stationary data�ow, partial outputs produced by the
PEs are stored locally and reused step-by-step until the entire computation is completed. Then, just
the �nal results are moved to the external DRAM. An e�cient alternative is the input stationary
data�ow: in this case, the input activations are stored in the local memory of the PEs while the
weights are uploaded from the external DRAM and brought to the PEs.

Another approach common to many accelerator implementations is the use of quantization to
reduce the width of data types. Quantization represents an open problem in the implementation of
deep learning models on and many studies today address this topic [90] [172]. Integer or �xed-point

12 Cristina Silvano et al.

data formats are generally preferred over the more computationally intensive �oating-point ones.
This guarantees better memory occupation, lower computational cost and improves the robustness
of the model [130]. Extreme quantization techniques that use only one bit for the data stored
(Binary Neural Networks [221]) are widely used for the implementation of very large networks
but with comparable accuracy they require 2-11⇥ the number of parameters and operations [263],
making them not suitable for complex problems.

4.1 Reconfigurable Hardware Accelerators
FPGAs and CGRAs are highly sought-after solutions to hardware accelerate a wide range of
applications, including DL. The main feature of such recon�gurable platforms is the ability to
support di�erent computational requirements by repurposing the underlying hardware accelerators
also at runtime.
FPGAs are semiconductor devices that provide a unique combination of �exibility and perfor-

mances thanks to their fundamental building blocks, known as Con�gurable Logic Blocks (CLBs)
or simply Logic Elements (LEs). They consist of look-up tables (LUTs) and �ip-�ops that can be
used to implement arbitrary combinational and sequential bit-level operations, on the basis of user-
de�ned tasks. Programmable interconnects provide the necessary routing resources to establish
connections between di�erent elements within the device and to facilitate the seamless �ow of
data and control signals. Appropriate storage capabilities are also available on-chip as BRAMs and
distributed RAM, which serve to implement several storage elements, like data bu�ers and FIFOs.
Moreover, FPGAs provide the designers with specialized macros, such as Digital Signal Processors
(DSPs) and embedded multipliers, that can be exploited to enhance processing capabilities, improve
power e�ciency, and increase �exibility of hardware accelerators for DL. The latter exploit FPGAs
mostly to accelerate inference, while training is delegated to GPUs: this re�ects the di�erences
between the two phases, as training is only executed once and requires high throughput, while
for inference, especially on edge devices, latency and power consumption become critical [24, 99].
FPGAs are also often used as a prototyping platform to explore di�erent architectures before
committing to ASIC manufacturing [246].
Several FPGA-based hardware accelerators for DL are structured as heterogeneous embedded

systems [173] [163] [10] [291] [214] that mainly consist of: a general-purpose processor, responsible
for running software workloads; a computational module, purposely designed to speed up common
DL operators, like convolutions [270][223], de-convolutions [39, 234], pooling, fully connected
operations, activation and softmax functions [248, 249]; and a memory hierarchy needed to optimize
data movement to/from an external DRAM that stores data to be processed and computational
results. A typical approach to accelerate convolutions consists of a systolic array architecture
(SA), a regular pattern which can be easily replicated [285]. Each PE in the array is a SIMD vector
accumulation module to which inputs and weights are supplied in each cycle by shifting from the
horizontally and vertically adjacent PE (Figure 4a). The use of pipelined groups of PE with short
local communication and regular architecture enables a high clock frequency and limited global
data transfer (Figure 4b).
Although FPGAs have traditionally been proposed as accelerators for edge applications, they

are starting to be adopted also in datacenters. Microsoft’s Project Brainwave [79] uses several
FPGA boards to accelerate the execution of recurrent neural networks in the cloud, exploiting the
recon�gurability to adapt the platform to di�erent DL models. One way to face the limitations
imposed by the capability of FPGAs to e�ectively map very large DL models is to use a deeply
pipelined multi-FPGA design. Recent studies focus on optimizing this type of architecture and
maximizing the overall throughput [296] [224][236].

A Survey on Deep Learning Accelerators for Heterogeneous HPC Platforms 13

(a)

(b)

Fig. 4. FPGA accelerators: (a) Systolic array accelerator; (b) Pipelined dataflow accelerator.

In these applications contexts, CGRAs represent an alternative to FPGAs, providing recon�gura-
bility with coarser-grained functional units. They are based on an array of processing elements
(PEs), performing basic arithmetic, logic, and memory operations at word level and using a small
register �le as temporary data storage. Neighboring PEs are connected to each other through
recon�gurable routing that allows to transfer intermediate results of the computations towards the
proper neighbors for the next computational step. CGRAs can represent a powerful solutions to
accelerate dense linear algebra applications, such as ML, image processing, and computer vision
[34, 86]. In fact, thanks to parallel computing and time-multiplexing, CGRAs can e�ciently support
and combine spatial and temporal computational models. Furthermore, they are �exible enough
for speci�c domains, and their interconnections, being not as complex as those present on FPGAs,
provide remarkable advantages in terms of speed, energy-e�ciency, and resources utilization.

4.2 ASIC-based Accelerators
4.2.1 Neural Processing Units (NPUs). An NPU is processing architecture that includes all the
control and the arithmetic logic components necessary to accelerate the performance and improve
the energy-e�ciency [243] of common DL tasks such as image classi�cation, object detection,
and many more [116], which are of paramount importance from edge and mobile computing to
high-performance computing. The purpose of an NPU is to accelerate a segment of a program
(e.g., a fully-connected layer of a large neural network) o�oading the CPU. In particular, the NPU
is designed to accommodate a reasonable amount of multiply/accumulate (MAC) units, that are
the fundamental blocks devised in the convolutional and fully-connected layers of deep neural
networks [45, 65].

Table 6. Summary of NPU accelerators.

NPU Process Area [mm2] Supply voltage [V] Max. Freq. [MHz] PP [TOPS] Max EE [TOPS/W] Max AE [TOPS/mm2]

Samsung [243] 8 nm 5.5 0.8 933 6.9 3.4 1.25
UM+NVIDIA [297] 16 nm 2.4 0.8 480 - 3.6 -
MediaTek [167] 7 nm 3.04 0.825 880 3.6 6.55 1.18
Alibaba [129] 12 nm 709 - 700 825 499 1.16
Samsung [206] 5 nm 5.46 0.9 1196 29.4 13.6 2.69
Samsung [207] 4 nm 4.74 1 1197 39.3 11.59 6.9

Each PE contains a synaptic weight bu�er and the MAC units to perform the computation of a
neuron, namely, multiplication, accumulation, and an activation function (e.g., sigmoid). A PE can

14 Cristina Silvano et al.

be realized entirely with a full-CMOS design or by using emerging non-volatile memories such as
RRAM and PCM to perform in situ matrix-vector multiplication as in the RENO chip [171] or as in
the MAC units proposed in [192, 289]. The advantage of these architectures is that only the input
and �nal output are digital; the intermediate results are all analog and are coordinated by analog
routers. Data converters (DACs and ADCs) are required only when transferring data between
the NPU and the CPU with an advantage in terms of energy-e�ciency ([289] reports an energy
e�ciency of 53.17 TOPS/W), although there are insu�cient experimental data to support this
evidence in comparison with full-digital NPUs. In Table 6, we reported the main features of several
full-digital NPUs designs by also highlighting their Peak Performance (PP), Energy E�ciency (EE),
and Area E�ciency (AE).

4.2.2 Single-chip NPUs. In the DNN landscape, single-chip domain-speci�c accelerators have
achieved a great success in both cloud and edge scenarios. These custom architectures o�er better
performance and energy e�ciency with respect to CPUs/GPUs thanks to an optimized data�ow (or
data reuse pattern) that reduces o�-chip memory accesses, while improving the system e�ciency
[44].

The DianNao series is an example of a full digital stand-alone DNN accelerator that introduces a
customized design to minimize the memory transfer latency and to enhance the system e�ciency.
DaDianNao [43] targets the datacenter scenario and integrates a large on-chip embedded dynamic
random access memory (eDRAM) to avoid the long main memory access time. The same principle
applies to the embedded scenario. ShiDianNao [43] is a DNN accelerator dedicated to CNN applica-
tions. Using a weight sharing strategy, its footprint is much smaller than the previous design. It
is possible to map all of the CNN parameters onto a small on-chip static random access memory
(SRAM) when the CNN model is small. In this way, ShiDianNao avoids expensive o�-chip DRAM
access time and achieves a 60 times energy e�ciency compared to DianNao.

Furthermore, domain-speci�c instruction set architectures (ISAs) have been proposed to support
a wide range of NN applications. Cambricon [298] and EIE [104] are examples of architectures that
integrate scalar, vector, matrix, logical, data transfer, and control instructions. Their ISA considers
data parallelism and the use of customized vector/matrix instructions.

Eyeriss is another notable accelerator to discuss [45]. The architecture is that of a CNN accelerator
that can support high throughput inference and optimize the system-level energy e�ciency, also
including o�-chip DRAMs. The main features of Eyeriss are a spatial architecture based on an
array of 168 processing elements (PEs) that creates a four-level memory hierarchy, a data�ow that
recon�gures the spatial architecture to map the computation of a given CNN and optimize towards
the best energy e�ciency, a network-on-chip (NoC) architecture that uses both multi-cast and
point-to-point single-cycle data delivery, and run-length compression (RLC) and PE data gating
that exploit the statistics of zero data in CNNs to further improve energy e�ciency.

In [65], STMicroelectronics presented Orlando system-on-chip, a 28nm FDSOI-based CNN accel-
erator integrating an SRAM-based architecture with low-power features and adaptive circuitry to
support a wide voltage range. Such DNN processor provides an energy-e�cient set of convolutional
accelerators supporting kernel compression, an on-chip recon�gurable data-transfer fabric, a power-
e�cient array of DSPs to support complete real-world computer vision applications, an ARM-based
host subsystem with peripherals, a range of high-speed I/O interfaces, and a chip-to-chip multilink
to pair multiple accelerators together.
IBM presented a processor core for AI training and inference tasks applicable to a broad range

of neural networks (i.e., CNN, LSTM and RNN) [198]. High compute e�ciency is achieved for
robust fp16 training via e�cient heterogeneous 2-D systolic array-SIMD compute engines that
leverages DLFloat16 FPUs. A modular dual-corelet architecture with a shared scratchpad memory

A Survey on Deep Learning Accelerators for Heterogeneous HPC Platforms 15

and a software-controlled network/memory interface enables scalability to many-core SoCs for
scale-out paradigms. In 2022, IBM also presented a 7-nm four-core mixed-precision AI chip [159]
that demonstrates leading-edge power e�ciency for low-precision training and inference without
model accuracy degradation. The chip is based on high-bandwidth ring interconnect to enable
e�cient data transfers, while workload-aware power management with clock frequency throttling
maximizes the application performance within a given power envelope.
Qualcomm presented an AI core that is a scalar 4-way VLIW architecture that includes vec-

tor/tensor units and lower precision to enable high-performance inference [40]. The design uses a
7 nm technology and is sought to be integrated in the AI 100 SoC to reach up to 149 TOPS with a
power e�ciency of 12.37 TOPS/W.

Table 7. Summary of single-chip digital DNN accelerators

Accelerator Technology Application Area [mm2] Power [mW] Performance [GOPS] EE [GOPS/W]

DaDianNao [43] 28 nm DNN 67.7 15970 5585 -
ShiDianNao [43] 65 nm CNN 4.86 320 194 -
Cambricon [298] 65 nm CNN 6.38 954 1111.92 -
EIE [104] 28 nm CNN+LSTM 63.8 2360 1.6 177.78
Eyeriss [45] 65 nm CNN 16 450 33.6 74.7
STM [65] 28 nm CNN 34.8 39 750 2900
IBM [198] 14 nm CNN+LSTM+RNN 9.84 - 3000 1100
IBM [159] 7 nm CNN+RNN 19.6 - 16300 3580

4.3 EDA Frameworks
Implementing hardware accelerators for ML algorithms, particularly DNNs, is a complex task that
is rarely addressed through manual coding in low-level Hardware Description Languages (HDL).
When Register Transfer Level (RTL) design is required to achieve high performance, templated
components may be used [174]. Instead, there are several electronic design automation (EDA)
tools that bridge the gap between ML models and FPGAs/ASICs, allowing researchers to focus on
developing the algorithms at a high level of abstraction [271].
Vitis AI, Xilinx’s development environment for AI inference [16], supports models developed

in major frameworks such as PyTorch [209], TensorFlow [7] and Ca�e [126], and maps them on
deep learning processor unit (DPU) cores present on modern Xilinx boards alongside the standard
FPGA logic. The work in [261] describes the implementation of DeepSense, a framework that
includes CNN and RNN, with a focus on the choice of parameters to de�ne DPUs used by Vitis
AI; [268] performs a parametric study of the DPU architecture used by Vitis AI and examines the
tradeo�s between the resources used and the clock frequency, as well as their impact on power
consumption; [279] compares the FPGA implementation of YOLOv3 provided by Vitis AI with its
GPU counterpart, showing higher throughput and lower power consumption; [265] evaluates the
implementation of three di�erent CNNs in terms of precision, power consumption, throughput,
and design man-hours, and compares these �gures with their GPU counterparts.

High-Level Synthesis (HLS) plays a crucial role to automate the design of ML accelerators. HLS
tools such as Vitis HLS [287], Bambu [77], Intel HLS Compiler [121], Catapult [241], Stratus HLS
[31], or LegUp [32] provide users with a high level of abstraction where they can describe the
desired functionality with a software programming language (C/C++/SystemC) and automatically
obtain a corresponding high-performance HDL implementation. HLS thus boosts the productivity
of hardware designers, who can bene�t from faster design changes and functional veri�cation. In
fact, HLS allows to create accelerators for di�erent platforms (e.g., larger or smaller FPGAs) without
altering the C/C++ source code apart from a few design directives; this makes it possible to explore

16 Cristina Silvano et al.

the design space and �nd the best implementation much faster than with HDL design. Note that
code must be written with hardware knowledge in mind in order to meet given performance and
resource usage results. Arbitrary software code, written for a CPU target, could achieve very low
performance, since it typically does not expose enough parallelism to exploit the spatial concurrency
available on FPGA or ASIC.

In order to explore the acceleration of DNN inference on FPGAs, several frameworks and packages
have been developed based on HLS. They can be divided into two categories: tools based on libraries
of HLS templates, such as FINN [25] and hls4ml [70], and tools that use a compiler-based approach,
such as SODA [26] and ScaleHLS [292]. In [176], a comparison between a custom implementation
of two DNNs written in SystemVerilog and an implementation using the Xilinx tools FINN and
Vitis AI is presented; a comparison between FINN and Vitis AI is reported in [103], where a ResNet
model is implemented using a widely used set of con�gurations of FINN and Vitis AI. Both FINN
and hls4ml use Vitis HLS as a backend; they parse a model exported from high-level ML frameworks
and replace operators with C/C++ functions taken from a library of templates that already contains
Vitis optimization directives. The HLS tool processes the C/C++ code and produces a corresponding
accelerator design. The library of templates is necessarily tied to a speci�c HLS tool, and it requires
expert HLS developers to implement in advance the best version of all necessary ML operators for a
pre-determined backend tool. On the other hand, SODA and ScaleHLS use a compiler infrastructure
(MLIR, the Multi-Level Intermediate Representation from the LLVM project [155]) to progressively
translate the input model through representations at di�erent levels of abstraction, until they
can be passed to the HLS tool as a C++ representation or an LLVM IR. This second approach
exploits the existing MLIR infrastructure for machine learning, without requiring to create and
maintain a library of operators. A hybrid RTL–HLS approach has been proposed in [97] to improve
performance and development time for various DL algorithms.

4.4 Accelerators based on open-hardware RISC-V
RISC-V is an open-source, modular instruction set architecture (ISA) that is gaining popularity in
computer architecture research due to its �exibility and suitability for integration with acceleration
capabilities for deep learning. The RISC-V ISA is designed with a small, simple core that can be
extended with optional instruction set extensions (ISEs) to support various application domains.
RISC-V o�ers several advantages for deep learning acceleration research. First, the modular

nature of the ISA allows researchers to easily integrate acceleration capabilities as ISEs, which
can be customized to suit the speci�c needs of di�erent deep learning models. Second, RISC-V
supports a range of standard interfaces, such as AXI4, that can be used to interface with external
acceleration units integrated on the same System-on-Chip at various levels of coupling. This makes
it easy to integrate specialized hardware accelerators into RISC-V-based systems for deep learning.
Moreover, the de�ning feature of the RISC-V ISA is its openness, meaning that anybody can design
a RISC-V implementation without paying royalties or needing a particular license. Thanks to this
non-technical advantage with respect to other ISAs (ARM, x86), RISC-V has gained signi�cant
traction from academia and from emerging startups. Due to the concurrent rise of Deep Learning,
many specialized architectures dedicated to Deep Learning have been based on RISC-V.

Fig. 5 reports a synthetic taxonomy of the RISC-V based architectures for Deep Learning acceler-
ation discussed in the present section, organized by the way that they are coupled with the core:
from the tightest coupling (directly extending the core’s ISA) to the loosest (sharing memory at L3).
We use the same taxonomy in the following to discuss these architectures.

4.4.1 RISC-V ISA extensions for (Deep) Learning. The RISC-V ISA standard uses a modular design
composed of basic instruction sets addressing the general purpose computing, e.g., base 32-bit

A Survey on Deep Learning Accelerators for Heterogeneous HPC Platforms 17

RISC-V for Deep Learning

Specialized ISA & SIMD

Dustin [200]
Marsellus [56]
Kraken [67]

Manticore [294]
Celerity [59]

Tenstorrent [269]
exSDOTP [22]
Esperanto [68]

CNC [42]
Cococcioni et al. [55]
PERCIVAL [177]
Wang et al. [281]
Tang et al. [258]
RISC-VTF [128]
Paulin et al. [210]

Vector Co-Processor

Lee et al. [161]
AVA [156]
Spatz [37]

Vitruvius+ [185]
Ara [36]

Perotti et al. [213]
Xuantie [41]
Arrow [20]
Ventana [6]

Memory-Coupled NPUs

L1-Coupled

Darkside [88]
Marsellus [56]

Garofalo et al. [87]
Vega [229]

RedMulE [259, 260]
Archimedes [217]
Bruschi et al. [30]

GAP9 [4]

L2-Coupled

SNCPU [136]
SamurAI [186]
Gemmini [89]
DIANA [113]
TinyVers [122]
Kraken [67]
Simba [237]

Lee et al. [160]
Tambe et al. [257]

L3-Coupled

Gonzalez et al. [94]
ESP [125]

Fig. 5. Taxonomy of RISC-V based acceleration units discussed in Section 4.4

integer operations, plus a variety of extensions that can be seamlessly integrated to provide
enhancements for speci�c computing needs, e.g., the H-extension for virtualization. This �exible
design together with the openness of the standard brought forward a number of studies proposing
custom extensions to accelerate speci�c applications. Due to the �exibility of this architectural
template, the diversity of solutions proposed is signi�cant. Here we review extensions aiming at
(deep) learning.

(Deep) neural networks are often limited by the computing andmemory resources used up by their
large number of weights. Weight compression via alternative or quantized number representations
is often adopted to speed up and optimize the performance of neural network models. [55, 177]
propose ISA extensions for posit numbers which can be used to do weight compression. Posits are
an alternative representation to the standard IEEE �oating point formats for real numbers. Posits
need fewer bits to obtain the same precision or dynamic range of IEEE �oats allowing them to store
more weights in a same-sized memory. For example, [55] provide an e�cient conversion between 8-
or 16-bit posits and 32-bit IEEE �oats or �xed point formats with little loss in precision leading to a
10x speedup in inference time. Other works directly address the compute-intensive parts of di�erent
neural networks, in particular convolutional neural networks (CNNs), graph convolutional networks
(GCN) and transformers. [281] proposes a new Winograd-based convolution instruction to speed
up the time-consuming convolutional layers in CNNs. The matrix convolution between the CNN
kernel and the input data can not be executed e�ciently using the standard RISC-V instructions.
The proposed extension allows to compute a convolution producing a 2 ⇥ 2 output using a 3 ⇥ 3
kernel on a 4 ⇥ 4 input in a single instruction using 19 clock cycles instead of multiple instructions
totaling 140 cycles using the standard RISC-V ISA. [258] addresses the computational bottlenecks
of GCNs. They design a set of general-purpose instructions for GCNs speci�cally addressing
the compute ine�ciencies in aggregating and combining feature vectors. As such the authors
combine the software programmability given by the RISC-V ISA with the compute e�ciency of
GCN accelerators. Similarly, [128] focuses on transformer models. Notably, the extension comprises
instructions to accelerate the popular ReLU activation and softmax functions. Paulin et al. [210]
performs a similar task but focuses on Recurrent Neural Networks (RNNs).

Following the industry and academia trend to use aggressive quantization schemes to accelerate
inference of Deep Neural Networks, many ISA extensions focus on low-bitwidth arithmetics to
implement Quantized Neural Networks (QNNs), often combined with multi-core parallel execution
to further boost performance and e�ciency. Several developments in SoA augment the PULP RI5CY
core used for example in Vega [229] to improve its energy e�ciency on QNNs. Marsellus [56] (16

18 Cristina Silvano et al.

cores) and Kraken [67] (8 cores) use Xpulpnn, an ISA extension for low-bitwidth (2/4-bit) integer
dot-products used to accelerate symmetric precision QNNs. Dustin [200] (16 cores) also exploits
a similar concept, but it also introduces a lockstep mechanism to operate all the cores in a SIMD
fashion, further increasing their e�ciency.
Manticore [294], Celerity [59], Esperanto [68] and Tenstorrent [269] exploit ISA extensions for

faster RISC-V based Deep Learning workload execution in the context of many-core architectures
where a large number of very simple cores cooperate. As these architectures are targeted at server-
based training as well as inference, they typically focus on �oating point multiply-accumulate and
dot-product operations, such as exSDOTP [22].

4.4.2 RISC-V Vector Co-processors. The main proponents of the RISC-V architecture have tradition-
ally been strong proponents of Cray-style vector co-processors as an alternative to packed-SIMD
extensions used in many competitor architectures (see e.g., Lee et al. [161]). Following this line
of thought, vector co-processors have been from the start a natural architectural target for Deep
Learning-oriented RISC-V acceleration. AVA [156], Vitruvius+ [185], Ara [36, 213] are research-
based vector co-processors meant to accelerate the full RISC-V V extension for general-purpose
vectorizable applications; while these include Deep Learning, such attempts (generally focusing
on 64-bit computation) are not particularly tailored in terms of energy e�ciency when compared
to more compact solutions speci�cally tuned for DNNs. Commercial RISC-V vector processors,
mainly targeted at High-Performance Computing markets, have recently started appearing, such
as Xuantie [41] and Ventana [6]. Spatz [37] and Arrow [20], on the other hand, are examples of
vector co-processors explicitly tailored for Deep Learning. The former in particular focuses only on
a subset of the V extension and on 32-bit data, capturing better opportunities for energy e�ciency.

4.4.3 RISC-V Memory-coupled Neural Processing Units (NPUs). Memory-coupled NPUs have been
very often connected to RISC-V processors, exploiting the latter’s availability to engineer innovative
architectural templates and solutions. Concerning the tightest kind of memory coupling, at L1,
most proposals in the state-of-the-art are based on the PULP template, and devote signi�cant
e�ort to enabling fast communication between RISC-V cores and accelerators. Vega [229] is a
prototype system based on the Parallel Ultra-Low Power (PULP) multi-core template coupling 9
RI5CY cores with a quantized DNN convolutional NPU sharing directly L1 scratchpad memory with
the cores. GreenWaves Technologies GAP9 [4] is a commercial product, targeted at the hearables
market, that follows the same line with many architectural improvements and a redesigned AI NPU
for QNNs – leading to the product achieving the best performance and energy e�ciency in the
public TinyMLPerf Tiny 1.0 challenge as of this writing [5]. Archimedes [217] proposes a large AI
hardware accelerator for performance-hungry Extended Reality applications. RedMulE [259, 260],
integrated in the Darkside prototype [88], follows the same principles but focusing on �oating-point
computation to support training as well as inference. Garofalo et al. [87] and Bruschi et al. [30]
integrate in-memory-computing PCM-based NPUs, the latter simulating a system scaled up to
match the size of server-class hardware.

Loosening the memory coupling, i.e., moving the memory shared between cores from L1 to L2/L3,
there are many other proposed NPU solutions in the State-of-the-Art. In these instances, RISC-V
cores serve mainly as they are well available (also as fully open-source veri�ed cores) and at the same
time �exible and easy to integrate into larger systems. Systems exploiting this template include, for
example, SNCPU [136], which builds a hybrid system that can act as either a set of 10 RISC-V cores
or be recon�gured in a systolic NPU. Gonzalez et al. [94] and Genc et al. [89] exploit a systolic array
generation tool, Gemmini, to generate systolic arrays used to accelerate DNNs and coupled with a
RISC-V core by exploiting a shared L3 or L2 memory, respectively. Simba [237] follows a similar
template, and is also meant to be scaled towards server-grade performance by means of integration

A Survey on Deep Learning Accelerators for Heterogeneous HPC Platforms 19

101 102 103 104 105
Power [mW]

101

102

103

104

105

Pe
rf
[G

O
PS

]

SNCPU [136]

Dustin [200]

Darkside [88]

SamurAI [186]

Marsellus [56]

Garofalo et al. [87]

DIANA [113]

TinyVers [122]

Kraken [67]

Vega [229]

RedMulE [259, 260]

Spatz [37]

Manticore [294]
Vitruvius+ [185]

Ara [36]

Pero�i et al. [213]

Archimedes [217]

Lee et al. [160]
Axelera AI [283]

Tambe et al. [257]

exSDOTP [22]

Esperanto [68]

Bruschi et al. [30]

CNC [42]

Maturity
Silicon
Pre-silicon
Simulation

Data Type
FP64
FP16
FP8
FP4
INT32
INT8
INT2 x INT8
INT2 x INT4
INT2
Analog

Fig. 6. Performance and power consumption of prototypes of several State-of-the-Art Deep Learning acceler-
ation architectures discussed in Section 4.4. Dot color indicates maturity (silicon, pre-silicon, simulation); dot
shape indicates data type employed.

Table 8. Summary of RISC-V Deep Learning acceleration architectures

Category Accelerator Tech [nm] Area [mm2] Freq [MHz] Voltage [V] Power [mW] Perf [GOPS] E� [GOPS/W] # MAC units Data Type Maturity

ISA

Dustin [200] 65nm 10 205 1.2 156 33.6 215 128 INT2 x INT4 Silicon
Kraken (RISC-V cores) [67] 22nm 9 330 0.8 300 75 750 128 INT2 Silicon
Manticore [294] 22nm 888 500 0.6 200 25 188 24 FP64 Silicon
Celerity [59] 16nm 25 1050 - 1900 - - 496 INT32 Silicon
Tenstorrent [269] 12nm 477 - - - 92000 - - FP16 Silicon
exSDOTP [22] 12nm 0.52 1260 0.8 278 160 575 16 FP8 Pre-silicon
Esperanto [68] 7nm 570 1000 - 20000 139000 6.95 69632 INT8 Silicon
CNC [42] 4nm 1.92 1150 0.85 510 75.8 149 512 INT8 Silicon

Vector

Lee et al. [160] 14nm 181 2000 0.8 60000 64000 1450 16384 INT8 Silicon
AVA [156] 22nm 3.9 - - - - - - FP64 Pre-silicon
Spatz [37] 22nm 20 594 0.8 1070 285 266 256 INT32 Pre-silicon
Vitruvius+ [185] 22nm 1.3 1400 0.8 459 21.7 47.3 8 FP64 Pre-silicon
Ara [36] 22nm 10735 kGE 1040 0.8 794 32.4 40.8 16 FP64 Pre-silicon
Perotti et al. [213] 22nm 0.81 1340 0.8 280 10.4 37.1 4 FP64 Pre-silicon

L1 NPU

Darkside [88] 65nm 3.85 200 1.2 89.1 12.6 152 32 FP16 Silicon
Marsellus (NPU) [56] 22nm 18.7 420 0.8 123 637 7600 10368 1–bit INT2 Silicon
Garofalo et al. [87] 22nm 30 500 0.8 150 958 6390 36 (DW) INT8 Pre-silicon
Vega [229] 22nm 12 450 0.8 49.4 32.2 651 27 INT8 Silicon
RedMulE [259, 260] 22nm 0.73 613 0.8 193 117 608 96 FP16 Pre-silicon
Archimedes [217] 22nm 3.38 270 0.65 112 1198 10.6 5184 INT2 x INT8 Pre-silicon
Bruschi et al. [30] 5nm 480 - - 3070 20000 6500 3.35⇥107 Analog Simulation

L2 NPU

SNCPU [136] 65nm 4.47 400 1 116 75.9 655 100 INT8 Silicon
SamurAI [186] 28nm 4.52 350 0.9 94.7 36 380 64 INT8 Silicon
Gemmini [89] 22nm 1.03 1000 - - - - 256 INT8 Pre-silicon
DIANA (digital) [113] 22nm 10.24 280 0.8 132 230 1740 256 INT8 Silicon
DIANA (analog) [113] 22nm 10.24 350 0.8 132 18100 176000 256 INT8 Silicon
TinyVers [122] 22nm 6.25 150 0.8 20 17.6 863 64 INT8 Silicon
Simba [237] 16nm 6 161 0.42 - - 9100 1024 INT8 Silicon
Axelera AI [283] 12nm 9 800 - 2787 39300 14100 - INT8 Silicon
Tambe et al. [257] 12nm 4.59 717 1 111 734 6612 - FP4 Silicon

L3 NPU Gonzalez et al. [94] 22nm 16 961 - - - 106.1 256 INT8 Silicon
ESP [125] 12nm 21.6 1520 1 1830 - - 3x NVDLA INT8 Silicon

of chiplets on multi-chip modules. ESP [91, 92] and Tambe et al. [257] also focus on integration
of hardware accelerators and NPUs in larger-scale Network-on-Chips using RISC-V cores as the
primary computing engines. On the other end of the spectrum, SamurAI [186], TinyVers [122], and
DIANA [113] build up AI-IoT systems composed of a microcontroller and L2-coupled NPUs (in
the case of DIANA both an analog SRAM-IMC-based accelerator and a conventional digital one).
Kraken [67] couples the aforementioned RISC-V ISA-extended cluster with specialized L2-coupled
Spiking Neural Network (SNN) and Ternary Neural Network (TNN) accelerators.

20 Cristina Silvano et al.

Fig. 6 summarizes the performance, power, technological maturity and data types used in
the architectures discussed in this Section. We can observe that RISC-V-based architectures for
Deep Learning occupy essentially the full spectrum of Deep Learning architectures from 10 mW
microcontrollers up to 100 W SoC’s meant to be integrated as part of high-performance computing
systems. Most of the research has, so far, focused on the lower end of this spectrum, striving
for the best energy e�ciency. We can observe e�ciency is strongly correlated with architectural
techniques yielding accuracy (e.g., data bitwidth reduction & quantization). Table 8 summarizes all
quantitative information available on the discussed architectures; where multiple operating points
were reported for a single architecture, the table reports always the highest-performance one (for
consistency, this applies to both performance and energy e�ciency numbers).

5 ACCELERATORS BASED ON EMERGING COMPUTING PARADIGMS
5.1 Arithmetic Data-paths
Performance achievable with ASIC accelerators for inference of deep learning circuits are mainly
dependent on the structure of the arithmetic data-path. At its core deep learning systems perform
several �nite impulse response operations over a large set of data. Hence the accelerator can be
optimized by exploiting the techniques used for the e�cient implementation of the underlying
arithmetic operations. As shown in Fig. 7, three main types of optimization can be performed on
the arithmetic data-path. Convolution is one of the main operations performed in a deep learning
system.Mono-dimensional convolution can be e�ciently implemented using the approach proposed
in [47, 262]. In these papers, the overall result of the convolution is obtained with a reduced number
of multiplications. A reduced number of multiplications allows improving the trade-o� between
the throughput of the circuit and the amount of hardware resources needed for its implementation.
The technique has been further developed in [48, 278, 280] where it is applied to multi-dimensional
convolution used in neural networks.

The multiplication itself can be implemented with optimized circuits. In [132, 215] the area and
power dissipation of the multiplier circuit is reduced by discarding part of the partial products
used to compute the result. These circuits trade-o� precision and circuit complexity in order to
improve the design. As a general methodology this approach is often referred as Approximate
Computing Paradigm, providing a way to approximate the design at the cost of a tolerable accuracy
loss. The Approximate Computing techniques proposed in [151, 295] provide a reduced complexity
multiplier by modifying the way the partial products are computed. In [293] a recursive approach
is proposed, in which the multiplier is decomposed into small approximate units. In the approach
proposed in [74] the approximation is implemented in the way the partial products are summed.

Finally, the Approximate Computing Paradigm can also be implemented in the 4-2 compressors
[9, 102, 148, 203, 254, 290] that represent the atomic blocks used for the compression of the partial
products of the multiplier.

Di�erent from the previous works, the segmentation method is aimed at reducing the bit-width
of the multiplicands. The papers [108, 267] describe a dynamic segmentation method in which the
segment is selected starting from the leading one of the multiplicand binary representation. On the
contrary, the paper [191] proposes a static segmentation method, which reduces the complexity
of the selection mechanism by choosing between two segments with a �xed number of bits. The
paper [255] improves the accuracy of the static segmentation method multipliers by reducing the
maximum approximation error, whereas in [165] the authors propose a hybrid approach in which
a static stage is cascaded to a dynamic stage.

A Survey on Deep Learning Accelerators for Heterogeneous HPC Platforms 21

Arithmetic Data-path

Convolution Optimization

Cheng [47]
Tsao [262]
Wang [280]
Cheng [48]
Wang [278]

Approximate Computing

Multiplication

Jou [132]
Petra [215]

Kulkarni [151]
Zervakis [295]
Zacharelos [293]
Esposito [74]

4-2 compressors

Ahmadinejad [9]
Yang [290]
Ha [102]

Strollo [254]
Park [203]
Kong [148]

Segmentation Methods

Hashemi [108]
Vahdat [267]

Narayanamoorthy [191]
Strollo [255]
Li [165]

Fig. 7. Taxonomy of the data-path architectures described in Section 5.1

5.2 Accelerators for Sparse Matrices
Sparse matrices represent a main staple for scienti�c computations and are at the hearth of widely
used computational kernels, which are also applied in modern DL workloads. The most famous
de�nition of sparse matrix is attributed to James Wilkinson and dates back to more than 50 years
ago [61]: any matrix with enough zeros that it pays to take advantage of them. A more recent
and quantitative de�nition by Filippone et al. [78] states that a matrix is sparse if its number of
non-zero coe�cients is $ (=), where = is the number of rows (columns) of the matrix.
Sparse matrices are usually stored in compressed format in order to avoid redundant storage

as well as a lot of useless calculations. That is, the storage format attempts to take advantage of
the zeros by avoiding their explicit storage. The counterpart is that the traditional simple mapping
between the index pair of each matrix coe�cient and the position of the coe�cient in memory is
destroyed. Therefore, all sparse matrix storage formats are devised around means of rebuilding this
mapping using some auxiliary index information. This rebuilding has a non-negligible cost and
impacts on the matrix operations to be performed. Therefore, the performance of sparse matrix
computations depends critically on the selected storage format.
Widely used sparse matrix storage formats include COOrdinate (COO), Compressed Sparse

Rows (CSR), and Compressed Sparse Columns (CSC) [78]. For example, CSR, which is perhaps
the most popular sparse matrix representation, compresses the sparse matrix into three di�erent
arrays. The �rst one represents the non-zero values, the second contains the column indexes, while
the third marks the boundaries of each row in the matrix. The above formats can be considered
as general-purpose, meaning that they can be used on most hardware with little or no changes.
However, additional and hardware-oriented formats become attractive when moving onto special
computing architectures such as accelerators. For example, many storage formats, such as ELLPACK,
were speci�cally developed for vector machines, in order to introduce a certain degree of regularity
in the data structure to allow the e�cient exploitation of vector instructions.
A factor that can drive the choice of the storage format is the sparsity pattern of the matrix

that is, the pattern of non-zero entries contained in the matrix. Common sparsity patterns include
unstructured (where nonzeros are randomly and irregularly scattered), diagonal (where nonzeros
are restricted to a small number of matrix diagonals), and block sparse (either coarse-grain or
�ne-grain). Each of these sparsity patterns is best addressed using di�erent formats. For instances,
the diagonal format (DIA) is an appropriate representation for diagonal matrices.

DNN models are composed of large, dense matrices which are typically used in matrix multiplica-
tion and convolutions. In the last years, state-of-the-art DL models have dramatically increased in
size, with hundreds of billions of parameters (e.g., large language models as GPT-3 require 175B pa-
rameters [29]) and trillions of compute operations per input sample. In order to reduce DNN model
sizes and computation requirements (including the energy footprint), pruning (i.e., setting to zero)

22 Cristina Silvano et al.

of DNN weights has emerged as a particularly e�ective and promising technique. Pruning entails
to identify unnecessary redundancy in DNN trained model weights and zero out these nonessential
weights [106, 250], thus allowing to discard zero values from storage and computations. Therefore,
pruning induces sparsity in the DL model, in which a large proportion (typically between 50%[204]
to 90% [105]) of the weights are zero. Pruning methods allow to keep model accuracy with little
loss in model quality, thus achieving the same expressive power as dense model counterparts, while
leading to models that are more e�cient in terms of computing and storage resources demand.

The second factor that induces sparsity in DNNmodels is the ReLU (recti�ed linear unit) operator,
which is frequently used as activation function. Indeed, ReLU resets all the negative values in the
matrices of the activations1 to zero.
Because of network pruning and zero-valued activations, sparsity has become an active area

of research in DNN models. These two techniques allow to reduce both the memory size and the
memory accesses, the latter thanks to the removal of useless operations (i.e., multiply by zero),
which also save processing power and energy consumption. As regards the memory size, the
number of non-zero entries in the resulting sparse matrices can be reduced to 20-80% and 50-70%
for weights and activations, respectively [106, 202]. Sparse matrices can thus be stored using a
compressed representation, thus leading to at least 2-3x memory size reduction. However, the main
disadvantage of a sparse matrix is that the indexes become relative, which adds extra levels of
indirection that add complexity and need to be carefully managed to avoid ine�ciency.
As regards the sparsity pattern of DNN models, it can range from unstructured as a result of

�ne-grain pruning, which maintains model accuracy, to structured when coarse-grain pruning is
applied to improve execution e�ciency at the cost of downgrading the model accuracy [106, 286].
Randomly distributed nonzeros can lead to irregular memory accesses, that are unfriendly on
commodity architectures, e.g., GPU, as well as to irregular computations that introduce conditional
branches to utilize the sparsity. The latter are hardly applicable for accelerators, which are designed
for �ne-grained data or thread parallelism rather than �exible data path control. On the other hand,
hardware-friendly structured sparsity can e�ciently accelerate the DNN evaluation at the cost of
model accuracy degradation.
Moreover, sparsity is becoming ubiquitous in modern deep learning workloads (i.e., not only

because of the application of compression techniques such as network pruning and zero-valued
activations) due to the application of deep learning to graphs for modeling relations (in social
networks, proteins, etc.) using highly sparse matrices, such as in Graph Neural Networks (GNNs).

The key computational kernel within most DL workloads is general matrix-matrix multiplications
(GEMM) [84]. It appears frequently during both the forward pass (inference and training) and
backward pass (training); for instance, experiments reported in [220] show that GEMM comprises
around 70% of the total compute cycles during training for Transformer and Google Neural Machine
Translation workloads. Therefore, GEMM represents a primary target for hardware acceleration
in order to speed up training and inference. However, GEMM in DL is characterized by sparsity
of matrices, which arises from pruning as explained above, and non-square matrix dimensions,
which arise from minibatches and weight factorization [205]. A popular computational kernel for
convolutional neural networks (CNNs) is sparse vector-vector dot product. Sparse-dense matrix
multiplication (SpMM) and sampled dense dense matrix multiplication (SDDMM) are two of the
most generic kernels in GNNs.

Spatial-architecture-based hardware accelerators that exploit sparsity have di�erent architectures
that allow to adapt the computation to sparse matrices. In the following, we review their main
features.

1The activations are the output values of an individual layer that are passed as inputs to the next layer.

A Survey on Deep Learning Accelerators for Heterogeneous HPC Platforms 23

Some accelerators (e.g., Cnvlutin, Cambricon-X, Eyeriss) handle only one-sided sparsity, which
stems either from zero-valued activations or network pruning, thus achieving only a partial reduc-
tion in compute and data reduction. On the other hand, other accelerators (e.g., SCNN, SparTen,
Eyeriss v2) target two-sided sparsity, which originates from network pruning and zero-valued
activations. In addition to the di�erent approaches of exploiting sparsity, these architectures also
employ distinct data�ows to execute the DNN layers. Due to the complexity of the logic, existing
hardware accelerators for sparse processing are typically limited to a speci�c layer type (e.g.,
fully-connected layers, convolutional layers).
Eyeriss [45] targets CNN acceleration by storing in DRAM only nonzero-valued activations in

CSC format and by skipping zero-valued activations (by means of gating the datapath switching and
memory accesses) in order to save energy. Eyeriss v2 [46], which targets DNNs on mobile devices,
supports also sparse network models. It utilizes the CSC format to store weights and activations,
which are kept compressed not only in memory but also during processing. To improve �exibility,
it uses a hierarchical mesh for the PEs interconnections. By means of these optimizations, Eyeriss
v2 is signi�cantly faster and more energy-e�cient than the original Eyeriss.

Cnvlutin [12], which also targets CNN acceleration, uses hierarchical data-parallel units, skips
computation cycles for zero-valued activations and employs a co-designed data storage format
based on CSR to compress the activations in DRAM. However, it does not consider the sparsity of
the weights.
On the contrary, Cambricon-X architecture [298] exploits sparsity of CNNs by letting the PEs

store the compressed weights in CSR format for asynchronous computation. However, it does not
exploit activations sparsity.
EIE [104] targets energy-e�cient acceleration of DNN inference. To this purpose, it employs a

scalable array of PEs, where each PE stores a partition of the DNN network in SRAM, whose usage
allows to obtain high energy savings with respect to DRAM. It compresses the weights using a
variant of CSC sparse matrix representation and has skipping ability for zero-valued activations.

NullHop [10] is a CNN accelerator architecture that applies the Compressed Image Size (CIS)
format to the weights and skips the null activations, similarly to EIE.

Sparse CNN (SCNN) [202] is an accelerator architecture for inference in CNNs. It employs a cluster
of asynchronous PEs connected via simple interconnections and comprising several multipliers
and accumulators. SCNN exploits sparsity in both weights and activations, which are stored in the
classic CSR representation. It employs a Cartesian product-based computation architecture that
maximizes the reuse of weights and activations within the cluster of PEs; the values are delivered
to an array of multipliers, and the resulting scattered products are summed using a dedicated
interconnection mesh. By exploiting two-sided sparsity, SCNN achieves to improve performance
and energy over dense architectures.
SparTen [93] is based on SCNN [202]. It addresses some considerable overheads of SCNN in

performing the sparse vector-vector dot product by improving the distribution of the operations
to the multipliers and allows to use any convolutional stride (not being limited to unit-stride
convolutions as SCNN). It also addresses unbalanced sparsity distribution across the PEs by means
of an o�ine software scheme.
The PermDNN architecture [63] addresses the generation and execution of hardware-friendly

structured sparse DNN models using permuted diagonal matrices. In this way, it does not incur
into load imbalance which is caused by the irregularity of unstructured sparse DNN models.

SqueezeFlow [164] is an accelerator architecture that exploits sparsity of CNNmodels. Di�erently
from the accelerators described above, it takes an alternative approach with the goal to reduce
the hardware complexity. To this end, it exploits concise convolution rules to bene�t from the
reduction of computation and memory accesses as well as the acceleration of existing dense CNN

24 Cristina Silvano et al.

architectures without intrusive PE modi�cations. The Run Length Compression (RLC) format is
used to compress activations and weights.

A di�erent strategy is also pursued by the Unique Weight CNN (UCNN) accelerator [111], which
proposes a generalization of the sparsity problem. Rather than considering only the repetition of
zero-valued weights, it exploits repeated weights with any value by reusing CNN sub-computations
and reducing the model size in memory.

SIGMA [220] is an accelerator for DNN training which is characterized by a �exible and scalable
architecture that o�ers high utilization of its PEs regardless of kernel shape (i.e., matrices of arbitrary
dimensions) and sparsity pattern. It targets acceleration of GEMMs with unstructured sparsity.
Bit-Tactical [62] is a DNN accelerator where the responsibility for exploiting weight sparsity

is shared between a static scheduling middleware and a co-designed hardware front-end, with
a lightweight sparse shu�ing network which comprises two multiplexers per activation input.
Unlike SIGMA and other accelerators, Bit-tactical leverages scheduling in software to align inputs
and weights.
While the above accelerators are statically tailored to a particular data�ow, which make them

better suited to di�erent data sets, Flexagon [189] is a recon�gurable accelerator that is capable of
performing sparse-sparse matrix multiplication computation by using the particular data�ow that
best matches each case.

Besides the design of specialized hardware accelerators to exploit model sparsity, a parallel trend
is to use GPU architectures. Pruned sparse models with unstructured sparse patterns introduce
irregular memory accesses that are unfriendly on commodity GPUs architectures. A �rst direction
to tackle this issue on commodity DNN accelerators is at the software layer, by means of pruning
algorithms which enforce a particular sparsity pattern, such as tile sparsity [98], on the model that
allows to leverage existing GEMM accelerators.

A second direction to leverage the sparsity in DNN models on GPUs, is to introduce new archi-
tectural support, such as Sparse Tensor Cores [187]. The NVIDIA Ampere architecture introduces
this Sparse Tensor Core design with a �xed 50% weight pruning target and achieves a better
accuracy and performance trade-o�. However, sparsity from activations, which are dynamic and
unpredictable, is challenging to leverage on GPUs. Indeed, the current sparse Tensor Core is only
able to take advantage of weight sparsity but not activation sparsity.
Recon�gurability appears to be a keyword for the design of new sparse accelerators, because

some network models exhibit dynamic sparsity [76], where the position of non-zero elements
changes overtime.

5.3 Emerging 3D-stacked Processing-in-memory Technologies
3D integration technologies [137] allow to stack as many as 16 or more 2D integrated circuits and
interconnect them vertically using, for instance, through-silicon vias (TSVs), microbumps, or Cu-Cu
connections. In this way, a 3D circuit behaves as a single device achieving a smaller area footprint
than conventional 2D circuits, while reducing power and latency in data transfer. In general,
3D integration is a term that includes such technologies as 3D wafer-level packaging (3DWLP)
[245], 2.5D and 3D interposer-based integration [2], 3D stacked ICs (3D-SICs), 3D heterogeneous
integration, and 3D systems integration, as well as true monolithic 3D ICs [145, 179].

These technologies have been employed in the development of new memory devices, which stack
layers of conventional 2D DRAM or other memory types (for instance, Non-Volatile Memory (NVM)
based on ReRAM [54]) together with one or more optional layers of logic circuits. These logic layers
are often implemented with a di�erent process technology and can include bu�er circuitry, test logic,
and processing elements. Compared to 2D memories, 3D stacking increases the memory capacity
and bandwidth, reduces the access latency due to the shorter on-chip wiring interconnection and

A Survey on Deep Learning Accelerators for Heterogeneous HPC Platforms 25

the use of wider buses, and potentially improves performance and power-e�ciency of system. In
fact, 3D stacking of DRAMmemory provides an order of magnitude higher bandwidth and up to 5⇥
better energy e�ciency then conventional 2D solutions, making the technology an excellent option
for meeting the requirements in terms of high throughput and low energy of DNN accelerators
[109].

Two main 3D stacked memory standards have been recently proposed: the Hybrid Memory Cube
(HMC) and the High Bandwidth Memory (HBM). 3D stacked processing-in-memory accelerator
proposals modify the architecture of the 3D memory block inserting processing logic near the
memory elements. Two approaches can be commonly found. In the �rst approach, the computing
logic is embedded into the logic die (logic die-level processing-in-memory); in the second approach,
processing logic is integrated into each DRAM die at the level of memory banks, after the column
decoder and selector blocks (bank-level processing-in-memory). We present in the following
subsections the main characteristics of the two 3D stacked memory standards, and overview the
existing accelerators adopting them.

5.3.1 Hybrid Memory Cube. The Hybrid Memory Cube is a single package containing four to
eight DRAM die and one logic die, all stacked together using thousands of TSVs, achieving a much
desired high memory bandwidth [118, 123]. As shown in Figure 8a, in a HMC, memory is organized
vertically, and portions of each memory die are combined with the corresponding portions of the
other memory dies and the logic die. This creates a 2D grid of vertical partitions, referred as vaults
[211]. Each vault is functionally and operationally independent and includes in the logic layer a
memory controller that manages all memory reference operations within that vault, as well as
determining timing requirements and dealing with refresh operations, eliminating these functions
from the host memory controller. The independence of each vault allows to exploit memory level
parallelism, as multiple partitions in the DRAM dies can be accessed simultaneously.
Commands and data are transmitted from and to the host across external I/O links consisting

of up to four serial links, each with a default of 16 input lanes and 16 output lanes for full duplex
operation (HMC2 speci�cations [118]). All in-band communication across a link is packetized.
According to speci�cations, up to 320 GB/s e�ective bandwidth can be achieved by considering 30
Gb/s SerDes I/O interfaces, with a storage capacity, depending on the number of stacked layers, of
4GB and 8GB [118, 183].

(a) (b)

Fig. 8. (a) High-level architecture of the Hybrid Memory Cube. (b) Cut through image of a computing system
with HBM.

5.3.2 High Bandwidth Memory. The High Bandwidth Memory is a high-speed computer memory
interface for 3D-stacked synchronous dynamic random-access memory (SDRAM) [143, 242]. Each

26 Cristina Silvano et al.

Table 9. Summary of 3D-staked Processing-in-memory DNN accelerators.

PIM Year Integration Level 3D Mem. Tech. Functions Data Type Tech. Node Performance [GOPs/s] Power [W] Maturity

Neurocube[141] 2016 Logic die HMC MAC 16-bit �xed point 15nm 132 3.4 + HMC Layout
Tetris[85] 2017 Logic die HMC ALU/MAC 16-bit �xed point 45nm - 8.42 Simulation
NeuralHMC[184] 2019 Logic die HMC MAC 32-bit �oating point - - - Simulation
VIMA[57] 2021 Logic die HMC ALU/MULT/DIV 32-bit integer/�oating point - - 3.2 + HMC Simulation
Newton[110] 2020 Bank HBM MAC b�oat16 - - - Simulation
HBM-PIM[153] 2020 Bank HBM ALU/MAC 16-bit �oating point 20nm 1200 - Silicon

memory module is composed by stacking up to eight DRAM dies and an optional base die including
bu�er circuitry and test logic. Dies are vertically interconnected by TSVs and microbumps, in a way
similar to the HMC. As shown in Figure 8b, the memory stack is often connected to the memory
controller on the host (e.g., GPU or CPU) through purpose-built silicon chip, called interposer [2],
which is e�ectively a miniature PCB that goes inside the package and decreases the memory paths
by allowing the host and the memory to be physically close. However, as semiconductor device
fabrication is signi�cantly more expensive than printed circuit board manufacture, this adds cost to
the �nal product. Alternatively, the memory die can be stacked directly on the host processor chip.

The HBM DRAM is tightly coupled to the host computer through a distributed interface, which is
divided into independent channels. The HBM DRAM uses a wide-interface architecture to achieve
high-speed, low-power operation. Each channel interface maintains a 128-bit (HMB2) or 64-bit
(HMB3) data bus operating at double data rate (DDR). The latest version (2022) of the HBM (HBM3)
supports up to 16 channels of 64 bits, with a total number of data pins equal to 1024, and with
an overall package bandwidth of 600 GB/s [124, 218]. Depending on the producer, the HBM stack
consists of 8 or 12 16Gb DRAMs, with a total maximum memory capacity of 24 GB [227].

5.3.3 3D stacked Accelerators: some considerations. The HMC and HBM provide highly parallel
access to the memory which is well suited to the highly parallel architecture of the DNN accelerators.
The processing elements of 3D stacked DNN accelerators can be embedded in the logic die or in the
memory dies, reducing signi�cantly the latency of accessing data in main memory, and improving
the energy e�ciency of the system. However, there are some challenges and limitations to be taken
into account when using this technology [142]. First, the amount of processing elements that can
be integrated into 3D stacked memories is limited by the size of the package. Moreover, the overall
power dissipation of these elements is limited by thermal issues of 3D stacking, as an increase in the
operation temperature would result in performance degradation from overheating [112]. Second,
the stacking of multiple IC layers has a high manufacturing complexity, which leads to lower yield
and problematic testability. Therefore, in order to support the adoption of this technology, proper
cooling methods and better manufacturing solutions are required.

Apart from the above mentioned technological challenges, embedding processing elements into
the memory and moving the computation closer to it requires to rethink the optimization of the
system design in order to take into account the proximity of the processing logic to the main
memory. Depending on the use case, this might involve the redesign of the on-chip bu�ers in
the logic die, to support the lower latency and energy cost of the accesses to main memory, as
well as the use of new approaches for representing, partitioning, and mapping the data�ow of the
application in order to exploit the highly parallel system supported by the availability of multiple
channels [109].

5.3.4 State-of-the-art on 3D-stacked Processor-in-memory solutions. We can distinguish two di�er-
ent approaches when integrating digital processing elements in a 3D stacked memory architecture
[142]. The �rst approach, most commonly found in the literature, embeds the computing into the
logic die of the memory block (logic die-level processing-in-memory). In the second approach

A Survey on Deep Learning Accelerators for Heterogeneous HPC Platforms 27

(a) (b)

Fig. 9. (a) Neurocube architecture. (b) HBM-PIM architecture.

(bank-level processing-in-memory), processing logic is integrated into each DRAM die at the level
of the memory banks, after the column decoder and selector blocks.

A �rst example of a 3D processing-in-memory implementation is Neurocube [141]. As shown in
Figure 9a, the Neurocube architecture is embedded into the logic die of a HMC, and consists of
a cluster of processing engines (PE) connected by a 2D mesh Network-on-Chip (NoC). The PE is
composed of a row of multiply accumulator (MAC) units, a cache memory, a temporal bu�er, and a
memory module for storing shared synaptic weights. Each PE is associated to a single memory
vault and can operate independently and communicate through the TSVs and the vault controller.
A host communicates with the Neurocube through the external links of the HMC to con�gure the
Neurocube for di�erent neural network architectures. Each vault controller in the HMC has an
associated programmable neurosequence generator (PNG), i.e., a programmable state-machine that
controls the data movements required for neural computation. Neurocube implements an output
stationary data�ow, meaning that each MAC from a PE is responsible for the computations of a
di�erent output neuron at a time.
Similarly to Neurocube, Tetris [85] uses a HMC memory stack organized into 16 vaults. Each

vault is associated with a processing engine, connected to the vault controller, and composed of an
systolic array of 14 ⇥14 processing elements and a small SRAM bu�er, shared among the processing
elements. A 2Dmesh NoC connects all the processing engines. Di�erently from previous accelerator
approaches, the dimension of the bu�ers in the logic layer is reduced and optimized to take into
account the lower cost of accessing the DRAM layers, as well as the area constraints of the 3D
package. Each PE has a register �le and a MAC to locally store the inputs/weights and perform
computations. Tetris implements a a row stationary data�ow which maps 1D convolutions onto a
single PE and utilizes the PE register �le for local data reuse. A 2D convolution is orchestrated on
the 2D array interconnect so that the data propagation among PEs remains local. In [85], an optimal
scheduling is discussed to maximize on-chip reuse of weights and/or activations, and resource
utilization. However, a programming model is not presented.

NeuralHMC [184] adopts the same systolic architecture and row-stationary data�ow discussed in
Tetris. However, the authors introduce the use of a weight sharing pipelined MAC design to lower
the cost of accessing weight data, by reducing the original 32 bits �oating points weights to a 5 or 8

28 Cristina Silvano et al.

bits cluster index, saving memory consumption. Moreover, they discuss a series of mechanisms to
reduce and optimize packet scheduling and on-chip communication in multi-HMC architectures.
The authors in [57] study the bene�ts of migrating machine learning kernels on a near-data

processing (NDP) architecture capable of large-vector operations. The work derives from previous
work of the same authors [13], where they introduced the HIVE architecture, which extends the
HMC ISA for performing common vector operations directly inside the HMC, avoiding contention
on the interconnections as well as cache pollution. The newly introduced Vector-In-Memory
Architecture (VIMA) supports all ARM NEON Integer and Floating-point instructions and operates
over vectors of 8 KB of data by fetching data over the 32 channels (vaults) of the HMC in parallel.
The authors extend and use an NDP intrinsics library that supports validation of NDP architectures
based on large vectors, and provide insights and show bene�ts of migrating Machine Learning
algorithms to vector-based NDP architectures. Their simulated results show a signi�cant speed up
and energy reduction with respect to an x86 baseline.

The second approach to PIM acceleration found in the literature integrates the processing logic
near the memory banks, after column decoder and selector, allowing the logic to bene�t of the
entire width of the cell array.

Newton [110] proposes a �xed data �ow accelerator that computes matrix-vector multiplication
e�ectively. It employs a minimal compute of onlyMAC units and bu�ers and a DRAM-like command
interface for the host CPU to issue commands to the PIM compute, avoiding the overhead and
granularity issues of o�oading-based accelerators, e.g., the delay in the launch of the kernel and the
switching between the PIM/non-PIM operational modes. Newton is implemented, at the bank level,
on HBM, and each of its bank includes 16 multipliers, 16 adders in a reduction tree, and a 16-bit
accumulator register. Two input operands of the multipliers come from the memory cell array after
the column selector and the global bu�er, which broadcasts an input vector to all memory banks,
implementing a multiplication between the vector and the matrix rows stored in the banks. The
results of the vector-matrix multiplications are stored in an output vector. To reduce the output
vector write tra�c with minimal output bu�ering, Newton employs an unusually-wide interleaved
layout (DRAM row-wide). In Newton, both the input and output vectors have high reuse while the
matrix has no reuse.
HBM-PIM [153] implements a function-in-memory DRAM (FIMDRAM) that integrates a 16-

wide single-instruction multiple-data engine within the memory banks and that exploits bank-
level parallelism to provide 4 ⇥ higher processing bandwidth than an o�-chip memory solution
(Figure 9b). In their design, half of the cell array in each bank of the HBMwas removed and replaced
by a programmable computing unit (PCU), placed adjacent to the cell array to utilize bank-level
parallelism. Each PCU is shared among two banks, and there are 8 PCUs per pseudo-channel. The
PCU is divided into a register group, an execution unit, a decoding unit for parsing instructions
needed to perform operations, and interface units to control data �ow. The register group consists
of a command-register �le for instruction memory (CRF), a general-purpose register �le for weight
and accumulation (GRF), and a scalar register �le to store constants for MAC operations (SRF). The
PIM controller is integrated to support the programmability of the PCU and, similarly to Newton,
the seamless integration with the host by determining the switching between the PIM/non-PIM
operational modes. If the PIM mode is asserted, the PCUs execute the instructions pre-stored in the
CRF, incrementing the program counter every time a DRAM’s read command is issued.
3D-stacked processing-in-memory has been also proposed for accelerating application loosely

related to DNNs. We present hereafter a brief overview of these accelerators.
The use of processing elements in the logic layer of an HMC is discussed in [199], to support the

simulation of large networks on neurons. The proposed Neuron In-Memory (NIM) architecture
is composed of 2,048 functional units, operating on integer and �oating-point data, and a small

A Survey on Deep Learning Accelerators for Heterogeneous HPC Platforms 29

register �le with 8 × 16 registers of 32 bits each per vault. Fast vector elements operation is also
supported. When compared with traditional multi-core environments, NIM provides overall system
acceleration and reduces overall energy consumption, taking advantages of the broad bandwidth
available in 3D-stacked memory devices.
Millipede [193] is an NDP architecture for Big data Machine Learning Analytics (BMLA) that

implements its processors in the logic layer of 3D-stacked memories. These processors have a local
memory, register �le, pipeline, cache, and prefetch bu�ers.
The authors in [179] explore the design trade-o�s and thermal implications of 3D stacking

in di�erent con�gurations layers of SRAM bu�ers and systolic accelerators composed of MAC
elements, while targeting Deep learning applications. The main memory (DRAM) is however not
necessarily stacked with the rest of the system. Their simulations show that stacking PE array on
top of the SRAM stack in a logic-over-memory fashion can not only achieve low energy but also
mitigate the thermal impact of 3-D.
iPIM [96] uses a near-bank architecture for image processing. The control and the execution

are decoupled to obtain a higher bank-level bandwidth and maximize the parallel execution of
processing engines on the memory dies. Each vault contains a control core in the logic die, while the
execution logic is placed in thememory die of each vault. Each control coremanages intra/inter-vault
data communication and executes instruction decoding with the support of the single-instruction-
multiple-bank (SIMB) instruction set architecture (ISA).
Neurosensor [17] is a 3D CMOS image sensor system with an integrated convolutional neural

network computation. The image sensor, read-out circuits, memory, and neural computation
logic layers are integrated in a single stack. The DNN computation platform is an adaptation from
Neurocube [141], and consists of a global controller, processing elements, a 2Dmesh NoC connecting
the PEs, and a programmable neurosequence generator for DRAM. The DNN computation is split
between the sensor and the host, and the optimal task distribution depends on the processing
capabilities of the sensor, the available amount of in-sensor memory for storing the synaptic
weights, and the available bandwidth between the sensor and the host.

5.4 In-memory computing accelerators based on emerging memories
In-memory computing (IMC) has been proposed to break both the memory and the compute wall in
data-driven AI workloads, using either SRAM or emerging memory technologies such as PCM and
RRAM, o�ering di�erent trade-o�s when used as an integrated computing device at the system level.
Full-digital IMC designs o�er a fast path for the integration of next generation of neural processing
systems like in NPUs. An example of IMC architecture targeting NPU design has recently been
proposed by STMicroelectronics in [64], where a scalable and design time parametric NPU for edge
AI relying on digital SRAM IMC has been manufactured in 18 nm FDSOI technology achieving an
end-to-end system-level energy e�ciency of 77 TOPS/W and an area e�ciency of 13.6 TOPS/mm2.
This IMC-NPU is the evolution of the Orlando system-on-chip proposed in [65]. Another digital
IMC design is NeuroCIM [144], an energy-e�cient processor with four key features achieving 310.4
TOPS/W: Most signi�cant bit (MSB) Word Skipping to reduce the BL activity; early stopping to
enable lower bitline activity; mixed-mode �ring for multi-macro aggregation; voltage folding to
extend the dynamic range.
Besides conventional CMOS designs, emerging non-volatile memories such as the RRAM and

the PCM have been recently explored for integration in stand-alone DNN accelerators. The RRAM
device structure (see Fig.10a) is a metal-insulator-metal (MIM) structure that consists of a top
electrode (TE), a bottom electrode (BE), and a metal-oxide layer sandwiched between them. By
applying a proper voltage across the electrodes and setting the maximum current �owing in the
MIM stack (through a series transistor), an RRAM cell can modulate the shape of a conductive

30 Cristina Silvano et al.

�lament created in the metal-oxide layer. In PCM the active material is a chalcogenide phase
change material, which can remain in either crystalline or amorphous states for long periods
of time at moderately high temperature. Starting from the amorphous state, the application of
voltage pulses with relatively low amplitude causes the crystallization induced by Joule heating,
whereas the application of pulses at higher amplitudes can lead to local melting and consequent
amorphization. A typical PCM cell has a mushroom shape shown in Fig. 10a, where the pillar-like
bottom electrode con�nes heat and current, thus resulting in a hemispherical shape of the molten
material. In both technologies, their resistance state can be tuned not only as a digital memory
but also as a continuous analog memory with multiple states to perform in-memory computing
[119]. This characteristic allows e�cient matrix-vector multiplication when RRAM and PCM are
arranged in crossbar structures (see Fig.10b).

Fig. 10. (a) RRAM and PCM devices structure and (b) their arrangment in a crossbar structure for matrix-
vector multiplication. (c) Example of a stand-alone DNN accelerator (i.e., PRIME [49]) using RRAM crossbars
for in situ MAC operations. Reprinted from [162] and [44] under Creative Commons License.

A �rst example of an RRAM-based accelerator is the ISAAC [235] tile-based architecture that
proposes a pipeline design for CNN processing, which combines the data encoding and the pro-
cessing steps within in situ multiply and accumulate units (IMA). In the �rst pipeline step, data are
fetched from on an chip eDRAM to the computation tile. The data format in ISAAC is �xed 16 bit.
In computation, in each cycle, 1 bit is input to the IMA, and the computation result from the IMA
is converted to digital format, thus requiring 16 clock cycles to process the input. The nonlinear
activation is then applied, and the results are written back to eDRAM. Tiled computation is widely
used from RRAM to improve the throughput. The PipeLayer [244] architecture introduces intra-
layer parallelism and an inter-layer pipeline for tiled architecture, using duplicates of processing
units featuring the same weights to process multiple data in parallel.
RRAM-based accelerators have been also designed for RNN applications such as the works in

[277]. Here, all the decomposed operations were formulated into in-situ MAC operations to provide
high throughput. Further, designs like PRIME [49] takes part of the RRAM memory arrays to
serve as the accelerator instead of adding an extra processing unit for computation. This can be
considered as an architecture which is borderline between NPUs and stand-alone.
However, [33] noted that existing PIM RRAM accelerators su�er from frequent and energy-

intensive analog-to-digital (A/D) conversions, severely limiting their performance. To this extent,
they presented a new architecture to e�ciently accelerate deep learning tasks by minimizing the

A Survey on Deep Learning Accelerators for Heterogeneous HPC Platforms 31

required A/D conversions with analog accumulation and neural approximated peripheral circuits.
Using a new data�ow they remarkably reduced the required A/D conversions for matrix-vector
multiplications by extending shift and add (S+A) operations into the analog domain before the �nal
quantizations.

The �rst PCM-based silicon demonstrator for DNN inference is Hermes, which appeared in 2021
[139]. The in-memory computing accelerator consists of a 256x256 PCM cross-bar and optimized
ADC circuitry to reduce the read-out latency and energy penalty. The SoC is implemented in 14nm
technology, showing energy e�ciency of 10.5 TOPS/W and performance density of 1.59 TOPS/mm2
on inference tasks of multi-layer perceptrons and ResNet-9 models trained on MNIST and CIFAR-10
datasets, with comparable accuracies as software baseline. The same 256x256 PCM cross-bar has
been integrated into a scaled-up mixed-signal architecture that targets inference of long short-term
memory (LSTM) and ResNet-based neural networks [83]. The chip, implemented in the same 14nm
technology, consists of 64 analog cores interconnected via an on-chip communication network and
complemented with digital logic to execute activation functions, normalization and other kernels
than Matrix-Vector Multiplications (MVMs). The accelerator achieves a peak throughput of 63.1
TOPS with a energy e�ciency of 9.76 TOPS for 8-bit input/8-bit output MVM operations.

Besides silicon stand-alone demonstrators, the PCM technology is evaluated from a broader
perspective in heterogeneous architectures that target di�erent classes of devices, from IoT end-
nodes to many-core HPC systems. Such studies aim to highlight and overcome the system-level
challenges that arise when the PCM technology is integrated in more complex mixed-signal systems.
For example, Garofalo et al. [87] analyze the limited �exibility of AIMC cores that can only sustain
MVM-oriented workloads, but they are ine�cient to execute low-reuse kernels, and other ancillary
functions such as batch-normalization and activation functions. To better balance the Amdahl’s
e�ects that show up on the execution of end-to-end DNN inference workloads, they propose as a
solution an analog-digital edge system that complements the computing capabilities of PCM-based
accelerators with the �exibility of general-purpose cores. The architecture, benchmarked on a
real-world MobileNetV2 model, demonstrates signi�cant advantages over purely digital solutions.

Bruschi et al. [30] leave the edge domain to study the potentiality of PCM-based AIMC in much
more powerful HPC many-core systems. The work presents a general-purpose chiplet-oriented
architecture of 512 processing clusters, each composed of RISC-V cores for digital computations
and nvAIMC cores for analog-amenable operations, such as 2D convolutions. This system is
benchmarked on a ResNet18 DNN model, achieving 20.2 TOPS and 6.5 TOPS/W.

Table 10. Summary of IMC accelerators based on RRAM and PCM memories

Accelerator Technology Process Application Area [mm2] Power [mW] Performance [GOPS] EE [GOPS/W] AE [GOPS/mm2]

ISAAC [235] RRAM+CMOS 32 nm CNN 85.4 65800 - 380.7 466.8
PipeLayer [244] RRAM+CMOS - CNN 82.63 - - 140 1485
NeuralPIM [33] RRAM+CMOS 32 nm CNN+RNN 86.4 67700 - 2040.6 1904
PRIME [49] RRAM+CMOS 65 nm MLP+CNN - - - 2100 1230
NeuRRAM [277] RRAM+CMOS 130 nm CNN+RNN+RBN 159 49.7 2135 43000 -
Hermes [139] PCM+CMOS 14 nm MLP+CNN+LSTM - - - 10500 1590

5.5 Full-digital Neuromorphic Accelerators
Neuromorphic computing aims at a paradigm shift from Von Neumann-based architectures to
distributed and co-integrated memory and processing elements, the granularity at which this
paradigm shift is achieved in digital implementations strongly varies between a distributed Von
Neumann or full-custom approach, from high to low processing and memory separation [80].
Neuromorphic chip architectures enable the hardware implementation of spiking neural networks

32 Cristina Silvano et al.

(SNNs) [225] and advanced bio-inspired computing systems that have the potential to achieve even
higher energy e�ciency with respect to DNN stand-alone accelerators described so far [11].
A �rst example of a digital architecture for SNN and neuroscience simulation acceleration

is the SpiNNaker chip [201]. It follows a distributed von-Neumann approach using a globally
asynchronous locally synchronous (GALS) design for e�cient handling of asynchronous spike
data and is based on a 130 nm technology. SpiNNaker has been optimized for large-scale SNN
experiments while keeping a high degree of �exibility. The evolution of the architecture using 22
nm technology embedding 4 ARM Cortex M4F cores out of the 152 per chip is planned for the �nal
SpiNNaker 2 system [169]. The objective is to simulate two orders of magnitude more neurons
per chip compared to [201]. However, it has been demonstrated that GPU-based accelerators can
compare favorably to a SpiNNaker-based systemwhen it comes to large scale SNN and cortical-scale
simulations [146].
Full-custom digital hardware allows for higher-density and more energy-e�cient neuron and

synapse integration for spiking neural networks (SNN) compared to the two formerly described
accelerators [80]. All the accelerators to be reported in this document bene�t from moving the
memory (generally SRAM elements) closer to computation. The 45 nm design in [233] is a small-
scale architecture for SNN acceleration embedding 256 Leaky-Integration-Fire (LIF) neurons and
up to 64k synapses based on the Stochastic Synaptic Time Dependant Plasticity (S-STDP) concept.
It achieves a reasonably high neuron and synapse densities, despite the use of a custom SRAM
and given is energy-e�ciency �gures is an ideal choice especially for edge computing scenario.
At the same integration scale, the ODIN chip embeds 256 neurons and 64k Spike Driven Synaptic
Plasticity (SDSP)-based 4-bit synapses in a 28 nm CMOS process [81]. A �rst attempt to scale up
the NPU for SNN applications is represented by the 65 nm MorphIC chip, that bases on the ODIN
core integrated in a quadcore design [82].

Concerning large-scale neuromorphic platforms required for cognitive computing applications,
there are currently two designs o�ered: the 28 nm IBM TrueNorth [11] and the 14 nm Intel Loihi
[60] neuromorphic chips. TrueNorth is a GALS design embedding as high as 1M neurons and
256M binary non-plastic synapses per chip, where neurons rely on a custom model that allows
modifying their behaviors by combining up to three neurons [35]. Loihi is a fully asynchronous
design embedding up to 180k neurons and 114k (9- bit) to 1M (binary) synapses per chip. Neurons
rely on a LIF model with a con�gurable number of compartments to which several functionalities
such as axonal and refractory delays, spike latency and threshold adaptation have been added. The
spike-based plasticity rule used for synapses is programmable.
In digital designs for neuromorphic chips, versatility can be obtained with a joint optimiza-

tion comprising power and area e�ciencies. This �exibility in optimizing between versatility
and e�ciency in digital designs is highlighted with platforms going from versatility-driven (e.g.,
SpiNNaker) to e�ciency-driven (e.g., ODIN and MorphIC), through platforms aiming at a well-
balanced trade-o� on both sides (e.g., Loihi). Table 11 summarizes the main characteristics of the
neuromorphic chips described so far with a particular insight on the Energy per spike operation
(SOP) that is seen as a primary benchmarking factor for these architectures.

Table 11. Summary of Neuromorphic chip characteristics based on [80]

Chip name Technology Cores Core Area [mm2] Neurons per core Synapses per core Weights storage Supply Voltage [V] Energy per SOP [J]

SpiNNaker [201] 0.13 `m 18 3.75 1000 - O�-chip 1.2 >11.3n/26.6n
[233] 45 nm SOI 1 0.8 256 64k 1-bit SRAM 0.53 - 1.0 -
ODIN [81] 28 nm FDSOI 1 0.086 256 64k (3+1)-bits (SRAM) 0.55 - 1.0 8.4p/12.7p
MorphIC [82] 65 nm LP 4 0.715 512 528k 1-bit (SRAM) 0.8 - 1.2 30p/51p
TrueNorth [11] 28 nm 4096 0.095 256 64k 1-bit (SRAM) 0.7 - 1.05 26p
Loihi [60] 14 nm FinFET 128 0.4 1024 1M 1- to 9 bits (SRAM) 0.5 - 1.25 >23.6p

A Survey on Deep Learning Accelerators for Heterogeneous HPC Platforms 33

NPU and Neuromorphic computing accelerators

MAC acceleration

Full-digital

Samsung [243]
UM+NVIDIA [297]
MediaTek [167]
Alibaba [129]
Samsung [206]
Samsung [207]

RRAM/PCM-based

RENO [171]
NTHU [289]
IBM [192]

Single chip NPUs

Full-digital

DaDianNao [43]
ShiDianNao [43]
Cambricon [298]

EIE [104]
STM [65]
IBM [198]
IBM [159]

In-memory computing

STM [64]
ISAAC [235]

PipeLayer [244]
NeuralPIM [33]
PRIME [49]

NeuRRAM [277]
Hermes [139]

Neuromorphic chips

SpiNNaker [201]
Seo et al. [233]
ODIN [81]

MorphIC [82]
TrueNorth [11]

Loihi [60]

Fig. 11. Taxonomy of neural accelerators discussed in Sections 4.2.1, 4.2.2, 5.3, and 5.4.

5.6 Accelerators based on Multi-Chip Modules
The semiconductor industry has grown signi�cantly as a result of increased integration complexity,
resulting in improved performance and cost-e�ectiveness of transistors. Unfortunately, the trend
of increasing the number of transistors per die is slowing down, leading to a power-e�ciency
driven design era known as “dark silicon” [73]. While the number of transistors per die continues
to increase, many foundries are struggling to achieve the targeted area scaling per transistor, and
new process technologies are expected to slow down. The cost per transistor may no longer hold,
resulting in yield challenges and additional wafer costs. Circuit designers and computer architects
can no longer rely on the free availability of additional transistors and integration opportunities
with each new process node, and non-recurring engineering costs have also increased due to
fabrication and system complexity challenges [131].

5.6.1 Alternate Integration Technologies. Alternate integration technologies can provide cost re-
ductions and increase the number of transistors per circuit. These technologies include die-level
integration such as 3D die stacking with connections through micro-bumps or Through-Silicon
Vias (TSVs) [115], or through interposer-based 2.5D integration [299]. By partitioning a monolithic
SoC across multiple small dies, namely chiplets, (see Fig. 12a), yield per die can be improved and
metal layer count can be reduced, which can lead to a lower total IC cost [252]. In fact, larger chips
cost more due to two main factors: geometry and manufacturing defects. Fewer larger chips can
�t in a wafer, while defects in larger chips waste more silicon than defects in smaller chips [138].
Smaller chips can be packed more tightly, resulting in more chips that work. In general, making
smaller chips results in a higher yield of functioning chips (see Fig. 12b).

(a) (b)

Fig. 12. Die-level integration through TSV-based 3D and interposer-based 2.5D technologies 12a [252] and
overall number of chips and impact on yield of an example defect distribution for two di�erent chip sizes [138]

34 Cristina Silvano et al.

Die-level integration provides new integration strategies like heterogeneous process integration
between dies that can improve performance and lower costs [299]. Additionally, this technology
can be used for the reuse of intellectual property to con�gure SoCs with di�erent die combinations
and reduce non-recurring overheads.
In multichip-module (MCM) silicon interposer-based integration, the interposer uses micro-

bumps to connect the smaller chips, which have a higher density than traditional C4 bumps. The
impedance across the interposer is the same as conventional on-chip interconnects. The only
downside is the additional cost of the interposer. Vertical 3D chip stacking involves combining
multiple chips with through-silicon vias (TSVs) for vertical interconnects. This technique has
the potential to o�er the highest bandwidth but it requires signi�cant cost and overall process
complexity as each die must be thinned and processed for TSVs. Overall, as 3D stacking is more
expensive and complex, while also potentially causing thermal issues, we focus on MCM silicon
interposer-based design in the following.

5.6.2 MCM Silicon Interposer-based Design. In 2.5D integration technology, an interposer is a
substrate that connects multiple dies (chiplets) together. There are two types of interposers: passive
interposers and active interposers [253]. Passive interposers are simple substrates that connect
multiple dies together without adding any active components. They mainly provide electrical
connections, signal routing, and thermal management between the dies. On the other hand, active
interposers contain active components such as transistors, capacitors, and inductors, in addition to
the electrical connections and signal routing provided by passive interposers. Active interposers
can perform some processing and signal conditioning functions between the dies. Regardless of the
interposer type used, a design based on a MCM silicon interposer o�ers several advantages over
single-chip designs, which can be summarized as follows.

• Increased Functionality: By using MCM, designers can combine multiple chips and func-
tionalities into a single package, thereby reducing the overall footprint and increasing
functionality. This can help reduce the overall cost of the product by reducing the number
of components required.

• Reduced Power Consumption: MCM-based designs can o�er better power e�ciency com-
pared to single-chip designs. This is because multiple chips can be optimized for di�erent
power requirements, which helps reduce the overall power consumption of the system.

• Higher Performance: MCM-based designs can o�er higher performance compared to single-
chip designs. This is because multiple chips can be optimized for di�erent tasks, which
helps increase the overall performance of the system.

• Improved Reliability: MCM-based designs can o�er improved reliability compared to single-
chip designs. This is because multiple chips can be used redundantly to improve fault
tolerance and increase system reliability.

• Cost Savings: MCM-based designs can often be less expensive than single-chip designs.
This is because MCMs can be manufactured using existing processes and technology, which
helps reduce the overall manufacturing cost. Additionally, MCMs can be designed to use
o�-the-shelf components, which helps reduce the cost of custom components.

Figure 13 presents a synthesized taxonomy of the MCM-based accelerators that will be introduced
in the following subsections.

5.6.3 General Purpose Chiplet-based Architectures. Chiplet-based designs are being utilized across a
wide range of platforms, tailored to support various application contexts. The challenges of creating
integrated SoCs for aerospace platforms in advanced semiconductor nodes are reported in [188] in
which authors highlight the possibility of creating heterogeneous mixtures of chiplets, including

A Survey on Deep Learning Accelerators for Heterogeneous HPC Platforms 35

Accelerators based on Multi-Chip Modules

General Purpose

Passive Interposer

Mounce et al. [188]
Vijayaraghavan et al. [274]

Arunkumar et al. [19]
Lin et al. [168]

Active Interposer

Vivet et al. [275]
Martinez et al. [178]

Domain Speci�c

Kwon et al. [152]
Nurvitadhi et al. [194]
Verhelst et al. [273]

Centaur [117]
Lan et al. [154]
Lego [288]

Chimera [216]
SWAP [238]
SPRINT [166]

Simba [237, 301]

Fig. 13. Taxonomy of MCM based accelerators discussed in Section 5.6

di�erent embodiments of processors, ultradense memory servers, �eld-programmable gate array
clusters, and con�gurable analog and radiofrequency functional blocks. Further, some of the
features necessary to support scalability and heterogeneity with multi-domain, hybrid architectures
involving a mixture of semiconductor technologies and advanced packaging approaches are also
outlined. In [274] a chiplet-based computing system for climate prediction is presented. It integrates
high-throughput and energy-e�cient GPU chiplet, high-performance multi-core CPU chiplet, and
large capacity 3D memory. The system can achieve a bandwidth of 3 TB/s and power consumption
of 160 W at 1 GHz.

GPU platforms are also bene�ting from chiplet-based integration. In [19] a single-chip multi-core
GPU is broken down into multiple GPU chiplets to improve both performance and energy e�ciency
by increasing hardware resource utilization for both the GPU and DRAM chiplets, while also
mitigating the dark silicon e�ect. Additionally, breaking the larger GPU into multiple smaller
chiplets has resulted in improved wafer yield.
The design and implementation of a dual-chiplet Chip-on-Wafer-on-Substrate is presented

in [168] where each chiplet has four Arm Cortex-A72 processors operating at 4 GHz. The on-die
interconnect mesh bus operates above 4 GHz at a 2 mm distance and the inter-chiplet connection
features a scalable, power-e�cient, high-bandwidth interface achieving 8 Gb/s/pin and 320 GB/s
bandwidth.
The above work use use 2.5D integration technology based on passive interposer. In [275] the

authors observe that current passive interposer solutions still lack �exibility and e�ciency when it
comes to long-distance communication, smooth integration of chiplets with incompatible interfaces,
and easy integration of less-scalable analog functions, such as power management and system
input/output signals (IOs). Thus, they present a CMOS Active Interposer that integrates power
management and distributed interconnects, enabling a scalable cache-coherent memory hierarchy.
The proposed platform integrates six chiplets onto the active interposer, o�ering a total of 96 cores.

The exploitation of active interposer as a way to address energy e�ciency and computing density
issues in high performance computing (HPC) for exascale architectures is discussed in [178]. The
authors suggest that the integration of chiplets, active interposer, and FPGA can lead to dense,
e�cient, and modular compute nodes. They detail the ExaNoDe multi-chip-module which combines
various components and demonstrate that multi-level integration allows for tight integration of
hardware accelerators in a heterogeneous HPC compute node.

36 Cristina Silvano et al.

5.6.4 Domain Specific Chiplet-based Architectures. In the realm of deep learning, chiplet-based
design is utilized to create hardware accelerator platforms that are both e�cient and scalable.
Designing AI processors for data explosion computing due to the physical limitations of semi-

conductors and high costs is challenging. In [152] authors propose chiplet-based design as a viable
solution to this problem. They outline various aspects of designing a chiplet AI processor, including
incorporating NPU chiplets, HBM chiplets, and 2.5D interposers, ensuring signal integrity for
high-speed interconnections, power delivery network for chiplets, bonding reliability, thermal
stability, and interchiplet data transfer on heterogeneous integration architecture. They conclude
that chiplet-based design provides higher performance at a lower cost compared to IP-based design.
Data intensive deep learning (DL) algorithms with strict latency constraints require balancing

both data movement and compute capabilities. Thus, persistent approaches that keep the entire DL
model on-chip are becoming the new norm for real time services to avoid the expensive o�-chip
memory accesses. In [194] it is shown how the integration of FPGA with ASIC chiplets outperform
GPU based platforms (NVIDIA Volta) in terms of latency by enhancing on-chip memory capacity
and bandwidth, and provide compute throughput matching the required bandwidth. Speci�cally, it
is reported that the GPU and chiplet-based FPGA computing capabilities are 6% and 57% of their
peak, respectively. In terms of delay and energy e�ciency, the FPGA outperforms the GPU with a
delay that is 1/16 and energy e�ciency that is 34x better than the GPU’s peak performance.

In [273] the authors investigate the recentmulti-core trend in deep-learning accelerators evolution
as a solution to further increase throughput and match the ever-growing computational demands.
Chiplet integration is considered a promising implementation strategy for both homogeneous and
heterogeneous multi-core accelerators.

Personalized recommendations, a crucial component of various application domains, are powered
by machine learning algorithms. In [117] authors present a new chiplet-based hybrid sparse-dense
accelerator called Centaur, which addresses memory-intensive embedding layers and compute-
intensive multi-layer perceptron layers. The proposed accelerator demonstrates signi�cant per-
formance speedup and energy e�ciency improvement compared to conventional approaches
monolithic approaches.
The trend towards developing high throughput and energy-e�cient neural network hardware

accelerators due to the growing complexity and dimension of neural network algorithms is analyzed
in [154]. The authors propose a chiplet-based architecture for a multi-core neuromorphic processor
with a chip-package co-design �ow. It is shown how the proposed design is reusable for di�erent
neuromorphic computing applications by scaling the number of chips in a package and by reusing
existing IPs from di�erent technology nodes with 2.5D integration technology.

The challenges of using modern deep neural network (DNN) accelerators in multi-tenant DNN
data centers are investigated in [288]. The MCM architecture is proposed as a promising approach
to address this issue, but highlights the challenge of distributing DNN model layers with di�erent
parameters across chiplets. Thus the authors present Lego MCM architecture with a dynamic
scheduler that adapts to the size of DNN model layers and increases chiplet utilization. The results
show that Lego MCM achieves a 1.51x speedup over a monolithic DNN accelerator.

Chimera [216] is a non-volatile chip for DNN training and inference that does not require o�-chip
memory. Multiple Chimera accelerator chiplets can be combined in a multi-chip system to enable
inference on models larger than the single-chip memory with only 5% energy overhead.
Chiplet-based processing-in-memory DNN hardware accelerator have also been proposed.

SWAP [238] is a DNN inference accelerator based on the 2.5D integration of multiple resistive
RAM chiplets that allows fabrication cost reductions. The authors also propose a design space
exploration �ow to optimize the interconnection Network-on-Package, minimizing inter-chiplet
communications and enabling link pruning.

A Survey on Deep Learning Accelerators for Heterogeneous HPC Platforms 37

Inter-chiplet communication remains one of the main challenges in multi-chiplet architectures.
Authors in [166] investigate photonic-based interconnects as an alternative to metallic-based
inter-chiplet networks and propose a DNN inference accelerator namely SPRINT.

Fig. 14. Simba architecture [237] from le� to right: package with 36 chiplets, chiplet, and processing element.

Finally, as a representative chiplet-based DNN hardware accelerator, we report Simba [237, 301].
Simba is a scalable deep neural network (DNN) accelerator consisting of 36 chiplets connected
in a mesh network on a multi-chip-module using ground-referenced signaling. Simba enables
�exible scaling for e�cient inference on a wide range of DNNs, from mobile to data center domains.
The prototype achieves high area e�ciency, energy e�ciency, and peak performance for both
one-chiplet and 36-chiplet systems. Simba architecture is shown in Fig. 14. It implements a tile-
based architecture and adopts a hierarchical interconnect to e�ciently connect di�erent processing
elements (PEs). This hierarchical interconnect consists of a network-on-chip (NoC) that connects
PEs on the same chiplet and a network-on-package (NoP) that connects chiplets together on the
same package. Each Simba chiplet contains an array of PEs, a global PE, a NoP router, and a
controller, all connected by a chiplet-level interconnect.

Table 12 presents a summary of the key characteristics of a representative subset of chiplet-based
DNN accelerators that were reviewed earlier.

6 OPEN CHALLENGES AND CONCLUSIONS
The Deep Learning ecosystem based on advanced computer architectures and memory technolo-
gies spans from edge computing solutions to high-performance servers, supercomputers, up to
large data centers for data analytics. In this context, the main objective of this survey is to pro-
vide an overview of the leading computing platforms utilized for accelerating the execution and
enhancing the e�ciency of high-performance Deep Learning applications. More in detail, this
survey includes GPU-based accelerators, Tensor Processor Units, FPGA-based accelerators, Neural
Processing Units and co-processors based on the open-hardware RISC-V architecture. The survey
also describes accelerators based on emerging technologies and computing paradigms, such as
3D-stacked Processor-In-Memory, emerging non-volatile memories such as the Resistive switching
Random Access Memory (RRAM) and the Phase Change Memory (PCM), Neuromorphic Processing
Units and Multi-Chip Modules.

In the following part of the section, we brie�y discuss open challenges of promising technologies
that can be used for the acceleration of Deep Learning workloads: quantum computing and photonic
computing.

38 Cristina Silvano et al.

Table 12. Summary of Chiplet-based DNN Accelerators.

Simba [237] Centaur [117] Lego [288] Chimera [216] SWAP [238] SPRINT [166]

Technology 16nm FPGA FPGA 40nm - 28nm

Area 6 mm2* - 19016 LUT, 16916 FF
0.5 BRAM, 28 DSP† 29.2 mm2 - -

Power E�ciency 9.1 TOPS/W** - - 2.2 TOPS/W - -
Throughput 4–128 TOPS 0.313 TOPS - 0.92 TOPS - -
Frequency 161 MHz–1.8 GHz 200 MHz - 200 MHz - -
Precisions int8 - - int8, fp16 - -
On-chip Memory 752 KiB* - - 2.5 MB‡ - 128 KiB*
Chiplet Bandwidth 100 GB/s - - 1.9 Gbps - 180 Gbps
Processing Type Near-Memory Near-Memory Near-Memory Near-Memory In-Memory Near-Memory
Sparsity 7 3 7 7 7 7

Interconnect Wired Mesh
(GRS) - - Wired

App. speci�c‡‡
Wired
Pruned Optical§

Applications CNN Inference Recommendation
Inference

Multi-Tenant
Inference

Inference
Training

Multiple
Applications CNN Inference

*One chiplet, **When operating at a minimum voltage of 0.42 V with a 161 MHz PE frequency
†16⇥16 chiplet
‡2 MB RRAM, 0.5 MB SRAM, ‡‡C2C links (77 pJ/bit, 1.9 Gbits/s)
§0.77 pJ/bit

There is a general agreement that quantum computers will not replace classical computing
systems, but they will be used in combination with supercomputers to accelerate some hard-to-
compute problems. Quantum computers will play the role of unconventional accelerators with
the goal to outperform conventional supercomputers, thanks to the improved parallelism which
enables the so-called quantum speedup.
An example of quantum speedup is provided by the Shor’s algorithm [240], which allows to

�nd the prime factors of a large number in polynomial-time, therefore faster than any classical
algorithm. Being the prime factorization at the hearth of breaking the RSA-based cryptography,
the Shor’s factorization algorithm immediately attracted the attention of national governments
and opened up the era of post-quantum cryptography. Other complex problems, where quantum
computing can help, include some fundamental numerical problems used in chemistry and physics
for the development of new drugs and materials. So far, research e�orts have been spent not only
in developing new algorithms, but also robust, reliable and scalable quantum bits, as well as the
quantum software stack (i.e. programming languages, compilers and runtime systems) needed to
take full advantage of the quantum speedup to solve complex real-world problems.

Recently, a survey on Quantum Computing technology appeared in [101], while another survey
on QC frameworks appeared in [264]. More speci�cally, there is a research trend on the so-called
Quantum Machine Learning [23] which aims at developing quantum algorithms that outperform
classical computing algorithms on machine learning tasks such as recommendation systems. More
in detail, classical deep neural networks inspired the development of Deep Quantum Learning
methods. The main advantage of these methods is that they do not require a large, general-purpose
quantum computer. Quantum annealers, such as the D-Wave commercial solutions [58], are well-
suited for implementing deep quantum learners. Quantum annealers are special-purpose quantum
processors that are signi�cantly easier to construct and to scale up than general-purpose quantum
computers. To answer to this research trend, Google proposed TensorFlow Quantum (TFQ) [28],
an open-source quantum machine learning library that could be used for prototyping hybrid
quantum-classical ML models for classical or quantum data
Governments, supercomputing centers and companies around the world have also started to

investigate �>F /,⌘4=/,⌘4A4 quantum processing units (QPUs) could �t into HPC infrastructures

A Survey on Deep Learning Accelerators for Heterogeneous HPC Platforms 39

to speed up some heavy tasks, such as Deep Learning workloads. Emerging trends and commercial
solutions related to hybrid quantum-classical supercomputers are described in [114].
To address this challenging trend, in October 2022, the EuroHPC Joint Undertaking initiative

has selected six supercomputing centers across the European Union to host the �rst European
quantum computers by the end of 2023. The selected supercomputing centers will integrate quantum
computers and simulators (QCS) to build the so-called European Quantum Computing & Simulation
infrastructure (EuroQCS), o�ering researchers the cloud access to these resources. The view of the
European members of the EuroQCS community has recently been expressed in [75].
IBM Research was the �rst provider to o�er a cloud-based QC service: Qiskit [222], an open-

source SDK for working with quantum computers based on a library of quantum gates/circuits and
pre-built solutions for research and application developers. The remote users can develop quantum
programs and execute them on quantum simulators and cloud-based quantum processors.
Cloud providers have also jumped in the quantum race. In this way, Quantum Computing is

becoming accessible by cloud providers o�ering the software stack for customers to explore the
feasibility for their applications. As an example, Amazon Braket [27] is a quantum computing service
based on di�erent types of quantum systems and simulators (including the quantum annealer
from D-Wave) to speed up development of scienti�c research and software exploiting quantum
computing solutions.
On this trend, there is a general agreement that GPUs will play a key role in hybrid quantum-

classical computing systems. GPU company NVIDIA is not developing a quantum processor, but is
o�ering the CuQuantum software kit for quantum simulation. The NVIDIA’s CuQuantum DGX
hardware appliance integrates a software container on a full-stack quantum circuit simulator. The
system uses NIVIDIA’s A100 GPUs to accelerate quantum simulation workloads.

The second challenging and promising research direction is represented by the use of photonic
computing to further accelerate DL tasks on HPC infrastructures. Photonic computing relies on the
computation of electromagnetic waves typically via non-linear modulation and interference e�ects.
Photonic computing was originally introduced in the 1980s to address optical pattern recognition
and optical Fourier transform processing [14]. Despite the potential advantages of processing
parallelism and speed, optical computing has never translated in a commercial technology. Only
recently, due to the emergence of data intensive computing tasks such as AI, DL and ML, optical
computing has seen a renewed interest by the research community of DL.
There are two main advantages of optical computing, namely (i) the inherent speed of signal

transmission, where light pulses can be transferred without the typical RC delays and IR drop of
electrical interconnects, and (ii) the inherent parallelism, where multiple wavelengths, polarizations
and modes can be processed by the same hardware (e.g., waveguides, interferometers, etc.), without
interfering with each other. These properties can provide strong bene�ts to data-intensive comput-
ing tasks such as DL. For instance, multiple activations can be modulated in di�erent wavelengths
and be processed in parallel within the same optical network of synaptic weights, thus allowing
a high processing density. Finally, optical computing can overcome the memory wall of the von
Neumann architecture, since computation is done physically within the data, thus largely reducing
the amount of data that need to be transferred from the memory to the processing unit.

Photonic computing techniques have been reported by using di�erent approaches for the main
computational bottlenecks, i.e., matrix-vector multiplication (MVM), in conventional AI solutions.
For instance, MVM can be operated by microring resonators (MRRs) used as tunable �lters, where
the weight is encoded in a change of refractive index via thermo-optic, electro-optic, or phase-
change e�ect [239]. The nonlinear activation, where an arti�cial photonic neuron stimulated by an
optical input MVM signal nonlinearly generates an optical output, is signi�cantly more challenging.
As a result, non-linear activation is generally operated in the electrical domain by converting the

40 Cristina Silvano et al.

optical MVM signals into electrical signals. Similarly, the electrical activation needs to be converted
to the optical domain by suitable coherent or incoherent light sources.
Photonic computing represents a promising platform for accelerating AI. For instance, it has

been estimated that photonic multiply-accumulate operations can show signi�cant improvements
over digital electronics in terms of energy e�ciency (> 102), speed (> 103), and compute density
(> 102) [190]. However there are still many challenges toward developing an industrially feasible
photonic system. The main challenge is the area/energy ine�ciency of processing across the mixed
optical/electronic domain. Optical-electrical conversion and vice versa results in a considerable
overhead in terms of area and power consumption. To bridge this gap, the research is develop-
ing silicon photonic integrated circuits (PICs) with increasing robustness, manufacturability and
scalability. From the accuracy viewpoint, it should be noted that photonic computing essentially
operates in the analog domain thus accuracy is deeply a�ected by accumulated noise and impre-
cision of the various optical devices, such as electro-optic and phase change modulators. These
challenges, which are similar to those arising in analog IMC, might be addressed and mitigated
by suitable hardware-software co-design, e.g., hardware-aware training or other system-level
calibration techniques.

ACKNOWLEDGMENTS
This work has been supported by the Spoke 1 FutureHPC & BigData of the Italian Research Center
on High-Performance Computing, Big Data and Quantum Computing (ICSC) funded by MUR
Mission 4 - Next Generation EU.

REFERENCES
[1] 2009. NVIDIA, Fermi. Retrieved Apr 16, 2023 from http://www.nvidia.com/content/PDF/fermi_white_papers/

NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
[2] 2011. The Most Cost-E�ective Integrator (TSV Interposer) for 3D IC Integration System-in-Package (SiP). International

Electronic Packaging Technical Conference and Exhibition, Vol. ASME 2011 Paci�c Rim Technical Conference
and Exhibition on Packaging and Integration of Electronic and Photonic Systems, MEMS and NEMS: Volume
1. https://doi.org/10.1115/IPACK2011-52189 arXiv:https://asmedigitalcollection.asme.org/InterPACK/proceedings-
pdf/InterPACK2011/44618/53/4597366/53_1.pdf

[3] 2012. NVIDIA, Kepler GK110. Retrieved Apr 16, 2023 from http://www.nvidia.com/content/PDF/kepler/NVIDIA-
Kepler-GK110-Architecture-Whitepaper.pdf

[4] 2023. GreenWaves Technologies GAP9 Processor. https://greenwaves-technologies.com/gap9_processor/. Accessed:
2023-04-18.

[5] 2023. MLPerf Inference Tiny v1.0 Results. https://mlcommons.org/en/inference-tiny-10/. Accessed: 2023-04-18.
[6] 2023. Ventana Micro. https://www.ventanamicro.com/. Accessed: 2023-04-18.
[7] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy

Davis, Je�rey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geo�rey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems. https://www.tensor�ow.org/ Software available from tensor�ow.org.

[8] Ankur Agrawal, Sae Kyu Lee, Joel Silberman, Matthew Ziegler, Mingu Kang, Swagath Venkataramani, Nianzheng
Cao, Bruce Fleischer, Michael Guillorn, Matthew Cohen, et al. 2021. 9.1 A 7nm 4-core AI chip with 25.6 TFLOPS
hybrid FP8 training, 102.4 TOPS INT4 inference and workload-aware throttling. In 2021 IEEE International Solid-State
Circuits Conference (ISSCC), Vol. 64. IEEE, 144–146. https://doi.org/10.1109/ISSCC42613.2021.9365791

[9] Mohammad Ahmadinejad, Mohammad Hossein Moaiyeri, and Farnaz Sabetzadeh. 2019. Energy and area e�cient
imprecise compressors for approximate multiplication at nanoscale. AEU - International Journal of Electronics and
Communications 110 (2019), 152859. https://doi.org/10.1016/j.aeue.2019.152859

[10] Alessandro Aimar, Hesham Mostafa, Enrico Calabrese, Antonio Rios-Navarro, Ricardo Tapiador-Morales, Iulia-
Alexandra Lungu, Moritz B. Milde, Federico Corradi, Alejandro Linares-Barranco, Shih-Chii Liu, and Tobi Delbruck.
2019. NullHop: A Flexible Convolutional Neural Network Accelerator Based on Sparse Representations of Feature

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://doi.org/10.1115/IPACK2011-52189
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/InterPACK/proceedings-pdf/InterPACK2011/44618/53/4597366/53_1.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/InterPACK/proceedings-pdf/InterPACK2011/44618/53/4597366/53_1.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
https://greenwaves-technologies.com/gap9_processor/
https://mlcommons.org/en/inference-tiny-10/
https://www.ventanamicro.com/
https://www.tensorflow.org/
https://doi.org/10.1109/ISSCC42613.2021.9365791
https://doi.org/10.1016/j.aeue.2019.152859

A Survey on Deep Learning Accelerators for Heterogeneous HPC Platforms 41

Maps. IEEE Transactions on Neural Networks and Learning Systems 30, 3 (2019), 644–656. https://doi.org/10.1109/
TNNLS.2018.2852335

[11] Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John Arthur, Paul Merolla, Nabil Imam, Yutaka
Nakamura, Pallab Datta, Gi-Joon Nam, Brian Taba, Michael Beakes, Bernard Brezzo, Jente B. Kuang, Rajit Manohar,
William P. Risk, Bryan Jackson, and Dharmendra S. Modha. 2015. TrueNorth: Design and Tool Flow of a 65 mW
1 Million Neuron Programmable Neurosynaptic Chip. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 34, 10 (2015), 1537–1557. https://doi.org/10.1109/TCAD.2015.2474396

[12] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright Jerger, and Andreas Moshovos.
2016. Cnvlutin: Ine�ectual-Neuron-Free Deep Neural Network Computing. In Proceedings of the 43rd International
Symposium on Computer Architecture (Seoul, Republic of Korea) (ISCA’16). 13 pages. https://doi.org/10.1109/ISCA.
2016.11

[13] Marco A. Z. Alves, Matthias Diener, Paulo C. Santos, and Luigi Carro. 2016. Large vector extensions inside the HMC.
In 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE). 1249–1254.

[14] Pierre Ambs. 2010. Optical Computing: A 60-Year Adventure. Advances in Optical Technologies 2010, 372652 (May
2010). https://doi.org/10.1155/2010/372652

[15] AMD. 2021. AMD INSTINCT MI200 SERIES ACCELERATOR. Retrieved May 25, 2023 from https://www.amd.com/
system/�les/documents/amd-instinct-mi200-datasheet.pdf

[16] AMD-Xilinx. 2023. VitisAI develop environment. https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
[17] Mohammad Faisal Amir, Jong Hwan Ko, Taesik Na, Duckhwan Kim, and Saibal Mukhopadhyay. 2018. 3-D Stacked

Image Sensor With Deep Neural Network Computation. IEEE Sensors Journal 18, 10 (2018), 4187–4199. https:
//doi.org/10.1109/JSEN.2018.2817632

[18] Michael Andersch, Greg Palmer, Ronny Krashinsky, Nick Stam, Vishal Mehta, Gonzalo Brito, and Sridhar Ramaswamy.
2022. NVIDIA Hopper Architecture In-Depth. Retrieved Apr 16, 2023 from https://developer.nvidia.com/blog/nvidia-
hopper-architecture-in-depth/

[19] Akhil Arunkumar, Evgeny Bolotin, Benjamin Cho, Ugljesa Milic, Eiman Ebrahimi, Oreste Villa, Aamer Jaleel, Carole-
Jean Wu, and David Nellans. 2017. MCM-GPU: Multi-chip-module GPUs for continued performance scalability. In
2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA). 320–332.

[20] Imad Al Assir, Mohamad El Iskandarani, Hadi Rayan Al Sandid, and Mazen A. R. Saghir. 2021. Arrow: A RISC-V Vector
Accelerator for Machine Learning Inference. https://doi.org/10.48550/arXiv.2107.07169 arXiv:arXiv:2107.07169

[21] Yoshua Bengio. 2009. Learning Deep Architectures for AI. Foundations and Trends in Machine Learning 2, 1 (2009),
1–127. https://doi.org/10.1561/2200000006

[22] Luca Bertaccini, Gianna Paulin, Tim Fischer, Stefan Mach, and Luca Benini. 2022. MiniFloat-NN and ExSdotp: An
ISA Extension and a Modular Open Hardware Unit for Low-Precision Training on RISC-V Cores. In 2022 IEEE 29th
Symposium on Computer Arithmetic (ARITH). 1–8. https://doi.org/10.1109/ARITH54963.2022.00010

[23] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd. 2017. Quantum
machine learning. Nature 549, 7671 (sep 2017), 195–202. https://doi.org/10.1038/nature23474

[24] Ahmed Ghazi Blaiech, Khaled Ben Khalifa, Carlos Valderrama, Marcelo AC Fernandes, and Mohamed Hedi Bedoui.
2019. A survey and taxonomy of FPGA-based deep learning accelerators. Journal of Systems Architecture 98 (2019),
331–345.

[25] Michaela Blott, Thomas B Preußer, Nicholas J Fraser, Giulio Gambardella, Kenneth O’brien, Yaman Umuroglu, et al.
2018. FINN-R: An end-to-end deep-learning framework for fast exploration of quantized neural networks. ACM
Transactions on Recon�gurable Technology and Systems 11, 3 (2018), 1–23.

[26] Nicolas Bohm Agostini, Serena Curzel, Je� Jun Zhang, Ankur Limaye, Cheng Tan, Vinay Amatya, Marco Minutoli,
Vito Giovanni Castellana, Joseph Manzano, David Brooks, Gu-Yeon Wei, and Antonino Tumeo. 2022. Bridging Python
to Silicon: The SODA Toolchain. IEEE Micro 42, 5 (2022), 78–88.

[27] Braket 2023. Quantum Computing Service - Amazon Braket - AWS. https://aws.amazon.com/braket/
[28] Michael Broughton, Guillaume Verdon, Trevor McCourt, Antonio J. Martinez, Jae Hyeon Yoo, Sergei V. Isakov, Philip

Massey, Ramin Halavati, Murphy Yuezhen Niu, Alexander Zlokapa, Evan Peters, Owen Lockwood, Andrea Skolik,
So�ene Jerbi, Vedran Dunjko, Martin Leib, Michael Streif, David Von Dollen, Hongxiang Chen, Shuxiang Cao, Roeland
Wiersema, Hsin-Yuan Huang, Jarrod R. McClean, Ryan Babbush, Sergio Boixo, Dave Bacon, Alan K. Ho, Hartmut
Neven, and Masoud Mohseni. 2021. TensorFlow Quantum: A Software Framework for Quantum Machine Learning.
https://doi.org/10.48550/arXiv.2003.02989 arXiv:2003.02989 [quant-ph]

[29] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Je�rey Wu, Clemens Winter, Christopher Hesse, Mark
Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners. CoRR abs/2005.14165

https://doi.org/10.1109/TNNLS.2018.2852335
https://doi.org/10.1109/TNNLS.2018.2852335
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1109/ISCA.2016.11
https://doi.org/10.1109/ISCA.2016.11
https://doi.org/10.1155/2010/372652
https://www.amd.com/system/files/documents/amd-instinct-mi200-datasheet.pdf
https://www.amd.com/system/files/documents/amd-instinct-mi200-datasheet.pdf
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://doi.org/10.1109/JSEN.2018.2817632
https://doi.org/10.1109/JSEN.2018.2817632
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://doi.org/10.48550/arXiv.2107.07169
https://arxiv.org/abs/arXiv:2107.07169
https://doi.org/10.1561/2200000006
https://doi.org/10.1109/ARITH54963.2022.00010
https://doi.org/10.1038/nature23474
https://aws.amazon.com/braket/
https://doi.org/10.48550/arXiv.2003.02989
https://arxiv.org/abs/2003.02989

42 Cristina Silvano et al.

(2020). https://arxiv.org/abs/2005.14165
[30] Nazareno Bruschi, Giuseppe Tagliavini, Angelo Garofalo, Francesco Conti, Irem Boybat, Luca Benini, and Davide

Rossi. 2022. End-to-End DNN Inference on a Massively Parallel Analog In Memory Computing Architecture.
https://doi.org/10.48550/arXiv.2211.12877 arXiv:arXiv:2211.12877

[31] Cadence. 2022. Stratus High-Level Synthesis. https://www.cadence.com/en_US/home/tools/digital-design-and-
signo�/synthesis/stratus-high-level-synthesis.html

[32] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Tomasz S. Czajkowski, Stephen Dean
Brown, and Jason Helge Anderson. 2013. LegUp: An open-source high-level synthesis tool for FPGA-based proces-
sor/accelerator systems. ACM Trans. Embed. Comput. Syst. 13, 2 (2013), 24:1–24:27. https://doi.org/10.1145/2514740

[33] Weidong Cao, Yilong Zhao, Adith Boloor, Yinhe Han, Xuan Zhang, and Li Jiang. 2022. Neural-PIM: E�cient
Processing-In-Memory With Neural Approximation of Peripherals. IEEE Trans. Comput. 71, 9 (2022), 2142–2155.
https://doi.org/10.1109/TC.2021.3122905

[34] Alex Carsello, Kathleen Feng, Taeyoung Kong, Kalhan Koul, Qiaoyi Liu, Jackson Melchert, Gedeon Nyengele, Maxwell
Strange, Keyi Zhang, Ankita Nayak, Je� Setter, James Thomas, Kavya Sreedhar, Po-Han Chen, Nikhil Bhagdikar,
Zachary Myers, Brandon D’Agostino, Pranil Joshi, Stephen Richardson, Rick Bahr, Christopher Torng, Mark Horowitz,
and Priyanka Raina. 2022. Amber: A 367 GOPS, 538 GOPS/W 16nm SoC with a Coarse-Grained Recon�gurable Array
for Flexible Acceleration of Dense Linear Algebra. In 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI
Technology and Circuits). 70–71. https://doi.org/10.1109/VLSITechnologyandCir46769.2022.9830509

[35] Andrew S. Cassidy, Paul Merolla, John V. Arthur, Steve K. Esser, Bryan Jackson, Rodrigo Alvarez-Icaza, Pallab Datta,
Jun Sawada, Theodore M. Wong, Vitaly Feldman, Arnon Amir, Daniel Ben-Dayan Rubin, Filipp Akopyan, Emmett
McQuinn, William P. Risk, and Dharmendra S. Modha. 2013. Cognitive computing building block: A versatile and
e�cient digital neuron model for neurosynaptic cores. In The 2013 International Joint Conference on Neural Networks
(IJCNN). 1–10. https://doi.org/10.1109/IJCNN.2013.6707077

[36] Matheus Cavalcante, Fabian Schuiki, Florian Zaruba, Michael Scha�ner, and Luca Benini. 2020. Ara: A 1-GHz+
Scalable and Energy-E�cient RISC-V Vector Processor With Multiprecision Floating-Point Support in 22-Nm FD-SOI.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 28, 2 (Feb. 2020), 530–543. https://doi.org/10.1109/
TVLSI.2019.2950087

[37] Matheus Cavalcante, Domenic Wüthrich, Matteo Perotti, Samuel Riedel, and Luca Benini. 2022. Spatz: A Compact
Vector Processing Unit for High-Performance and Energy-E�cient Shared-L1 Clusters. In Proceedings of the 41st
IEEE/ACM International Conference on Computer-Aided Design. ACM, San Diego California, 1–9. https://doi.org/10.
1145/3508352.3549367

[38] Lukas Cavigelli and Luca Benini. 2017. Origami: A 803-GOp/s/W Convolutional Network Accelerator. IEEE
Transactions on Circuits and Systems for Video Technology 27, 11 (2017), 2461–2475. https://doi.org/10.1109/TCSVT.
2016.2592330

[39] Jung-Woo Chang, Keon-Woo Kang, and Suk-Ju Kang. 2020. An Energy-E�cient FPGA-Based Deconvolutional
Neural Networks Accelerator for Single Image Super-Resolution. IEEE Transactions on Circuits and Systems for Video
Technology 30, 1 (2020), 281–295. https://doi.org/10.1109/TCSVT.2018.2888898

[40] Karam Chatha. 2021. Qualcomm® Cloud Al 100 : 12TOPS/W Scalable, High Performance and Low Latency Deep
Learning Inference Accelerator. In 2021 IEEE Hot Chips 33 Symposium (HCS). 1–19. https://doi.org/10.1109/HCS52781.
2021.9567417

[41] Chen Chen, Xiaoyan Xiang, Chang Liu, Yunhai Shang, Ren Guo, Dongqi Liu, Yimin Lu, Ziyi Hao, Jiahui Luo, Zhijian
Chen, Chunqiang Li, Yu Pu, Jianyi Meng, Xiaolang Yan, Yuan Xie, and Xiaoning Qi. 2020. Xuantie-910: A Commercial
Multi-Core 12-Stage Pipeline Out-of-Order 64-Bit High Performance RISC-V Processor with Vector Extension :
Industrial Product. In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA). 52–64.
https://doi.org/10.1109/ISCA45697.2020.00016

[42] Gregory K. Chen, Phil C. Knag, Carlos Tokunaga, and Ram K. Krishnamurthy. 2022. An Eight-Core RISC-V Processor
With Compute Near Last Level Cache in Intel 4 CMOS. IEEE Journal of Solid-State Circuits (2022), 1–12. https:
//doi.org/10.1109/JSSC.2022.3228765

[43] Yunji Chen, Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. 2016. DianNao Family: Energy-E�cient
Hardware Accelerators for Machine Learning. Commun. ACM 59, 11 (Oct 2016), 105–112. https://doi.org/10.1145/
2996864

[44] Yiran Chen, Yuan Xie, Linghao Song, Fan Chen, and Tianqi Tang. 2020. A Survey of Accelerator Architectures for
Deep Neural Networks. Engineering 6, 3 (2020), 264–274. https://doi.org/10.1016/j.eng.2020.01.007

[45] Yu-Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze. 2017. Eyeriss: An Energy-E�cient Recon�gurable
Accelerator for Deep Convolutional Neural Networks. IEEE Journal of Solid-State Circuits 52, 1 (Jan. 2017), 127–138.
https://doi.org/10.1109/JSSC.2016.2616357

https://arxiv.org/abs/2005.14165
https://doi.org/10.48550/arXiv.2211.12877
https://arxiv.org/abs/arXiv:2211.12877
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://doi.org/10.1145/2514740
https://doi.org/10.1109/TC.2021.3122905
https://doi.org/10.1109/VLSITechnologyandCir46769.2022.9830509
https://doi.org/10.1109/IJCNN.2013.6707077
https://doi.org/10.1109/TVLSI.2019.2950087
https://doi.org/10.1109/TVLSI.2019.2950087
https://doi.org/10.1145/3508352.3549367
https://doi.org/10.1145/3508352.3549367
https://doi.org/10.1109/TCSVT.2016.2592330
https://doi.org/10.1109/TCSVT.2016.2592330
https://doi.org/10.1109/TCSVT.2018.2888898
https://doi.org/10.1109/HCS52781.2021.9567417
https://doi.org/10.1109/HCS52781.2021.9567417
https://doi.org/10.1109/ISCA45697.2020.00016
https://doi.org/10.1109/JSSC.2022.3228765
https://doi.org/10.1109/JSSC.2022.3228765
https://doi.org/10.1145/2996864
https://doi.org/10.1145/2996864
https://doi.org/10.1016/j.eng.2020.01.007
https://doi.org/10.1109/JSSC.2016.2616357

A Survey on Deep Learning Accelerators for Heterogeneous HPC Platforms 43

[46] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. 2019. Eyeriss v2: A Flexible Accelerator for Emerging
Deep Neural Networks on Mobile Devices. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9, 2
(2019), 292–308. https://doi.org/10.1109/JETCAS.2019.2910232

[47] Chao Cheng and K.K. Parhi. 2004. Hardware e�cient fast parallel FIR �lter structures based on iterated short
convolution. IEEE Transactions on Circuits and Systems I: Regular Papers 51, 8 (2004), 1492–1500. https://doi.org/10.
1109/TCSI.2004.832784

[48] Chao Cheng and Keshab K. Parhi. 2020. Fast 2D Convolution Algorithms for Convolutional Neural Networks. IEEE
Transactions on Circuits and Systems I: Regular Papers 67, 5 (2020), 1678–1691. https://doi.org/10.1109/TCSI.2020.
2964748

[49] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu Wang, and Yuan Xie. 2016. PRIME: A
Novel Processing-in-Memory Architecture for Neural Network Computation in ReRAM-Based Main Memory. In
2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA). 27–39. https://doi.org/10.
1109/ISCA.2016.13

[50] Krishna Teja Chitty-Venkata and Arun K. Somani. 2022. Neural Architecture Search Survey: A Hardware Perspective.
ACM Comput. Surv. 55, 4, Article 78 (nov 2022), 36 pages. https://doi.org/10.1145/3524500

[51] Jack Choquette. 2023. NVIDIA Hopper H100 GPU: Scaling Performance. IEEE Micro (2023), 1–13. https://doi.org/10.
1109/MM.2023.3256796

[52] Jack Choquette, Olivier Giroux, and Denis Foley. 2018. Volta: Performance and Programmability. IEEE Micro 38, 2
(March 2018), 42–52. https://doi.org/10.1109/MM.2018.022071134

[53] Jack Choquette, Edward Lee, Ronny Krashinsky, Vishnu Balan, and Brucek Khailany. 2021. 3.2 The A100 Datacenter
GPU and Ampere Architecture. In 2021 IEEE International Solid- State Circuits Conference (ISSCC), Vol. 64. 48–50.
https://doi.org/10.1109/ISSCC42613.2021.9365803

[54] Peter Clarke. 2015. Intel, Micron Launch “Bulk-Switching” ReRAM. https://www.eetimes.com/intel-micron-launch-
bulk-switching-reram/. Accessed: 18/04/2023.

[55] Marco Cococcioni, Federico Rossi, Emanuele Ru�aldi, and Sergio Saponara. 2022. A Lightweight Posit Processing
Unit for RISC-V Processors in Deep Neural Network Applications. IEEE Transactions on Emerging Topics in Computing
10, 4 (2022), 1898–1908. https://doi.org/10.1109/TETC.2021.3120538

[56] Francesco Conti, Davide Rossi, Gianna Paulin, Anaelo Garofalo, Al�o Di Mauro, Georg Rutishauer, Gian marco Ottavi,
Manuel Eggimann, Hayate Okuhara, Vincent Huard, Olivier Montfort, Lionel Jure, Nils Exibard, Pascal Gouedo,
Mathieu Louvat, Emmanuel Botte, and Luca Benini. 2023. 22.1 A 12.4TOPS/W @ 136GOPS AI-IoT System-on-Chip
with 16 RISC-V, 2-to-8b Precision-Scalable DNN Acceleration and 30%-Boost Adaptive Body Biasing. In 2023 IEEE
International Solid- State Circuits Conference (ISSCC). 21–23. https://doi.org/10.1109/ISSCC42615.2023.10067643

[57] Aline S. Cordeiro, Sairo R. dos Santos, Francis B. Moreira, Paulo C. Santos, Luigi Carro, and Marco A. Z. Alves. 2021.
Machine Learning Migration for E�cient Near-Data Processing. In 2021 29th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing (PDP). 212–219. https://doi.org/10.1109/PDP52278.2021.00041

[58] D-WAVE 2023. D-Wave Systems - The Practical Quantum Computing Company. https://www.dwavesys.com/
[59] Scott Davidson, Shaolin Xie, Christopher Torng, Khalid Al-Hawai, Austin Rovinski, Tutu Ajayi, Luis Vega, Chun

Zhao, Ritchie Zhao, Steve Dai, Aporva Amarnath, Bandhav Veluri, Paul Gao, Anuj Rao, Gai Liu, Rajesh K. Gupta,
Zhiru Zhang, Ronald Dreslinski, Christopher Batten, and Michael Bedford Taylor. 2018. The Celerity Open-Source
511-Core RISC-V Tiered Accelerator Fabric: Fast Architectures and Design Methodologies for Fast Chips. IEEE Micro
38, 2 (March 2018), 30–41. https://doi.org/10.1109/MM.2018.022071133

[60] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha Choday, Georgios
Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, Yuyun Liao, Chit-Kwan Lin, Andrew Lines, Ruokun Liu, Deepak
Mathaikutty, Steven McCoy, Arnab Paul, Jonathan Tse, Guruguhanathan Venkataramanan, Yi-Hsin Weng, Andreas
Wild, Yoonseok Yang, and Hong Wang. 2018. Loihi: A Neuromorphic Manycore Processor with On-Chip Learning.
IEEE Micro 38, 1 (2018), 82–99. https://doi.org/10.1109/MM.2018.112130359

[61] Tim Davis. 2007. Wilkinson’s Sparse Matrix De�nition. NA Digest 7, 12 (2007), 379–401.
[62] Alberto Delmas Lascorz, Patrick Judd, Dylan Malone Stuart, Zissis Poulos, Mostafa Mahmoud, Sayeh Sharify, Milos

Nikolic, Kevin Siu, and Andreas Moshovos. 2019. Bit-Tactical: A Software/Hardware Approach to Exploiting Value
and Bit Sparsity in Neural Networks. In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems (Providence, RI, USA) (ASPLOS ’19). 749–763. https:
//doi.org/10.1145/3297858.3304041

[63] Chunhua Deng, Siyu Liao, Yi Xie, Keshab K. Parhi, Xuehai Qian, and Bo Yuan. 2018. PermDNN: E�cient Compressed
DNN Architecture with Permuted Diagonal Matrices. In Proceedings of the 51st Annual IEEE/ACM International
Symposium on Microarchitecture (Fukuoka, Japan) (MICRO-51). 189–202. https://doi.org/10.1109/MICRO.2018.00024

[64] Giuseppe Desoli, Nitin Chawla, Thomas Boesch, Manui Avodhyawasi, Harsh Rawat, Hitesh Chawla, VS Abhijith,
Paolo Zambotti, Akhilesh Sharma, Carmine Cappetta, Michele Rossi, Antonio De Vita, and Francesca Girardi. 2023. A

https://doi.org/10.1109/JETCAS.2019.2910232
https://doi.org/10.1109/TCSI.2004.832784
https://doi.org/10.1109/TCSI.2004.832784
https://doi.org/10.1109/TCSI.2020.2964748
https://doi.org/10.1109/TCSI.2020.2964748
https://doi.org/10.1109/ISCA.2016.13
https://doi.org/10.1109/ISCA.2016.13
https://doi.org/10.1145/3524500
https://doi.org/10.1109/MM.2023.3256796
https://doi.org/10.1109/MM.2023.3256796
https://doi.org/10.1109/MM.2018.022071134
https://doi.org/10.1109/ISSCC42613.2021.9365803
https://www.eetimes.com/intel-micron-launch-bulk-switching-reram/
https://www.eetimes.com/intel-micron-launch-bulk-switching-reram/
https://doi.org/10.1109/TETC.2021.3120538
https://doi.org/10.1109/ISSCC42615.2023.10067643
https://doi.org/10.1109/PDP52278.2021.00041
https://www.dwavesys.com/
https://doi.org/10.1109/MM.2018.022071133
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1145/3297858.3304041
https://doi.org/10.1145/3297858.3304041
https://doi.org/10.1109/MICRO.2018.00024

44 Cristina Silvano et al.

40-310TOPS/W SRAM-Based All-Digital Up to 4b In-Memory Computing Multi-Tiled NN Accelerator in FD-SOI 18nm
for Deep-Learning Edge Applications. In 2023 IEEE International Solid- State Circuits Conference (ISSCC). 260–262.
https://doi.org/10.1109/ISSCC42615.2023.10067422

[65] Giuseppe Desoli, Nitin Chawla, Thomas Boesch, Surinder-pal Singh, Elio Guidetti, Fabio De Ambroggi, Tommaso
Majo, Paolo Zambotti, Manuj Ayodhyawasi, Harvinder Singh, and Nalin Aggarwal. 2017. A 2.9TOPS/W deep
convolutional neural network SoC in FD-SOI 28nm for intelligent embedded systems. In 2017 IEEE International
Solid-State Circuits Conference (ISSCC). 238–239. https://doi.org/10.1109/ISSCC.2017.7870349

[66] Pudi Dhilleswararao, Srinivas Boppu, M. Sabarimalai Manikandan, and Linga Reddy Cenkeramaddi. 2022. E�cient
Hardware Architectures for Accelerating Deep Neural Networks: Survey. IEEE Access 10 (2022), 131788–131828.
https://doi.org/10.1109/ACCESS.2022.3229767

[67] Al�o Di Mauro, Moritz Scherer, Davide Rossi, and Luca Benini. 2022. Kraken: A Direct Event/Frame-Based Multi-
sensor Fusion SoC for Ultra-E�cient Visual Processing in Nano-UAVs. https://doi.org/10.48550/arXiv.2209.01065
arXiv:arXiv:2209.01065

[68] David R. Ditzel and the Esperanto team. 2022. Accelerating ML Recommendation With Over 1,000 RISC-V/Tensor
Processors on Esperanto’s ET-SoC-1 Chip. IEEE Micro 42, 3 (May 2022), 31–38. https://doi.org/10.1109/MM.2022.
3140674

[69] Li Du, Yuan Du, Yilei Li, and Mau-Chung Frank Chang. 2017. A Recon�gurable Streaming Deep Convolutional
Neural Network Accelerator for Internet of Things. IEEE Transactions on Circuits and Systems I: Regular Papers PP (07
2017). https://doi.org/10.1109/TCSI.2017.2735490

[70] Javier Duarte et al. 2018. Fast inference of deep neural networks in FPGAs for particle physics. JINST 13, 07 (2018),
P07027. https://doi.org/10.1088/1748-0221/13/07/P07027 arXiv:1804.06913 [physics.ins-det]

[71] Luke Durant, Olivier Giroux, Mark Harris, and Nick Stam. 2017. Inside Volta: The World’s Most Advanced Data Center
GPU. Retrieved Apr 16, 2023 from https://developer.nvidia.com/blog/inside-volta/

[72] Anne C. Elster and Tor A. Haugdahl. 2022. Nvidia Hopper GPU and Grace CPU Highlights. Computing in Science &
Engineering 24, 2 (March 2022), 95–100. https://doi.org/10.1109/MCSE.2022.3163817

[73] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan Sankaralingam, and Doug Burger. 2011. Dark silicon
and the end of multicore scaling. In 2011 38th Annual International Symposium on Computer Architecture (ISCA).
365–376.

[74] Darjn Esposito, Antonio G. M. Strollo, and Massimo Alioto. 2017. Low-power approximate MAC unit. In 2017 13th
Conference on Ph.D. Research in Microelectronics and Electronics (PRIME). 81–84. https://doi.org/10.1109/PRIME.2017.
7974112

[75] EuroQCS 2022. European Quantum Computing and Simulation Infrastructure. https://qt.eu/media/pdf/20220202_
HPC-QCS-JWP-�nal.pdf?m=1674828481&

[76] William Fedus, Barret Zoph, and Noam Shazeer. 2022. Switch Transformers: Scaling to Trillion Parameter Models with
Simple and E�cient Sparsity. Journal of Machine Learning Research 23, 120 (2022), 1–39. http://jmlr.org/papers/v23/21-
0998.html

[77] Fabrizio Ferrandi, Vito Giovanni Castellana, Serena Curzel, Pietro Fezzardi, Michele Fiorito, Marco Lattuada, Marco
Minutoli, Christian Pilato, and Antonino Tumeo. 2021. Invited: Bambu: an Open-Source Research Framework for
the High-Level Synthesis of Complex Applications. In 2021 58th ACM/IEEE Design Automation Conference (DAC).
1327–1330. https://doi.org/10.1109/DAC18074.2021.9586110

[78] Salvatore Filippone, Valeria Cardellini, Davide Barbieri, and Alessandro Fanfarillo. 2017. Sparse Matrix-Vector
Multiplication on GPGPUs. ACM Trans. Math. Softw. 43, 4, Article 30 (2017), 49 pages. https://doi.org/10.1145/3017994

[79] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming Liu, Daniel Lo, Shlomi Alkalay,
Michael Haselman, Logan Adams, Mahdi Ghandi, Stephen Heil, Prerak Patel, Adam Sapek, Gabriel Weisz, Lisa Woods,
Sitaram Lanka, Steven K. Reinhardt, Adrian M. Caul�eld, Eric S. Chung, and Doug Burger. 2018. A Con�gurable
Cloud-Scale DNN Processor for Real-Time AI. In ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). 1–14.

[80] Charlotte Frenkel, David Bol, and Giacomo Indiveri. 2021. Bottom-Up and Top-Down Neural Processing Systems
Design: Neuromorphic Intelligence as the Convergence of Natural and Arti�cial Intelligence. CoRR abs/2106.01288
(2021).

[81] Charlotte Frenkel, Martin Lefebvre, Jean-Didier Legat, and David Bol. 2019. A 0.086-mm2 12.7-pJ/SOP 64k-Synapse
256-Neuron Online-Learning Digital Spiking Neuromorphic Processor in 28-nm CMOS. IEEE Transactions on
Biomedical Circuits and Systems 13, 1 (2019), 145–158. https://doi.org/10.1109/TBCAS.2018.2880425

[82] Charlotte Frenkel, Jean-Didier Legat, and David Bol. 2019. MorphIC: A 65-nm 738k-Synapse/mm2 Quad-Core
Binary-Weight Digital Neuromorphic Processor With Stochastic Spike-Driven Online Learning. IEEE Transactions on
Biomedical Circuits and Systems 13, 5 (2019), 999–1010. https://doi.org/10.1109/TBCAS.2019.2928793

https://doi.org/10.1109/ISSCC42615.2023.10067422
https://doi.org/10.1109/ISSCC.2017.7870349
https://doi.org/10.1109/ACCESS.2022.3229767
https://doi.org/10.48550/arXiv.2209.01065
https://arxiv.org/abs/arXiv:2209.01065
https://doi.org/10.1109/MM.2022.3140674
https://doi.org/10.1109/MM.2022.3140674
https://doi.org/10.1109/TCSI.2017.2735490
https://doi.org/10.1088/1748-0221/13/07/P07027
https://arxiv.org/abs/1804.06913
https://developer.nvidia.com/blog/inside-volta/
https://doi.org/10.1109/MCSE.2022.3163817
https://doi.org/10.1109/PRIME.2017.7974112
https://doi.org/10.1109/PRIME.2017.7974112
https://qt.eu/media/pdf/20220202_HPC-QCS-JWP-final.pdf?m=1674828481&
https://qt.eu/media/pdf/20220202_HPC-QCS-JWP-final.pdf?m=1674828481&
http://jmlr.org/papers/v23/21-0998.html
http://jmlr.org/papers/v23/21-0998.html
https://doi.org/10.1109/DAC18074.2021.9586110
https://doi.org/10.1145/3017994
https://doi.org/10.1109/TBCAS.2018.2880425
https://doi.org/10.1109/TBCAS.2019.2928793

A Survey on Deep Learning Accelerators for Heterogeneous HPC Platforms 45

[83] Manuel Le Gallo, Riduan Khaddam-Aljameh, Milos Stanisavljevic, Athanasios Vasilopoulos, Benedikt Kersting,
Martino Dazzi, Geethan Karunaratne, Matthias Braendli, Abhairaj Singh, Silvia M Mueller, et al. 2022. A 64-core
mixed-signal in-memory compute chip based on phase-change memory for deep neural network inference. arXiv
preprint arXiv:2212.02872 (2022).

[84] Jianhua Gao, Weixing Ji, Fangli Chang, Shiyu Han, Bingxin Wei, Zeming Liu, and Yizhuo Wang. 2023. A Systematic
Survey of General Sparse Matrix-Matrix Multiplication. ACM Comput. Surv. 55, 12, Article 244 (2023), 36 pages.
https://doi.org/10.1145/3571157

[85] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyrakis. 2017. TETRIS: Scalable and E�cient
Neural Network Acceleration with 3D Memory (ASPLOS ’17). Association for Computing Machinery, New York, NY,
USA, 751–764. https://doi.org/10.1145/3037697.3037702

[86] Mingyu Gao, Xuan Yang, Jing Pu, Mark Horowitz, and Christos Kozyrakis. 2019. TANGRAM: Optimized Coarse-
Grained Data�ow for Scalable NN Accelerators. In Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems (Providence, RI, USA) (ASPLOS ’19). Associa-
tion for Computing Machinery, New York, NY, USA, 807–820. https://doi.org/10.1145/3297858.3304014

[87] Angelo Garofalo, Gianmarco Ottavi, Francesco Conti, Geethan Karunaratne, Irem Boybat, Luca Benini, and Davide
Rossi. 2022. A Heterogeneous In-Memory Computing Cluster for Flexible End-to-End Inference of Real-World Deep
Neural Networks. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 12, 2 (June 2022), 422–435.
https://doi.org/10.1109/JETCAS.2022.3170152

[88] Angelo Garofalo, Yvan Tortorella, Matteo Perotti, Luca Valente, Alessandro Nadalini, Luca Benini, Davide Rossi,
and Francesco Conti. 2022. DARKSIDE: A Heterogeneous RISC-V Compute Cluster for Extreme-Edge On-Chip
DNN Inference and Training. IEEE Open Journal of the Solid-State Circuits Society 2 (2022), 231–243. https:
//doi.org/10.1109/OJSSCS.2022.3210082

[89] Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vighnesh Iyer, Pranav Prakash, Jerry Zhao, Daniel Grubb,
Harrison Liew, Howard Mao, Albert Ou, Colin Schmidt, Samuel Ste�, JohnWright, Ion Stoica, Jonathan Ragan-Kelley,
Krste Asanovic, Borivoje Nikolic, and Yakun Sophia Shao. 2021. Gemmini: Enabling Systematic Deep-Learning
Architecture Evaluation via Full-Stack Integration. In 2021 58th ACM/IEEE Design Automation Conference (DAC).
769–774. https://doi.org/10.1109/DAC18074.2021.9586216

[90] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer. 2021. A Survey of
Quantization Methods for E�cient Neural Network Inference. arXiv:2103.13630 [cs.CV]

[91] Davide Giri, Kuan-Lin Chiu, Giuseppe Di Guglielmo, Paolo Mantovani, and Luca P. Carloni. 2020. ESP4ML: Platform-
Based Design of Systems-on-Chip for Embedded Machine Learning. In 2020 Design, Automation & Test in Europe
Conference & Exhibition (DATE). 1049–1054. https://doi.org/10.23919/DATE48585.2020.9116317

[92] Davide Giri, Kuan-Lin Chiu, Guy Eichler, Paolo Mantovani, and Luca P. Carloni. 2021. Accelerator Integration for
Open-Source SoC Design. IEEE Micro 41, 4 (July 2021), 8–14. https://doi.org/10.1109/MM.2021.3073893

[93] Ashish Gondimalla, Noah Chesnut, Mithuna Thottethodi, and T. N. Vijaykumar. 2019. SparTen: A Sparse Tensor
Accelerator for Convolutional Neural Networks. In Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture (Columbus, OH, USA) (MICRO’52). 151–165. https://doi.org/10.1145/3352460.3358291

[94] Abraham Gonzalez, Jerry Zhao, Ben Korpan, Hasan Genc, Colin Schmidt, John Wright, Ayan Biswas, Alon
Amid, Farhana Sheikh, Anton Sorokin, Sirisha Kale, Mani Yalamanchi, Ramya Yarlagadda, Mark Flannigan,
Larry Abramowitz, Elad Alon, Yakun Sophia Shao, Krste Asanovic, and Borivoje Nikolic. 2021. A 16mm 2

106.1 GOPS/W Heterogeneous RISC-V Multi-Core Multi-Accelerator SoC in Low-Power 22nm FinFET. In ES-
SCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC). IEEE, Grenoble, France, 259–262.
https://doi.org/10.1109/ESSCIRC53450.2021.9567768

[95] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press. http://www.deeplearningbook.
org.

[96] PengGu, Xinfeng Xie, Yufei Ding, Guoyang Chen,Weifeng Zhang, DiminNiu, and YuanXie. 2020. iPIM: Programmable
In-Memory Image Processing Accelerator Using Near-Bank Architecture. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). 804–817. https://doi.org/10.1109/ISCA45697.2020.00071

[97] Yijin Guan, Hao Liang, Ningyi Xu, Wenqiang Wang, Shaoshuai Shi, Xi Chen, Guangyu Sun, Wei Zhang, and Jason
Cong. 2017. FP-DNN: An Automated Framework for Mapping Deep Neural Networks onto FPGAs with RTL-HLS
Hybrid Templates. In 2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM). 152–159. https://doi.org/10.1109/FCCM.2017.25

[98] Cong Guo, Bo Yang Hsueh, Jingwen Leng, Yuxian Qiu, Yue Guan, Zehuan Wang, Xiaoying Jia, Xipeng Li, Minyi
Guo, and Yuhao Zhu. 2020. Accelerating Sparse DNN Models without Hardware-Support via Tile-Wise Sparsity.
In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
(Atlanta, Georgia) (SC’20). Article 16, 15 pages.

https://doi.org/10.1145/3571157
https://doi.org/10.1145/3037697.3037702
https://doi.org/10.1145/3297858.3304014
https://doi.org/10.1109/JETCAS.2022.3170152
https://doi.org/10.1109/OJSSCS.2022.3210082
https://doi.org/10.1109/OJSSCS.2022.3210082
https://doi.org/10.1109/DAC18074.2021.9586216
https://arxiv.org/abs/2103.13630
https://doi.org/10.23919/DATE48585.2020.9116317
https://doi.org/10.1109/MM.2021.3073893
https://doi.org/10.1145/3352460.3358291
https://doi.org/10.1109/ESSCIRC53450.2021.9567768
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1109/ISCA45697.2020.00071
https://doi.org/10.1109/FCCM.2017.25

46 Cristina Silvano et al.

[99] Kaiyuan Guo, Shulin Zeng, Jincheng Yu, Yu Wang, and Huazhong Yang. 2019. [DL] A survey of FPGA-based neural
network inference accelerators. ACM Transactions on Recon�gurable Technology and Systems (TRETS) 12, 1 (2019),
1–26.

[100] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. 2015. Deep Learning with Limited
Numerical Precision. In Proceedings of the 32nd International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 37), Francis Bach and David Blei (Eds.). 1737–1746.

[101] Laszlo Gyongyosi and Sandor Imre. 2019. A Survey on quantum computing technology. Computer Science Review 31
(2019), 51–71. https://doi.org/10.1016/j.cosrev.2018.11.002

[102] Minho Ha and Sunggu Lee. 2018. Multipliers With Approximate 4–2 Compressors and Error Recovery Modules.
IEEE Embedded Systems Letters 10, 1 (2018), 6–9. https://doi.org/10.1109/LES.2017.2746084

[103] Fumio Hamanaka, Takashi Odan, Kenji Kise, and ThiemVan Chu. 2023. An Exploration of State-of-the-Art Automation
Frameworks for FPGA-Based DNN Acceleration. IEEE Access 11 (2023), 5701–5713. https://doi.org/10.1109/ACCESS.
2023.3236974

[104] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, and William J. Dally. 2016. EIE:
E�cient Inference Engine on Compressed Deep Neural Network. In Proceedings of the 43rd International Symposium
on Computer Architecture (ISCA’16). 243–254. https://doi.org/10.1109/ISCA.2016.30

[105] Song Han, Huizi Mao, and William J. Dally. 2015. Deep Compression: Compressing Deep Neural Networks with
Pruning, Trained Quantization and Hu�man Coding. CoRR abs/1510.00149 (2015). http://arxiv.org/abs/1510.00149

[106] Song Han, Je� Pool, John Tran, and William Dally. 2015. Learning both Weights and Connections for E�cient Neural
Network. In Advances in Neural Information Processing Systems, Vol. 28. Curran Associates, Inc.

[107] Mark Harris. 2016. Inside Pascal: NVIDIA’s Newest Computing Platform. Retrieved Apr 16, 2023 from https://developer.
nvidia.com/blog/inside-pascal/

[108] Soheil Hashemi, R. Iris Bahar, and Sherief Reda. 2015. DRUM: A Dynamic Range Unbiased Multiplier for approximate
applications. In 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 418–425. https:
//doi.org/10.1109/ICCAD.2015.7372600

[109] Mehdi Hassanpour, Marc Riera, and Antonio González. 2022. A Survey of Near-Data Processing Architectures
for Neural Networks. Machine Learning and Knowledge Extraction 4, 1 (2022), 66–102. https://doi.org/10.3390/
make4010004

[110] Mingxuan He, Choungki Song, Ilkon Kim, Chunseok Jeong, Seho Kim, Il Park, Mithuna Thottethodi, and T. N.
Vijaykumar. 2020. Newton: A DRAM-maker’s Accelerator-in-Memory (AiM) Architecture for Machine Learning. In
2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 372–385. https://doi.org/10.
1109/MICRO50266.2020.00040

[111] Kartik Hegde, Jiyong Yu, Rohit Agrawal, Mengjia Yan, Michael Pellauer, and Christopher W. Fletcher. 2018. UCNN:
Exploiting Computational Reuse in Deep Neural Networks via Weight Repetition. In Proceedings of the 45th Annual
International Symposium on Computer Architecture (Los Angeles, California) (ISCA’18). 674–687. https://doi.org/10.
1109/ISCA.2018.00062

[112] Karen Heyman. 2022. DRAM Thermal Issues Reach Crisis Point. https://semiengineering.com/dram-thermal-issues-
reach-crisis-point/. Accessed: 18/04/2023.

[113] Pouya Houshmand, Giuseppe M. Sarda, Vikram Jain, Kodai Ueyoshi, Ioannis A. Papistas, Man Shi, Qilin Zheng,
Debjyoti Bhattacharjee, Arindam Mallik, Peter Debacker, Diederik Verkest, and Marian Verhelst. 2023. DIANA: An
End-to-End Hybrid DIgital and ANAlog Neural Network SoC for the Edge. IEEE Journal of Solid-State Circuits 58, 1
(Jan. 2023), 203–215. https://doi.org/10.1109/JSSC.2022.3214064

[114] HPCWIRE 2022. Quantum computers emerging as accelerators in HPC. https://www.hpcwire.com/2022/06/07/
quantum-computers-emerging-as-accelerators-in-hpc/

[115] Xing Hu, Dylan Stow, and Yuan Xie. 2018. Die Stacking Is Happening. IEEE Micro 38, 1 (2018), 22–28. https:
//doi.org/10.1109/MM.2018.011441561

[116] Je-Min Hung, Chuan-Jia Jhang, Ping-Chun Wu, Yen-Cheng Chiu, and Meng-Fan Chang. 2021. Challenges and Trends
of Nonvolatile In-Memory-Computation Circuits for AI Edge Devices. IEEE Open Journal of the Solid-State Circuits
Society 1 (2021), 171–183. https://doi.org/10.1109/OJSSCS.2021.3123287

[117] R. Hwang, T. Kim, Y. Kwon, and M. Rhu. 2020. Centaur: A Chiplet-based, Hybrid Sparse-Dense Accelerator for
Personalized Recommendations. In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE Computer Society, Los Alamitos, CA, USA, 968–981. https://doi.org/10.1109/ISCA45697.2020.00083

[118] Hybrid Memory Cube Consortium. 2014. Hybrid Memory Cube speci�cation 2.1.
[119] Daniele Ielmini and H.-S. Philip Wong. 2018. In-memory computing with resistive switching devices. Nature

Electronics 1, 6 (Jun 2018), 333–343. https://doi.org/10.1038/s41928-018-0092-2
[120] Intel. 2022. Intel Arc A770 Graphics 16GB. Retrieved May 25, 2023 from https://ark.intel.com/content/www/us/en/

ark/products/229151/intel-arc-a770-graphics-16gb.html

https://doi.org/10.1016/j.cosrev.2018.11.002
https://doi.org/10.1109/LES.2017.2746084
https://doi.org/10.1109/ACCESS.2023.3236974
https://doi.org/10.1109/ACCESS.2023.3236974
https://doi.org/10.1109/ISCA.2016.30
http://arxiv.org/abs/1510.00149
https://developer.nvidia.com/blog/inside-pascal/
https://developer.nvidia.com/blog/inside-pascal/
https://doi.org/10.1109/ICCAD.2015.7372600
https://doi.org/10.1109/ICCAD.2015.7372600
https://doi.org/10.3390/make4010004
https://doi.org/10.3390/make4010004
https://doi.org/10.1109/MICRO50266.2020.00040
https://doi.org/10.1109/MICRO50266.2020.00040
https://doi.org/10.1109/ISCA.2018.00062
https://doi.org/10.1109/ISCA.2018.00062
https://semiengineering.com/dram-thermal-issues-reach-crisis-point/
https://semiengineering.com/dram-thermal-issues-reach-crisis-point/
https://doi.org/10.1109/JSSC.2022.3214064
https://www.hpcwire.com/2022/06/07/quantum-computers-emerging-as-accelerators-in-hpc/
https://www.hpcwire.com/2022/06/07/quantum-computers-emerging-as-accelerators-in-hpc/
https://doi.org/10.1109/MM.2018.011441561
https://doi.org/10.1109/MM.2018.011441561
https://doi.org/10.1109/OJSSCS.2021.3123287
https://doi.org/10.1109/ISCA45697.2020.00083
https://doi.org/10.1038/s41928-018-0092-2
https://ark.intel.com/content/www/us/en/ark/products/229151/intel-arc-a770-graphics-16gb.html
https://ark.intel.com/content/www/us/en/ark/products/229151/intel-arc-a770-graphics-16gb.html

A Survey on Deep Learning Accelerators for Heterogeneous HPC Platforms 47

[121] Intel. 2022. Intel High Level Synthesis Compiler Reference Manual. https://www.intel.com/content/www/us/en/
docs/programmable/683349/21-4/pro-edition-reference-manual.html

[122] Vikram Jain, Sebastian Giraldo, Jaro De Roose, Linyan Mei, Bert Boons, and Marian Verhelst. 2023. TinyVers: A
Tiny Versatile System-on-Chip With State-Retentive eMRAM for ML Inference at the Extreme Edge. IEEE Journal of
Solid-State Circuits (2023), 1–12. https://doi.org/10.1109/JSSC.2023.3236566

[123] Joe Jeddeloh and Brent Keeth. 2012. Hybrid memory cube new DRAM architecture increases density and performance.
In 2012 Symposium on VLSI Technology (VLSIT). 87–88. https://doi.org/10.1109/VLSIT.2012.6242474

[124] JEDEC Solid State Technology Association. 2023. High Bandwidth Memory DRAM (HBM3), JESD238A.
[125] Tianyu Jia, Paolo Mantovani, Maico Cassel Dos Santos, Davide Giri, Joseph Zuckerman, Erik Jens Loscalzo, Martin

Cochet, Karthik Swaminathan, Gabriele Tombesi, Je� Jun Zhang, Nandhini Chandramoorthy, John-David Wellman,
Kevin Tien, Luca Carloni, Kenneth Shepard, David Brooks, Gu-Yeon Wei, and Pradip Bose. 2022. A 12nm Agile-
Designed SoC for Swarm-Based Perception with Heterogeneous IP Blocks, a Recon�gurable Memory Hierarchy,
and an 800MHz Multi-Plane NoC. In ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC).
269–272. https://doi.org/10.1109/ESSCIRC55480.2022.9911456

[126] Yangqing Jia, Evan Shelhamer, Je� Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, and
Trevor Darrell. 2014. Ca�e: Convolutional Architecture for Fast Feature Embedding. arXiv preprint arXiv:1408.5093
(2014).

[127] Zhe Jia, Blake Tillman,MarcoMaggioni, andDaniele Paolo Scarpazza. 2019. Dissecting the Graphcore IPUArchitecture
via Microbenchmarking. https://doi.org/10.48550/arXiv.1912.03413 arXiv:1912.03413 [cs]

[128] Qiang Jiao,Wei Hu, Fang Liu, and YongDong. 2021. RISC-VTF: RISC-V Based Extended Instruction Set for Transformer.
In 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC). 1565–1570. https://doi.org/10.1109/
SMC52423.2021.9658643

[129] Yang Jiao, Liang Han, Rong Jin, Yi-Jung Su, Chiente Ho, Li Yin, Yun Li, Long Chen, Zhen Chen, Lu Liu, Zhuyu
He, Yu Yan, Jun He, Jun Mao, Xiaotao Zai, Xuejun Wu, Yongquan Zhou, Mingqiu Gu, Guocai Zhu, Rong Zhong,
Wenyuan Lee, Ping Chen, Yiping Chen, Weiliang Li, Deyu Xiao, Qing Yan, Mingyuan Zhuang, Jiejun Chen, Yun
Tian, Yingzi Lin, Wei Wu, Hao Li, and Zesheng Dou. 2020. A 12nm Programmable Convolution-E�cient Neural-
Processing-Unit Chip Achieving 825TOPS. In 2020 IEEE International Solid- State Circuits Conference - (ISSCC). 136–140.
https://doi.org/10.1109/ISSCC19947.2020.9062984

[130] Qing Jin, Jian Ren, Richard Zhuang, Sumant Hanumante, Zhengang Li, Zhiyu Chen, Yanzhi Wang, Kaiyuan Yang,
and Sergey Tulyakov. 2022. F8Net: Fixed-Point 8-bit Only Multiplication for Network Quantization. In International
Conference on Learning Representations. https://openreview.net/forum?id=_CfpJazzXT2

[131] Shalf John. 2020. The future of computing beyond Moore’s Law. Phil. Trans. R. Soc. (2020). https://doi.org/10.1098/
rsta.2019.0061

[132] Jer Min Jou, Shiann Rong Kuang, and Ren Der Chen. 1999. Design of low-error �xed-width multipliers for DSP
applications. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 46, 6 (1999), 836–842.
https://doi.org/10.1109/82.769795

[133] Norman Jouppi, Al Borchers, Rick Boyle, Pierre-luc Cantin, Cli�ord Chao, Chris Clark, Jeremy Coriell, Mike Daley,
Matt Dau, Je�rey Dean, Ben Gelb, Cli� Young, Tara Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert
Hagmann, C. Ho, Doug Hogberg, John Hu, and Nan Boden. 2017. In-Datacenter Performance Analysis of a Tensor
Processing Unit. In Proceedings of the 44th Annual International Symposium on Computer Architecture (ISCA ’17).
Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3079856.3080246

[134] Norman Jouppi, Cli� Young, Nishant Patil, and David Patterson. 2018. Motivation for and Evaluation of the First
Tensor Processing Unit. IEEE Micro 38, 3 (May 2018), 10–19. https://doi.org/10.1109/MM.2018.032271057

[135] Norman P. Jouppi, Doe Hyun Yoon, George Kurian, Sheng Li, Nishant Patil, James Laudon, Cli� Young, and David
Patterson. 2020. A Domain-Speci�c Supercomputer for Training Deep Neural Networks. Commun. ACM 63, 7 (June
2020), 67–78. https://doi.org/10.1145/3360307

[136] Yuhao Ju and Jie Gu. 2023. A Systolic Neural CPU Processor Combining Deep Learning and General-Purpose
Computing With Enhanced Data Locality and End-to-End Performance. IEEE Journal of Solid-State Circuits 58, 1 (Jan.
2023), 216–226. https://doi.org/10.1109/JSSC.2022.3214170

[137] Morihiro Kada. 2015. Research and Development History of Three-Dimensional Integration Technology. Springer
International Publishing, Cham, 1–23. https://doi.org/10.1007/978-3-319-18675-7_1

[138] Ajaykumar Kannan, Natalie Enright Jerger, and Gabriel H. Loh. 2015. Enabling interposer-based disintegration
of multi-core processors. In 2015 48th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
546–558.

[139] Riduan Khaddam-Aljameh, Milos Stanisavljevic, Jordi Fornt Mas, Geethan Karunaratne, Matthias Brändli, Feng Liu,
Abhairaj Singh, Silvia M Müller, Urs Egger, Anastasios Petropoulos, et al. 2022. HERMES-core—A 1.59-TOPS/mm
2 PCM on 14-nm CMOS in-memory compute core using 300-ps/LSB linearized CCO-based ADCs. IEEE Journal of

https://www.intel.com/content/www/us/en/docs/programmable/683349/21-4/pro-edition-reference-manual.html
https://www.intel.com/content/www/us/en/docs/programmable/683349/21-4/pro-edition-reference-manual.html
https://doi.org/10.1109/JSSC.2023.3236566
https://doi.org/10.1109/VLSIT.2012.6242474
https://doi.org/10.1109/ESSCIRC55480.2022.9911456
https://doi.org/10.48550/arXiv.1912.03413
https://arxiv.org/abs/1912.03413
https://doi.org/10.1109/SMC52423.2021.9658643
https://doi.org/10.1109/SMC52423.2021.9658643
https://doi.org/10.1109/ISSCC19947.2020.9062984
https://openreview.net/forum?id=_CfpJazzXT2
https://doi.org/10.1098/rsta.2019.0061
https://doi.org/10.1098/rsta.2019.0061
https://doi.org/10.1109/82.769795
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1109/MM.2018.032271057
https://doi.org/10.1145/3360307
https://doi.org/10.1109/JSSC.2022.3214170
https://doi.org/10.1007/978-3-319-18675-7_1

48 Cristina Silvano et al.

Solid-State Circuits 57, 4 (2022), 1027–1038.
[140] Mahmoud Khairy, Amr G. Wassal, and Mohamed Zahran. 2019. A survey of architectural approaches for improving

GPGPU performance, programmability and heterogeneity. J. Parallel and Distrib. Comput. 127 (2019), 65–88. https:
//doi.org/10.1016/j.jpdc.2018.11.012

[141] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, and Saibal Mukhopadhyay. 2016. Neurocube: A
Programmable Digital Neuromorphic Architecture with High-Density 3D Memory. In 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA). 380–392. https://doi.org/10.1109/ISCA.2016.41

[142] Donghyuk Kim, Chengshuo Yu, Shanshan Xie, Yuzong Chen, Joo-Young Kim, Bongjin Kim, Jaydeep P. Kulkarni,
and Tony Tae-Hyoung Kim. 2022. An Overview of Processing-in-Memory Circuits for Arti�cial Intelligence and
Machine Learning. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 12, 2 (2022), 338–353.
https://doi.org/10.1109/JETCAS.2022.3160455

[143] Joonyoung Kim and Younsu Kim. 2014. HBM: Memory solution for bandwidth-hungry processors. In 2014 IEEE Hot
Chips 26 Symposium (HCS). 1–24. https://doi.org/10.1109/HOTCHIPS.2014.7478812

[144] Sangyeob Kim, Sangjin Kim, Soyeon Um, Soyeon Kim, Kwantae Kim, and Hoi-Jun Yoo. 2022. Neuro-CIM: A 310.4
TOPS/W Neuromorphic Computing-in-Memory Processor with LowWL/BL activity and Digital-Analog Mixed-mode
Neuron Firing. In 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). 38–39.
https://doi.org/10.1109/VLSITechnologyandCir46769.2022.9830276

[145] Johann Knechtel, Ozgur Sinanoglu, Ibrahim (Abe) M. Elfadel, Jens Lienig, and Cli� C. N. Sze. 2017. Large-Scale 3D
Chips: Challenges and Solutions for Design Automation, Testing, and Trustworthy Integration. IPSJ Transactions on
System and LSI Design Methodology 10 (2017), 45–62. https://doi.org/10.2197/ipsjtsldm.10.45

[146] James C. Knight and Thomas Nowotny. 2018. GPUs Outperform Current HPC and Neuromorphic Solutions in Terms
of Speed and Energy When Simulating a Highly-Connected Cortical Model. Frontiers in Neuroscience 12 (2018).
https://doi.org/10.3389/fnins.2018.00941

[147] Simon Knowles. 2021. Graphcore. In 2021 IEEE Hot Chips 33 Symposium (HCS). 1–25. https://doi.org/10.1109/
HCS52781.2021.9567075

[148] Tianqi Kong and Shuguo Li. 2021. Design and Analysis of Approximate 4–2 Compressors for High-Accuracy
Multipliers. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 29, 10 (2021), 1771–1781. https:
//doi.org/10.1109/TVLSI.2021.3104145

[149] Ronny Krashinsky, Olivier Giroux, Stephen Jones, Nick Stam, and Sridhar Ramaswamy. 2020. NVIDIA Ampere
Architecture In-Depth. Retrieved Apr 16, 2023 from https://developer.nvidia.com/blog/nvidia-ampere-architecture-
in-depth/

[150] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E. Hinton. 2012. ImageNet Classi�cation with Deep Convolutional
Neural Networks. In Advances in Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q.Weinberger (Eds.). Curran Associates, Inc., 1097–1105. http://papers.nips.cc/paper/4824-imagenet-classi�cation-
with-deep-convolutional-neural-networks.pdf

[151] Parag Kulkarni, Puneet Gupta, and Milos Ercegovac. 2011. Trading Accuracy for Power with an Underdesigned
Multiplier Architecture. In 2011 24th Internatioal Conference on VLSI Design. 346–351. https://doi.org/10.1109/VLSID.
2011.51

[152] Youngsu Kwon, Jinho Han, Yongcheol Peter Cho, Juyeob Kim, Jaehoon Chung, Jaewoong Choi, Sujin Park, Igyeong
Kim, Hyunjeong Kwon, Jinkyu Kim, Hyunmi Kim, Won Jeon, Youngdeuk Jeon, Minhyung Cho, and Minseok Choi.
2023. Chiplet Heterogeneous-Integration AI Processor. In 2023 International Conference on Electronics, Information,
and Communication (ICEIC).

[153] Young-Cheon Kwon, Suk Han Lee, Jaehoon Lee, Sang-Hyuk Kwon, Je Min Ryu, Jong-Pil Son, O Seongil, Hak-Soo
Yu, Haesuk Lee, Soo Young Kim, Youngmin Cho, Jin Guk Kim, Jongyoon Choi, Hyun-Sung Shin, Jin Kim, BengSeng
Phuah, HyoungMin Kim, Myeong Jun Song, Ahn Choi, Daeho Kim, SooYoung Kim, Eun-Bong Kim, David Wang,
Shinhaeng Kang, Yuhwan Ro, Seungwoo Seo, JoonHo Song, Jaeyoun Youn, Kyomin Sohn, and Nam Sung Kim. 2021.
25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit
Using Bank-Level Parallelism, for Machine Learning Applications. In 2021 IEEE International Solid- State Circuits
Conference (ISSCC), Vol. 64. 350–352. https://doi.org/10.1109/ISSCC42613.2021.9365862

[154] Jingjing Lan, Vishnu P. Nambiar, Rheeshaalaen Sabapathy, Mihai Dragos Rotaru, and Anh Tuan Do. 2021. Chiplet-
based Architecture Design for Multi-Core Neuromorphic Processor. In 2021 IEEE 23rd Electronics Packaging Technology
Conference (EPTC). 410–412. https://doi.org/10.1109/EPTC53413.2021.9663898

[155] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar, River Riddle, Tatiana
Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Domain
Speci�c Computation. In IEEE/ACM International Symposium on Code Generation and Optimization (CGO). 2–14.

[156] Cristóbal Ramírez Lazo, Enrico Reggiani, Carlos Rojas Morales, Roger Figueras Bagué, Luis A. Villa Vargas, Marco A.
Ramírez Salinas, Mateo Valero Cortés, Osman Sabri Ünsal, and Adrián Cristal. 2022. Adaptable Register File

https://doi.org/10.1016/j.jpdc.2018.11.012
https://doi.org/10.1016/j.jpdc.2018.11.012
https://doi.org/10.1109/ISCA.2016.41
https://doi.org/10.1109/JETCAS.2022.3160455
https://doi.org/10.1109/HOTCHIPS.2014.7478812
https://doi.org/10.1109/VLSITechnologyandCir46769.2022.9830276
https://doi.org/10.2197/ipsjtsldm.10.45
https://doi.org/10.3389/fnins.2018.00941
https://doi.org/10.1109/HCS52781.2021.9567075
https://doi.org/10.1109/HCS52781.2021.9567075
https://doi.org/10.1109/TVLSI.2021.3104145
https://doi.org/10.1109/TVLSI.2021.3104145
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1109/VLSID.2011.51
https://doi.org/10.1109/VLSID.2011.51
https://doi.org/10.1109/ISSCC42613.2021.9365862
https://doi.org/10.1109/EPTC53413.2021.9663898

A Survey on Deep Learning Accelerators for Heterogeneous HPC Platforms 49

Organization for Vector Processors. In 2022 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). 786–799. https://doi.org/10.1109/HPCA53966.2022.00063

[157] Yann LeCun, Yoshua Bengio, and Geo�rey Hinton. 2015. Deep learning. Nature 521, 7553 (2015), 436.
[158] Y. Lecun, L. Bottou, Y. Bengio, and P. Ha�ner. 1998. Gradient-based learning applied to document recognition. Proc.

IEEE 86, 11 (1998), 2278–2324. https://doi.org/10.1109/5.726791
[159] Sae Kyu Lee, Ankur Agrawal, Joel Silberman, Matthew Ziegler, Mingu Kang, Swagath Venkataramani, Nianzheng

Cao, Bruce Fleischer, Michael Guillorn, Matthew Cohen, Silvia M. Mueller, Jinwook Oh, Martin Lutz, Jinwook
Jung, Siyu Koswatta, Ching Zhou, Vidhi Zalani, Monodeep Kar, James Bonanno, Robert Casatuta, Chia-Yu Chen,
Jungwook Choi, Howard Haynie, Alyssa Herbert, Radhika Jain, Kyu-Hyoun Kim, Yulong Li, Zhibin Ren, Scot Rider,
Marcel Schaal, Kerstin Schelm, Michael R. Scheuermann, Xiao Sun, Hung Tran, Naigang Wang, Wei Wang, Xin
Zhang, Vinay Shah, Brian Curran, Vijayalakshmi Srinivasan, Pong-Fei Lu, Sunil Shukla, Kailash Gopalakrishnan,
and Leland Chang. 2022. A 7-nm Four-Core Mixed-Precision AI Chip With 26.2-TFLOPS Hybrid-FP8 Training,
104.9-TOPS INT4 Inference, and Workload-Aware Throttling. IEEE Journal of Solid-State Circuits 57, 1 (2022), 182–197.
https://doi.org/10.1109/JSSC.2021.3120113

[160] Sang Min Lee, Hanjoon Kim, Jeseung Yeon, Juyun Lee, Younggeun Choi, Minho Kim, Changjae Park, Kiseok
Jang, Youngsik Kim, Yongseung Kim, Changman Lee, Hyuck Han, Won Eung Kim, Rui Tang, and Joon Ho Baek.
2022. A 64-TOPS Energy-E�cient Tensor Accelerator in 14nm With Recon�gurable Fetch Network and Processing
Fusion for Maximal Data Reuse. IEEE Open Journal of the Solid-State Circuits Society 2 (2022), 219–230. https:
//doi.org/10.1109/OJSSCS.2022.3216798

[161] Yunsup Lee, Andrew Waterman, Rimas Avizienis, Henry Cook, Chen Sun, Vladimir Stojanović, and Krste Asanović.
2014. A 45nm 1.3 GHz 16.7 double-precision GFLOPS/W RISC-V processor with vector accelerators. In ESSCIRC
2014-40th European Solid State Circuits Conference (ESSCIRC). IEEE, 199–202.

[162] N. Lepri, A. Glukhov, L. Cattaneo, M. Farronato, P. Mannocci, and D. Ielmini. 2023. In-memory computing for machine
learning and deep learning. IEEE Journal of the Electron Devices Society (2023), 1–1. https://doi.org/10.1109/JEDS.
2023.3265875

[163] Gang Li, Zejian Liu, Fanrong Li, and Jian Cheng. 2021. Block Convolution: Towards Memory-E�cient Inference of
Large-Scale CNNs on FPGA. CoRR abs/2105.08937 (2021). arXiv:2105.08937 https://arxiv.org/abs/2105.08937

[164] Jiajun Li, Shuhao Jiang, Shijun Gong, Jingya Wu, Junchao Yan, Guihai Yan, and Xiaowei Li. 2019. SqueezeFlow:
A Sparse CNN Accelerator Exploiting Concise Convolution Rules. IEEE Trans. Comput. 68, 11 (2019), 1663–1677.
https://doi.org/10.1109/TC.2019.2924215

[165] Ling Li, Issam Hammad, and Kamal El-Sankary. 2021. Dual segmentation approximate
multiplier. Electronics Letters 57, 19 (2021), 718–720. https://doi.org/10.1049/ell2.12243
arXiv:https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/ell2.12243

[166] Yuan Li, Ahmed Louri, and Avinash Karanth. 2021. SPRINT: A high-performance, energy-e�cient, and scalable
chiplet-based accelerator with photonic interconnects for CNN inference. IEEE Transactions on Parallel and Distributed
Systems 33, 10 (2021), 2332–2345.

[167] Chien-Hung Lin, Chih-Chung Cheng, Yi-Min Tsai, Sheng-Je Hung, Yu-Ting Kuo, Perry H Wang, Pei-Kuei Tsung,
Jeng-Yun Hsu, Wei-Chih Lai, Chia-Hung Liu, Shao-Yu Wang, Chin-Hua Kuo, Chih-Yu Chang, Ming-Hsien Lee,
Tsung-Yao Lin, and Chih-Cheng Chen. 2020. A 3.4-to-13.3TOPS/W 3.6TOPS Dual-Core Deep-Learning Accelerator
for Versatile AI Applications in 7nm 5G Smartphone SoC. In 2020 IEEE International Solid- State Circuits Conference -
(ISSCC). 134–136. https://doi.org/10.1109/ISSCC19947.2020.9063111

[168] Mu-Shan Lin, Tze-Chiang Huang, Chien-Chun Tsai, King-Ho Tam, Cheng-Hsiang Hsieh, Tom Chen, Wen-Hung
Huang, Jack Hu, Yu-Chi Chen, Sandeep Kumar Goel, Chin-Ming Fu, Stefan Rusu, Chao-Chieh Li, Sheng-Yao Yang,
Mei Wong, Shu-Chun Yang, and Frank Lee. 2019. A 7nm 4GHz Arm-core-based CoWoS Chiplet Design for High
Performance Computing. In 2019 Symposium on VLSI Circuits.

[169] Chen Liu, Guillaume Bellec, Bernhard Vogginger, David Kappel, Johannes Partzsch, Felix Neumärker, Sebastian
Höppner, Wolfgang Maass, Steve B. Furber, Robert Legenstein, and Christian G. Mayr. 2018. Memory-E�cient Deep
Learning on a SpiNNaker 2 Prototype. Frontiers in Neuroscience 12 (2018). https://doi.org/10.3389/fnins.2018.00840

[170] L. Liu, J. Zhu, Z. Li, Y. Lu, Y. Deng, J. Han, S. Yin, and S. Wei. 2019. A Survey of Coarse-Grained Recon�gurable
Architecture and Design: Taxonomy, Challenges, and Applications. ACM Comput. Surv. 52, 6 (2019). https://doi.org/
10.1145/3357375

[171] Xiaoxiao Liu, Mengjie Mao, Beiye Liu, Hai Li, Yiran Chen, Boxun Li, Yu Wang, Hao Jiang, Mark Barnell, Qing Wu,
and Jianhua Yang. 2015. RENO: A high-e�cient recon�gurable neuromorphic computing accelerator design. In 2015
52nd ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6. https://doi.org/10.1145/2744769.2744900

[172] Zechun Liu, Kwang-Ting Cheng, Dong Huang, Eric Xing, and Zhiqiang Shen. 2022. Nonuniform-to-Uniform
Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 4932–4942. https://doi.org/10.1109/CVPR52688.2022.

https://doi.org/10.1109/HPCA53966.2022.00063
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/JSSC.2021.3120113
https://doi.org/10.1109/OJSSCS.2022.3216798
https://doi.org/10.1109/OJSSCS.2022.3216798
https://doi.org/10.1109/JEDS.2023.3265875
https://doi.org/10.1109/JEDS.2023.3265875
https://arxiv.org/abs/2105.08937
https://arxiv.org/abs/2105.08937
https://doi.org/10.1109/TC.2019.2924215
https://doi.org/10.1049/ell2.12243
https://arxiv.org/abs/https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/ell2.12243
https://doi.org/10.1109/ISSCC19947.2020.9063111
https://doi.org/10.3389/fnins.2018.00840
https://doi.org/10.1145/3357375
https://doi.org/10.1145/3357375
https://doi.org/10.1145/2744769.2744900
https://doi.org/10.1109/CVPR52688.2022.00489
https://doi.org/10.1109/CVPR52688.2022.00489

50 Cristina Silvano et al.

00489
[173] Yufei Ma, Yu Cao, Sarma Vrudhula, and Jae-sun Seo. 2018. Optimizing the Convolution Operation to Accelerate Deep

Neural Networks on FPGA. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 26, 7 (2018), 1354–1367.
https://doi.org/10.1109/TVLSI.2018.2815603

[174] Yufei Ma, Naveen Suda, Yu Cao, Jae-sun Seo, and Sarma Vrudhula. 2016. Scalable and modularized RTL compilation
of Convolutional Neural Networks onto FPGA. In 2016 26th International Conference on Field Programmable Logic and
Applications (FPL). 1–8. https://doi.org/10.1109/FPL.2016.7577356

[175] Raju Machupalli, Masum Hossain, and Mrinal Mandal. 2022. Review of ASIC accelerators for deep neural network.
Microprocessors and Microsystems 89 (2022), 104441. https://doi.org/10.1016/j.micpro.2022.104441

[176] Michal Machura, Michal Danilowicz, and Tomasz Kryjak. 2022. Embedded Object Detection with Custom LittleNet,
FINN and Vitis AI DCNN Accelerators. Journal of Low Power Electronics and Applications 12, 2 (2022). https:
//doi.org/10.3390/jlpea12020030

[177] David Mallasén, Raul Murillo, Alberto A. Del Barrio, Guillermo Botella, Luis Piñuel, and Manuel Prieto-Matias.
2022. PERCIVAL: Open-Source Posit RISC-V Core With Quire Capability. IEEE Transactions on Emerging Topics in
Computing 10, 3 (2022), 1241–1252. https://doi.org/10.1109/TETC.2022.3187199

[178] P. Y. Martinez, Y. Beilliard, M. Godard, D. Danovitch, D. Drouin, J. Charbonnier, P. Coudrain, A. Garnier, D. Lattard, P.
Vivet, S. Cheramy, E. Guthmuller, C. Fuguet Tortolero, V. Mengue, J. Durupt, A. Philippe, and D. Dutoit. 2020. ExaNoDe:
Combined Integration of Chiplets on Active Interposer with Bare Dice in a Multi-Chip-Module for Heterogeneous
and Scalable High Performance Compute Nodes. In 2020 IEEE Symposium on VLSI Technology.

[179] Rahul Mathur, Ajay Krishna Ananda Kumar, Lizy John, and Jaydeep P. Kulkarni. 2021. Thermal-Aware Design Space
Exploration of 3-D Systolic ML Accelerators. IEEE Journal on Exploratory Solid-State Computational Devices and
Circuits 7, 1 (2021), 70–78. https://doi.org/10.1109/JXCDC.2021.3092436

[180] Peter Mattson, Christine Cheng, Gregory Diamos, Cody Coleman, Paulius Micikevicius, David Patterson, Hanlin
Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf, et al. 2020. Mlperf training benchmark. Proceedings of Machine
Learning and Systems 2 (2020), 336–349.

[181] Peter Mattson, Vijay Janapa Reddi, Christine Cheng, Cody Coleman, Greg Diamos, David Kanter, Paulius Micikevicius,
David Patterson, Guenther Schmuelling, Hanlin Tang, Gu-Yeon Wei, and Carole-Jean Wu. 2020. MLPerf: An
Industry Standard Benchmark Suite for Machine Learning Performance. IEEE Micro 40, 2 (2020), 8–16. https:
//doi.org/10.1109/MM.2020.2974843

[182] Eitan Medina. 2019. [Habana Labs presentation]. In 2019 IEEE Hot Chips 31 Symposium (HCS). 1–29. https:
//doi.org/10.1109/HOTCHIPS.2019.8875670

[183] Micron. 2018. Hybrid Memory Cube – HMC Gen2 HMC Memory Features.
[184] Chuhan Min, Jiachen Mao, Hai Li, and Yiran Chen. 2019. NeuralHMC: An E�cient HMC-Based Accelerator for Deep

Neural Networks. In Proceedings of the 24th Asia and South Paci�c Design Automation Conference (Tokyo, Japan)
(ASPDAC ’19). Association for Computing Machinery, New York, NY, USA, 394–399. https://doi.org/10.1145/3287624.
3287642

[185] Francesco Minervini, Oscar Palomar, Osman Unsal, Enrico Reggiani, Josue Quiroga, Joan Marimon, Carlos Rojas,
Roger Figueras, Abraham Ruiz, Alberto Gonzalez, Jonnatan Mendoza, Ivan Vargas, César Hernandez, Joan Cabre, Lina
Khoirunisya, Mustapha Bouhali, Julian Pavon, Francesc Moll, Mauro Olivieri, Mario Kovac, Mate Kovac, Leon Dragic,
Mateo Valero, and Adrian Cristal. 2023. Vitruvius+: An Area-E�cient RISC-V Decoupled Vector Coprocessor for
High Performance Computing Applications. ACM Transactions on Architecture and Code Optimization 20, 2 (March
2023), 28:1–28:25. https://doi.org/10.1145/3575861

[186] Ivan Miro-Panades, Benoit Tain, Jean-Frédéric Christmann, David Coriat, Romain Lemaire, Clément Jany, Baudouin
Martineau, Fabrice Chaix, Guillaume Waltener, Emmanuel Pluchart, Jean-Philippe Noel, Adam Makosiej, Maxime
Montoya, Simone Bacles-Min, David Briand, Jean-Marc Philippe, Yvain Thonnart, Alexandre Valentian, Frédéric
Heitzmann, and Fabien Clermidy. 2022. SamurAI: A Versatile IoT Node With Event-Driven Wake-Up and Embedded
ML Acceleration. IEEE Journal of Solid-State Circuits (2022), 1–0. https://doi.org/10.1109/JSSC.2022.3198505

[187] Asit K. Mishra, Jorge Albericio Latorre, Je� Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh, Chong Yu, and
Paulius Micikevicius. 2021. Accelerating Sparse Deep Neural Networks. CoRR abs/2104.08378 (2021). https:
//arxiv.org/abs/2104.08378

[188] Gabriel Mounce, Jim Lyke, Stephen Horan, Wes Powell, Rich Doyle, and Ra� Some. 2016. Chiplet based approach for
heterogeneous processing and packaging architectures. In 2016 IEEE Aerospace Conference. 1–12.

[189] Francisco Muñoz Martínez, Raveesh Garg, Michael Pellauer, José L. Abellán, Manuel E. Acacio, and Tushar Krishna.
2023. Flexagon: A Multi-Data�ow Sparse-Sparse Matrix Multiplication Accelerator for E�cient DNN Processing.
In Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3 (Vancouver, BC, Canada) (ASPLOS 2023). 252–265. https://doi.org/10.1145/3582016.
3582069

https://doi.org/10.1109/CVPR52688.2022.00489
https://doi.org/10.1109/CVPR52688.2022.00489
https://doi.org/10.1109/CVPR52688.2022.00489
https://doi.org/10.1109/TVLSI.2018.2815603
https://doi.org/10.1109/FPL.2016.7577356
https://doi.org/10.1016/j.micpro.2022.104441
https://doi.org/10.3390/jlpea12020030
https://doi.org/10.3390/jlpea12020030
https://doi.org/10.1109/TETC.2022.3187199
https://doi.org/10.1109/JXCDC.2021.3092436
https://doi.org/10.1109/MM.2020.2974843
https://doi.org/10.1109/MM.2020.2974843
https://doi.org/10.1109/HOTCHIPS.2019.8875670
https://doi.org/10.1109/HOTCHIPS.2019.8875670
https://doi.org/10.1145/3287624.3287642
https://doi.org/10.1145/3287624.3287642
https://doi.org/10.1145/3575861
https://doi.org/10.1109/JSSC.2022.3198505
https://arxiv.org/abs/2104.08378
https://arxiv.org/abs/2104.08378
https://doi.org/10.1145/3582016.3582069
https://doi.org/10.1145/3582016.3582069

A Survey on Deep Learning Accelerators for Heterogeneous HPC Platforms 51

[190] Mitchell A. Nahmias, Thomas Ferreira de Lima, Alexander N. Tait, Hsuan-Tung Peng, Bhavin J. Shastri, and Paul R.
Prucnal. 2020. Photonic Multiply-Accumulate Operations for Neural Networks. IEEE Journal of Selected Topics in
Quantum Electronics 26, 1 (2020), 1–18. https://doi.org/10.1109/JSTQE.2019.2941485

[191] Srinivasan Narayanamoorthy, Hadi Asghari Moghaddam, Zhenhong Liu, Taejoon Park, and Nam Sung Kim. 2015.
Energy-E�cient Approximate Multiplication for Digital Signal Processing and Classi�cation Applications. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 23, 6 (2015), 1180–1184. https://doi.org/10.1109/TVLSI.
2014.2333366

[192] P. Narayanan, S. Ambrogio, A. Okazaki, K. Hosokawa, H. Tsai, A. Nomura, T. Yasuda, C. Mackin, S. C. Lewis, A. Friz, M.
Ishii, Y. Kohda, H. Mori, K. Spoon, R. Khaddam-Aljameh, N. Saulnier, M. Bergendahl, J. Demarest, K. W. Brew, V. Chan,
S. Choi, I. Ok, I. Ahsan, F. L. Lie, W. Haensch, V. Narayanan, and G.W. Burr. 2021. Fully On-ChipMAC at 14 nm Enabled
by Accurate Row-Wise Programming of PCM-Based Weights and Parallel Vector-Transport in Duration-Format. IEEE
Transactions on Electron Devices 68, 12 (2021), 6629–6636. https://doi.org/10.1109/TED.2021.3115993

[193] . Nitin, Mithuna Thottethodi, and T. N. Vijaykumar. 2018. Millipede: Die-Stacked Memory Optimizations for Big
Data Machine Learning Analytics. In 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
160–171. https://doi.org/10.1109/IPDPS.2018.00026

[194] Eriko Nurvitadhi, Dongup Kwon, Ali Jafari, Andrew Boutros, Jaewoong Sim, Phillip Tomson, Huseyin Sumbul,
Gregory Chen, Phil Knag, Raghavan Kumar, Ram Krishnamurthy, Sergey Gribok, Bogdan Pasca, Martin Langhammer,
Debbie Marr, and Aravind Dasu. 2019. Why Compete When You Can Work Together: FPGA-ASIC Integration
for Persistent RNNs. In 2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM). 199–207.

[195] NVidia. 2022. NVIDIA Announces DGX H100 Systems – World’s Most Advanced Enterprise AI Infrastructure. Re-
trieved May 11, 2023 from https://nvidianews.nvidia.com/news/nvidia-announces-dgx-h100-systems-worlds-most-
advanced-enterprise-ai-infrastructure

[196] NVidia. 2023. NVIDIA DGX Platform The best of NVIDIA AI—all in one place. Retrieved May 11, 2023 from
https://www.nvidia.com/en-us/data-center/dgx-platform/

[197] NVidia. 2023. NVLink and NVSwitch. Retrieved May 11, 2023 from https://www.nvidia.com/en-us/data-center/nvlink/
[198] Jinwook Oh, Sae Kyu Lee, Mingu Kang, Matthew Ziegler, Joel Silberman, Ankur Agrawal, Swagath Venkataramani,

Bruce Fleischer, Michael Guillorn, Jungwook Choi, Wei Wang, Silvia Mueller, Shimon Ben-Yehuda, James Bonanno,
Nianzheng Cao, Robert Casatuta, Chia-Yu Chen, Matt Cohen, Ophir Erez, Thomas Fox, George Gristede, Howard
Haynie, Vicktoria Ivanov, Siyu Koswatta, Shih-Hsien Lo, Martin Lutz, Gary Maier, Alex Mesh, Yevgeny Nustov, Scot
Rider, Marcel Schaal, Michael Scheuermann, Xiao Sun, Naigang Wang, Fanchieh Yee, Ching Zhou, Vinay Shah, Brian
Curran, Vijayalakshmi Srinivasan, Pong-Fei Lu, Sunil Shukla, Kailash Gopalakrishnan, and Leland Chang. 2020. A
3.0 TFLOPS 0.62V Scalable Processor Core for High Compute Utilization AI Training and Inference. In 2020 IEEE
Symposium on VLSI Circuits. 1–2. https://doi.org/10.1109/VLSICircuits18222.2020.9162917

[199] Geraldo F. Oliveira, Paulo C. Santos, Marco A. Z. Alves, and Luigi Carro. 2017. NIM: An HMC-Based Machine for
Neuron Computation. In Applied Recon�gurable Computing, Stephan Wong, Antonio Carlos Beck, Koen Bertels, and
Luigi Carro (Eds.). Springer International Publishing, Cham, 28–35.

[200] Gianmarco Ottavi, Angelo Garofalo, Giuseppe Tagliavini, Francesco Conti, Al�o Di Mauro, Luca Benini, and Davide
Rossi. 2023. Dustin: A 16-Cores Parallel Ultra-Low-Power Cluster With 2b-to-32b Fully Flexible Bit-Precision
and Vector Lockstep Execution Mode. IEEE Transactions on Circuits and Systems I: Regular Papers (2023), 1–14.
https://doi.org/10.1109/TCSI.2023.3254810

[201] Eustace Painkras, Luis A. Plana, Jim Garside, Steve Temple, Francesco Galluppi, Cameron Patterson, David R. Lester,
Andrew D. Brown, and Steve B. Furber. 2013. SpiNNaker: A 1-W 18-Core System-on-Chip for Massively-Parallel
Neural Network Simulation. IEEE Journal of Solid-State Circuits 48, 8 (2013), 1943–1953. https://doi.org/10.1109/JSSC.
2013.2259038

[202] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rangharajan Venkatesan, Brucek Khailany,
Joel Emer, StephenW. Keckler, andWilliam J. Dally. 2017. SCNN: AnAccelerator for Compressed-Sparse Convolutional
Neural Networks. In Proceedings of the 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture
(ISCA’17). 27–40. https://doi.org/10.1145/3079856.3080254

[203] Gunho Park, Jaeha Kung, and Youngjoo Lee. 2021. Design and Analysis of Approximate Compressors for Balanced
Error Accumulation in MAC Operator. IEEE Transactions on Circuits and Systems I: Regular Papers 68, 7 (2021),
2950–2961. https://doi.org/10.1109/TCSI.2021.3073177

[204] Jongsoo Park, Sheng R. Li, Wei Wen, Hai Li, Yiran Chen, and Pradeep Dubey. 2016. Holistic SparseCNN: Forging the
Trident of Accuracy, Speed, and Size. CoRR abs/1608.01409 (2016). http://arxiv.org/abs/1608.01409

[205] Jongsoo Park, Maxim Naumov, Protonu Basu, Summer Deng, Aravind Kalaiah, Daya Shanker Khudia, James Law,
Parth Malani, Andrey Malevich, Nadathur Satish, Juan Miguel Pino, Martin Schatz, Alexander Sidorov, Viswanath
Sivakumar, Andrew Tulloch, Xiaodong Wang, Yiming Wu, Hector Yuen, Utku Diril, Dmytro Dzhulgakov, Kim M.

https://doi.org/10.1109/JSTQE.2019.2941485
https://doi.org/10.1109/TVLSI.2014.2333366
https://doi.org/10.1109/TVLSI.2014.2333366
https://doi.org/10.1109/TED.2021.3115993
https://doi.org/10.1109/IPDPS.2018.00026
https://nvidianews.nvidia.com/news/nvidia-announces-dgx-h100-systems-worlds-most-advanced-enterprise-ai-infrastructure
https://nvidianews.nvidia.com/news/nvidia-announces-dgx-h100-systems-worlds-most-advanced-enterprise-ai-infrastructure
https://www.nvidia.com/en-us/data-center/dgx-platform/
https://www.nvidia.com/en-us/data-center/nvlink/
https://doi.org/10.1109/VLSICircuits18222.2020.9162917
https://doi.org/10.1109/TCSI.2023.3254810
https://doi.org/10.1109/JSSC.2013.2259038
https://doi.org/10.1109/JSSC.2013.2259038
https://doi.org/10.1145/3079856.3080254
https://doi.org/10.1109/TCSI.2021.3073177
http://arxiv.org/abs/1608.01409

52 Cristina Silvano et al.

Hazelwood, Bill Jia, Yangqing Jia, Lin Qiao, Vijay Rao, Nadav Rotem, Sungjoo Yoo, and Mikhail Smelyanskiy. 2018.
Deep Learning Inference in Facebook Data Centers: Characterization, Performance Optimizations and Hardware
Implications. CoRR abs/1811.09886 (2018). http://arxiv.org/abs/1811.09886

[206] Jun-Seok Park, Jun-Woo Jang, Heonsoo Lee, Dongwoo Lee, Sehwan Lee, Hanwoong Jung, Seungwon Lee, Suknam
Kwon, Kyungah Jeong, Joon-Ho Song, SukHwan Lim, and Inyup Kang. 2021. A 6K-MAC Feature-Map-Sparsity-Aware
Neural Processing Unit in 5nm Flagship Mobile SoC. In 2021 IEEE International Solid- State Circuits Conference (ISSCC),
Vol. 64. 152–154. https://doi.org/10.1109/ISSCC42613.2021.9365928

[207] Jun-Seok Park, Changsoo Park, Suknam Kwon, Hyeong-Seok Kim, Taeho Jeon, Yesung Kang, Heonsoo Lee, Dongwoo
Lee, James Kim, YoungJong Lee, Sangkyu Park, Jun-Woo Jang, SangHyuck Ha, MinSeong Kim, Jihoon Bang, Suk Hwan
Lim, and Inyup Kang. 2022. A Multi-Mode 8K-MAC HW-Utilization-Aware Neural Processing Unit with a Uni�ed
Multi-Precision Datapath in 4nm Flagship Mobile SoC. In 2022 IEEE International Solid- State Circuits Conference
(ISSCC), Vol. 65. 246–248. https://doi.org/10.1109/ISSCC42614.2022.9731639

[208] Seong-Wook Park, Junyoung Park, Kyeongryeol Bong, Dongjoo Shin, Jinmook Lee, Sungpill Choi, and Hoi-Jun Yoo.
2015. An Energy-E�cient and Scalable Deep Learning/Inference Processor With Tetra-Parallel MIMD Architecture
for Big Data Applications. IEEE Transactions on Biomedical Circuits and Systems 9, 6 (2015), 838–848. https:
//doi.org/10.1109/TBCAS.2015.2504563

[209] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems
32. Curran Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-
performance-deep-learning-library.pdf

[210] Gianna Paulin, Renzo Andri, Francesco Conti, and Luca Benini. 2021. RNN-Based Radio Resource Management on
Multicore RISC-V Accelerator Architectures. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 29, 9
(Sept. 2021), 1624–1637. https://doi.org/10.1109/TVLSI.2021.3093242

[211] J. Thomas Pawlowski. 2011. Hybrid memory cube (HMC). In 2011 IEEE Hot Chips 23 Symposium (HCS). 1–24.
https://doi.org/10.1109/HOTCHIPS.2011.7477494

[212] Maurice Peemen, Arnaud A. A. Setio, Bart Mesman, and Henk Corporaal. 2013. Memory-centric accelerator design
for Convolutional Neural Networks. In 2013 IEEE 31st International Conference on Computer Design (ICCD). 13–19.
https://doi.org/10.1109/ICCD.2013.6657019

[213] Matteo Perotti, Matheus Cavalcante, Nils Wisto�, Renzo Andri, Lukas Cavigelli, and Luca Benini. 2022. A “New
Ara” for Vector Computing: An Open Source Highly E�cient RISC-V V 1.0 Vector Processor Design. In 2022 IEEE
33rd International Conference on Application-speci�c Systems, Architectures and Processors (ASAP). 43–51. https:
//doi.org/10.1109/ASAP54787.2022.00017

[214] Stefania Perri, Cristian Sestito, Fanny Spagnolo, and Pasquale Corsonello. 2020. E�cient Deconvolution Architecture
for Heterogeneous Systems-on-Chip. Journal of Imaging 6, 9 (2020). https://doi.org/10.3390/jimaging6090085

[215] Nicola Petra, Davide De Caro, Valeria Garofalo, Ettore Napoli, and Antonio Giuseppe Maria Strollo. 2011. Design of
Fixed-Width Multipliers With Linear Compensation Function. IEEE Transactions on Circuits and Systems I: Regular
Papers 58, 5 (2011), 947–960. https://doi.org/10.1109/TCSI.2010.2090572

[216] Kartik Prabhu, Albert Gural, Zainab F Khan, Robert M Radway, Massimo Giordano, Kalhan Koul, Rohan Doshi,
John W Kustin, Timothy Liu, Gregorio B Lopes, et al. 2022. CHIMERA: A 0.92-TOPS, 2.2-TOPS/W edge AI accelerator
with 2-MByte on-chip foundry resistive RAM for e�cient training and inference. IEEE Journal of Solid-State Circuits
57, 4 (2022), 1013–1026.

[217] Arpan Prasad, Luca Benini, and Francesco Conti. 2023. Specialization Meets Flexibility: A Heterogeneous Architecture
for High-E�ciency, High-�exibility AR/VR Processing. In Proceedings of the 2023 Design Automation Conference (DAC
2023), to Appear.

[218] Morgan Prickett. 2022. The HBM3 roadmap is just getting started. https://www.nextplatform.com/2022/04/06/the-
hbm3-roadmap-is-just-getting-started/. Accessed: 18/04/2023.

[219] Matt Proud. 2018. ACHIEVING MAXIMUM COMPUTE THROUGHPUT: PCIE VS. SXM2. Retrieved May 11, 2023 from
https://www.nextplatform.com/micro-site-content/achieving-maximum-compute-throughput-pcie-vs-sxm2/

[220] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan Srinivasan, Dipankar Das, Bharat Kaul,
and Tushar Krishna. 2020. SIGMA: A Sparse and Irregular GEMM Accelerator with Flexible Interconnects for
DNN Training. In Proceedings of the 2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA’20). 58–70. https://doi.org/10.1109/HPCA47549.2020.00015

[221] Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, and Nicu Sebe. 2020. Binary neural networks: A
survey. Pattern Recognition 105 (2020), 107281. https://doi.org/10.1016/j.patcog.2020.107281

[222] QISKIT 2023. IBM Qiskit Simulator. https://qiskit.org/

http://arxiv.org/abs/1811.09886
https://doi.org/10.1109/ISSCC42613.2021.9365928
https://doi.org/10.1109/ISSCC42614.2022.9731639
https://doi.org/10.1109/TBCAS.2015.2504563
https://doi.org/10.1109/TBCAS.2015.2504563
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1109/TVLSI.2021.3093242
https://doi.org/10.1109/HOTCHIPS.2011.7477494
https://doi.org/10.1109/ICCD.2013.6657019
https://doi.org/10.1109/ASAP54787.2022.00017
https://doi.org/10.1109/ASAP54787.2022.00017
https://doi.org/10.3390/jimaging6090085
https://doi.org/10.1109/TCSI.2010.2090572
https://www.nextplatform.com/2022/04/06/the-hbm3-roadmap-is-just-getting-started/
https://www.nextplatform.com/2022/04/06/the-hbm3-roadmap-is-just-getting-started/
https://www.nextplatform.com/micro-site-content/achieving-maximum-compute-throughput-pcie-vs-sxm2/
https://doi.org/10.1109/HPCA47549.2020.00015
https://doi.org/10.1016/j.patcog.2020.107281
https://qiskit.org/

A Survey on Deep Learning Accelerators for Heterogeneous HPC Platforms 53

[223] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng Yu, Tianqi Tang, Ningyi Xu, Sen
Song, Yu Wang, and Huazhong Yang. 2016. Going Deeper with Embedded FPGA Platform for Convolutional Neural
Network. Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (2016).

[224] Atul Rahman, Sangyun Oh, Jongeun Lee, and Kiyoung Choi. 2017. Design space exploration of FPGA accelerators
for convolutional neural networks. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017.
1147–1152. https://doi.org/10.23919/DATE.2017.7927162

[225] Nitin Rathi, Indranil Chakraborty, Adarsh Kosta, Abhronil Sengupta, Aayush Ankit, Priyadarshini Panda, and Kaushik
Roy. 2023. Exploring Neuromorphic Computing Based on Spiking Neural Networks: Algorithms to Hardware. ACM
Comput. Surv. 55, 12 (2023). https://doi.org/10.1145/3571155

[226] Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth Samsi, and Jeremy Kepner. 2022. AI and
ML Accelerator Survey and Trends. In 2022 IEEE High Performance Extreme Computing Conference (HPEC). 1–10.
https://doi.org/10.1109/HPEC55821.2022.9926331

[227] Cli�Robinson. 2022. NVIDIAH100Hopper Details at HC34 as itWaits for Next-GenCPUs. https://www.servethehome.
com/nvidia-h100-hopper-details-at-hc34-as-it-waits-for-next-gen-cpus/. Accessed: 18/04/2023.

[228] F. Rosenblatt. 1957. The perceptron - A perceiving and recognizing automaton. Technical Report 85-460-1. Cornell
Aeronautical Laboratory, Ithaca, New York.

[229] Davide Rossi, Francesco Conti, Manuel Eggiman, Al�o DiMauro, Giuseppe Tagliavini, StefanMach, Marco Guermandi,
Antonio Pullini, Igor Loi, Jie Chen, Eric Flamand, and Luca Benini. 2022. Vega: A Ten-Core SoC for IoT Endnodes
With DNN Acceleration and Cognitive Wake-Up From MRAM-Based State-Retentive Sleep Mode. IEEE Journal of
Solid-State Circuits 57, 1 (Jan. 2022), 127–139. https://doi.org/10.1109/JSSC.2021.3114881

[230] Murugan Sankaradas, Venkata Jakkula, Srihari Cadambi, Srimat Chakradhar, Igor Durdanovic, Eric Cosatto, and
Hans Peter Graf. 2009. A Massively Parallel Coprocessor for Convolutional Neural Networks. In Proceedings of the
2009 20th IEEE International Conference on Application-Speci�c Systems, Architectures and Processors. IEEE Computer
Society, USA, 53–60. https://doi.org/10.1109/ASAP.2009.25

[231] Jürgen Schmidhuber. 2014. Deep Learning in Neural Networks: An Overview. CoRR abs/1404.7828 (2014).
arXiv:1404.7828 http://arxiv.org/abs/1404.7828

[232] Jürgen Schmidhuber. 2015. Deep learning in neural networks: An overview. Neural Networks 61 (2015), 85–117.
https://doi.org/10.1016/j.neunet.2014.09.003

[233] Jae-sun Seo, Bernard Brezzo, Yong Liu, Benjamin D. Parker, Steven K. Esser, Robert K. Montoye, Bipin Rajendran,
José A. Tierno, Leland Chang, Dharmendra S. Modha, and Daniel J. Friedman. 2011. A 45nm CMOS neuromorphic
chip with a scalable architecture for learning in networks of spiking neurons. In 2011 IEEE Custom Integrated Circuits
Conference (CICC). 1–4. https://doi.org/10.1109/CICC.2011.6055293

[234] Cristian Sestito, Fanny Spagnolo, and Stefania Perri. 2021. Design of Flexible Hardware Accelerators for Image
Convolutions and Transposed Convolutions. Journal of Imaging 7, 10 (2021). https://www.mdpi.com/2313-433X/7/
10/210

[235] Ali Sha�ee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian, John Paul Strachan, Miao Hu, R. Stanley
Williams, and Vivek Srikumar. 2016. ISAAC: A Convolutional Neural Network Accelerator with in-Situ Analog
Arithmetic in Crossbars. In Proceedings of the 43rd International Symposium on Computer Architecture. 14–26. https:
//doi.org/10.1109/ISCA.2016.12

[236] Junnan Shan, Mario R. Casu, Jordi Cortadella, Luciano Lavagno, and Mihai T. Lazarescu. 2019. Exact and Heuris-
tic Allocation of MuIti-kernel Applications to Multi-FPGA Platforms. In 2019 56th ACM/IEEE Design Automation
Conference (DAC). 1–6.

[237] Yakun Sophia Shao, Jason Clemons, Rangharajan Venkatesan, Brian Zimmer, Matthew Fojtik, Nan Jiang, Ben Keller,
Alicia Klinefelter, Nathaniel Pinckney, Priyanka Raina, Stephen G. Tell, Yanqing Zhang, William J. Dally, Joel Emer,
C. Thomas Gray, Brucek Khailany, and Stephen W. Keckler. 2019. Simba: Scaling Deep-Learning Inference with
Multi-Chip-Module-Based Architecture. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture (Columbus, OH, USA) (MICRO ’52). Association for Computing Machinery, New York, NY, USA,
14–27. https://doi.org/10.1145/3352460.3358302

[238] Harsh Sharma, Sumit K Mandal, Janardhan Rao Doppa, Umit Y Ogras, and Partha Pratim Pande. 2022. SWAP: A
Server-Scale Communication-Aware Chiplet-Based Manycore PIM Accelerator. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 41, 11 (2022), 4145–4156.

[239] Bhavin J. Shastri, Alexander N. Tait, T. Ferreira de Lima, Wolfram H. P. Pernice, Harish Bhaskaran, C. D. Wright, and
Paul R. Prucnal. 2021. Photonics for arti�cial intelligence and neuromorphic computing. Nature Photonics 15 (2021),
102–114. https://doi.org/10.1038/s41566-020-00754-y

[240] Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum
Computer. SIAM J. Comput. 26, 5 (oct 1997), 1484–1509. https://doi.org/10.1137/s0097539795293172

https://doi.org/10.23919/DATE.2017.7927162
https://doi.org/10.1145/3571155
https://doi.org/10.1109/HPEC55821.2022.9926331
https://www.servethehome.com/nvidia-h100-hopper-details-at-hc34-as-it-waits-for-next-gen-cpus/
https://www.servethehome.com/nvidia-h100-hopper-details-at-hc34-as-it-waits-for-next-gen-cpus/
https://doi.org/10.1109/JSSC.2021.3114881
https://doi.org/10.1109/ASAP.2009.25
https://arxiv.org/abs/1404.7828
http://arxiv.org/abs/1404.7828
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1109/CICC.2011.6055293
https://www.mdpi.com/2313-433X/7/10/210
https://www.mdpi.com/2313-433X/7/10/210
https://doi.org/10.1109/ISCA.2016.12
https://doi.org/10.1109/ISCA.2016.12
https://doi.org/10.1145/3352460.3358302
https://doi.org/10.1038/s41566-020-00754-y
https://doi.org/10.1137/s0097539795293172

54 Cristina Silvano et al.

[241] Siemens. 2022. Catapult C++/Systemc Synthesis. https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/
hls/c-cplus/

[242] Kyomin Sohn, Won-Joo Yun, Reum Oh, Chi-Sung Oh, Seong-Young Seo, Min-Sang Park, Dong-Hak Shin, Won-Chang
Jung, Sang-Hoon Shin, Je-Min Ryu, Hye-Seung Yu, Jae-Hun Jung, Hyunui Lee, Seok-Yong Kang, Young-Soo Sohn,
Jung-Hwan Choi, Yong-Cheol Bae, Seong-Jin Jang, and Gyoyoung Jin. 2017. A 1.2 V 20 nm 307 GB/s HBM DRAM
With At-Speed Wafer-Level IO Test Scheme and Adaptive Refresh Considering Temperature Distribution. IEEE
Journal of Solid-State Circuits 52, 1 (2017), 250–260. https://doi.org/10.1109/JSSC.2016.2602221

[243] Jinook Song, Yunkyo Cho, Jun-Seok Park, Jun-Woo Jang, Sehwan Lee, Joon-Ho Song, Jae-Gon Lee, and Inyup
Kang. 2019. An 11.5TOPS/W 1024-MAC Butter�y Structure Dual-Core Sparsity-Aware Neural Processing Unit in
8nm Flagship Mobile SoC. In 2019 IEEE International Solid- State Circuits Conference - (ISSCC). 130–132. https:
//doi.org/10.1109/ISSCC.2019.8662476

[244] Linghao Song, Xuehai Qian, Hai Li, and Yiran Chen. 2017. PipeLayer: A Pipelined ReRAM-Based Accelerator for
Deep Learning. In 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA). 541–552.
https://doi.org/10.1109/HPCA.2017.55

[245] P. Soussan, Deniz Sabuncuoglu Tezcan, Francois Iker, Wouter Ruythooren, Bart Swinnen, Bivragh Majeed, and Eric
Beyne. 2008. 3D Wafer Level Packaging: Processes and Materials for Trough Silicon Vias & Thin Die Embedding. In
MRS Online Proceedings Library, Vol. 1112. https://doi.org/10.1557/PROC-1112-E01-05

[246] F. Spagnolo, P. Corsonello, F. Frustaci, and S. Perri. 2023. Design of a Low-Power Super-Resolution Architecture for
Virtual Reality Wearable Devices. IEEE Sensors Journal 23, 8 (2023), 9009–9016. https://doi.org/10.1109/JSEN.2023.
3256524

[247] Fanny Spagnolo, Stefania Perri, and Pasquale Corsonello. 2020. Design of a real-time face detection architecture for
heterogeneous systems-on-chips. Integration 74 (2020), 1–10. https://doi.org/10.1016/j.vlsi.2020.04.008

[248] F. Spagnolo, S. Perri, and P. Corsonello. 2022. Aggressive Approximation of the SoftMax Function for Power-E�cient
Hardware Implementations. IEEE Transactions on Circuits and Systems II: Express Briefs 69, 3 (2022), 1652–1656.
https://doi.org/10.1109/TCSII.2021.3120495

[249] F. Spagnolo, S. Perri, and P. Corsonello. 2022. Approximate Down-Sampling Strategy for Power-Constrained Intelligent
Systems. IEEE Access 10 (2022), 7073–7081. https://doi.org/10.1109/ACCESS.2022.3142292

[250] Suraj Srinivas and R. Venkatesh Babu. 2015. Data-free Parameter Pruning for Deep Neural Networks. CoRR
abs/1507.06149 (2015). http://arxiv.org/abs/1507.06149

[251] Vinay Sriram, David Cox, Kuen Tsoi, and Wayne Luk. 2011. Towards an embedded biologically-inspired machine
vision processor. 273–278. https://doi.org/10.1109/FPT.2010.5681487

[252] Dylan Stow, Itir Akgun, Russell Barnes, Peng Gu, and Yuan Xie. 2016. Cost analysis and cost-driven IP reuse
methodology for SoC design based on 2.5D/3D integration. In 2016 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD).

[253] Dylan Stow, Yuan Xie, Taniya Siddiqua, and Gabriel H. Loh. 2017. Cost-e�ective design of scalable high-performance
systems using active and passive interposers. In 2017 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). 728–735. https://doi.org/10.1109/ICCAD.2017.8203849

[254] Antonio Giuseppe Maria Strollo, Ettore Napoli, Davide De Caro, Nicola Petra, and Gennaro Di Meo. 2020. Comparison
and Extension of Approximate 4-2 Compressors for Low-Power Approximate Multipliers. IEEE Transactions on
Circuits and Systems I: Regular Papers 67, 9 (2020), 3021–3034. https://doi.org/10.1109/TCSI.2020.2988353

[255] Antonio Giuseppe Maria Strollo, Ettore Napoli, Davide De Caro, Nicola Petra, Gerardo Saggese, and Gennaro Di Meo.
2022. Approximate Multipliers Using Static Segmentation: Error Analysis and Improvements. IEEE Transactions on
Circuits and Systems I: Regular Papers 69, 6 (2022), 2449–2462. https://doi.org/10.1109/TCSI.2022.3152921

[256] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. 2015. Going deeper with convolutions. In 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 1–9. https://doi.org/10.1109/CVPR.2015.7298594

[257] Thierry Tambe, Je� Zhang, Coleman Hooper, Tianyu Jia, Paul N. Whatmough, Joseph Zuckerman, Maico Cassel Dos
Santos, Erik Jens Loscalzo, Davide Giri, Kenneth Shepard, Luca Carloni, Alexander Rush, David Brooks, and Gu-Yeon
Wei. 2023. 22.9 A 12nm 18.1TFLOPs/W Sparse Transformer Processor with Entropy-Based Early Exit, Mixed-Precision
Predication and Fine-Grained Power Management. In 2023 IEEE International Solid- State Circuits Conference (ISSCC).
IEEE, San Francisco, CA, USA, 342–344. https://doi.org/10.1109/ISSCC42615.2023.10067817

[258] Wenkai Tang and Peiyong Zhang. 2022. GPGCN: A General-Purpose Graph Convolution Neural Network Accelerator
Based on RISC-V ISA Extension. Electronics 11, 22 (2022). https://doi.org/10.3390/electronics11223833

[259] Yvan Tortorella, Luca Bertaccini, Luca Benini, Davide Rossi, and Francesco Conti. 2023. RedMule: A Mixed-Precision
Matrix-Matrix Operation Engine for Flexible and Energy-E�cient On-Chip Linear Algebra and TinyML Training
Acceleration. https://doi.org/10.48550/arXiv.2301.03904 arXiv:arXiv:2301.03904

https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/hls/c-cplus/
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/hls/c-cplus/
https://doi.org/10.1109/JSSC.2016.2602221
https://doi.org/10.1109/ISSCC.2019.8662476
https://doi.org/10.1109/ISSCC.2019.8662476
https://doi.org/10.1109/HPCA.2017.55
https://doi.org/10.1557/PROC-1112-E01-05
https://doi.org/10.1109/JSEN.2023.3256524
https://doi.org/10.1109/JSEN.2023.3256524
https://doi.org/10.1016/j.vlsi.2020.04.008
https://doi.org/10.1109/TCSII.2021.3120495
https://doi.org/10.1109/ACCESS.2022.3142292
http://arxiv.org/abs/1507.06149
https://doi.org/10.1109/FPT.2010.5681487
https://doi.org/10.1109/ICCAD.2017.8203849
https://doi.org/10.1109/TCSI.2020.2988353
https://doi.org/10.1109/TCSI.2022.3152921
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/ISSCC42615.2023.10067817
https://doi.org/10.3390/electronics11223833
https://doi.org/10.48550/arXiv.2301.03904
https://arxiv.org/abs/arXiv:2301.03904

A Survey on Deep Learning Accelerators for Heterogeneous HPC Platforms 55

[260] Yvan Tortorella, Luca Bertaccini, Davide Rossi, Luca Benini, and Francesco Conti. 2022. RedMulE: A Compact
FP16 Matrix-Multiplication Accelerator for Adaptive Deep Learning on RISC-V-based Ultra-Low-Power SoCs. In
Proceedings of the 2022 Conference & Exhibition on Design, Automation & Test in Europe (DATE ’22). European Design
and Automation Association, Leuven, BEL, 1099–1102.

[261] Mehdi Trabelsi Ajili and Yuko Hara-Azumi. 2022. Multimodal Neural Network Acceleration on a Hybrid CPU-FPGA
Architecture: A Case Study. IEEE Access 10 (2022), 9603–9617. https://doi.org/10.1109/ACCESS.2022.3144977

[262] Yu-Chi Tsao and Ken Choi. 2012. Area-E�cient VLSI Implementation for Parallel Linear-Phase FIR Digital Filters of
Odd Length Based on Fast FIR Algorithm. IEEE Transactions on Circuits and Systems II: Express Briefs 59, 6 (2012),
371–375. https://doi.org/10.1109/TCSII.2012.2195062

[263] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott, Philip Leong, Magnus Jahre, and Kees
Vissers. 2017. FINN: A Framework for Fast, Scalable Binarized Neural Network Inference. In Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA ’17). Association for Computing
Machinery, New York, NY, USA, 65–74. https://doi.org/10.1145/3020078.3021744

[264] Paramita Basak Upama, Md Jobair Hossain Faruk, Mohammad Nazim, Mohammad Masum, Hossain Shahriar, Gias
Uddin, Shabir Barzanjeh, Sheikh Iqbal Ahamed, and Akond Rahman. 2022. Evolution of Quantum Computing: A
Systematic Survey on the Use of Quantum Computing Tools. arXiv:2204.01856 [cs.SE]

[265] Akihiko Ushiroyama, Minoru Watanabe, Nobuya Watanabe, and Akira Nagoya. 2022. Convolutional neural network
implementations using Vitis AI. In 2022 IEEE 12th Annual Computing and Communication Workshop and Conference
(CCWC). 0365–0371. https://doi.org/10.1109/CCWC54503.2022.9720794

[266] T. J. Yang J. S. Emer V. Sze, Y. H. Chen. 2017. E�cient Processing of Deep Neural Networks: A Tutorial and Survey.
Proc. IEEE 105, 12 (2017), 2295–2329. https://doi.org/10.1109/JPROC.2017.2761740

[267] Shaghayegh Vahdat, Mehdi Kamal, Ali Afzali-Kusha, and Massoud Pedram. 2019. TOSAM: An Energy-E�cient
Truncation- and Rounding-Based Scalable Approximate Multiplier. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 27, 5 (2019), 1161–1173. https://doi.org/10.1109/TVLSI.2018.2890712

[268] Jurgen Vandendriessche, Bruno Da Silva, and Abdellah Touha�. 2022. Frequency Evaluation of the Xilinx DPU
Towards Energy E�ciency. In IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society. 1–6.
https://doi.org/10.1109/IECON49645.2022.9968811

[269] Jasmina Vasiljevic, Ljubisa Bajic, Davor Capalija, Stanislav Sokorac, Dragoljub Ignjatovic, Lejla Bajic, Milos Trajkovic,
Ivan Hamer, Ivan Matosevic, Aleksandar Cejkov, Utku Aydonat, Tony Zhou, Syed Zohaib Gilani, Armond Paiva,
Joseph Chu, Djordje Maksimovic, Stephen Alexander Chin, Zahi Moudallal, Akhmed Rakhmati, Sean Nijjar, Almeet
Bhullar, Boris Drazic, Charles Lee, James Sun, Kei-Ming Kwong, James Connolly, Miles Dooley, Hassan Farooq, Joy
Yu Ting Chen, Matthew Walker, Keivan Dabiri, Kyle Mabee, Rakesh Shaji Lal, Namal Rajatheva, Renjith Retnamma,
Shripad Karodi, Daniel Rosen, Emilio Munoz, Andrew Lewycky, Aleksandar Knezevic, Raymond Kim, Allan Rui,
Alexander Drouillard, and David Thompson. 2021. Compute Substrate for Software 2.0. IEEE Micro 41, 2 (March
2021), 50–55. https://doi.org/10.1109/MM.2021.3061912

[270] Stylianos I. Venieris and Christos-Savvas Bouganis. 2019. fpgaConvNet: Mapping Regular and Irregular Convolutional
Neural Networks on FPGAs. IEEE Transactions on Neural Networks and Learning Systems 30, 2 (2019), 326–342.
https://doi.org/10.1109/TNNLS.2018.2844093

[271] Stylianos I Venieris, Alexandros Kouris, and Christos-Savvas Bouganis. 2018. Tool�ows for mapping convolutional
neural networks on FPGAs: A survey and future directions. ACM Computing Surveys (CSUR) 51, 3 (2018), 1–39.

[272] Swagath Venkataramani, Vijayalakshmi Srinivasan,WeiWang, Sanchari Sen, Jintao Zhang, AnkurAgrawal,Monodeep
Kar, Shubham Jain, Alberto Mannari, Hoang Tran, Yulong Li, Eri Ogawa, Kazuaki Ishizaki, Hiroshi Inoue, Marcel
Schaal, Mauricio Serrano, Jungwook Choi, Xiao Sun, Naigang Wang, Chia-Yu Chen, Allison Allain, James Bonano,
Nianzheng Cao, Robert Casatuta, Matthew Cohen, Bruce Fleischer, Michael Guillorn, Howard Haynie, Jinwook
Jung, Mingu Kang, Kyu-hyoun Kim, Siyu Koswatta, Saekyu Lee, Martin Lutz, Silvia Mueller, Jinwook Oh, Ashish
Ranjan, Zhibin Ren, Scot Rider, Kerstin Schelm, Michael Scheuermann, Joel Silberman, Jie Yang, Vidhi Zalani,
Xin Zhang, Ching Zhou, Matt Ziegler, Vinay Shah, Moriyoshi Ohara, Pong-Fei Lu, Brian Curran, Sunil Shukla,
Leland Chang, and Kailash Gopalakrishnan. 2021. RaPiD: AI Accelerator for Ultra-low Precision Training and
Inference. In 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA). 153–166. https:
//doi.org/10.1109/ISCA52012.2021.00021

[273] Marian Verhelst, Man Shi, and Linyan Mei. 2022. ML Processors Are Going Multi-Core: A performance dream or a
scheduling nightmare? IEEE Solid-State Circuits Magazine 14, 4 (2022), 18–27.

[274] Thiruvengadam Vijayaraghavan, Yasuko Eckert, Gabriel H. Loh, Michael J. Schulte, Mike Ignatowski, Bradford M.
Beckmann, William C. Brantley, Joseph L. Greathouse, Wei Huang, Arun Karunanithi, Onur Kayiran, Mitesh Meswani,
Indrani Paul, Matthew Poremba, Steven Raasch, Steven K. Reinhardt, Greg Sadowski, and Vilas Sridharan. 2017.
Design and Analysis of an APU for Exascale Computing. In 2017 IEEE International Symposium on High Performance
Computer Architecture (HPCA). 85–96.

https://doi.org/10.1109/ACCESS.2022.3144977
https://doi.org/10.1109/TCSII.2012.2195062
https://doi.org/10.1145/3020078.3021744
https://arxiv.org/abs/2204.01856
https://doi.org/10.1109/CCWC54503.2022.9720794
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/TVLSI.2018.2890712
https://doi.org/10.1109/IECON49645.2022.9968811
https://doi.org/10.1109/MM.2021.3061912
https://doi.org/10.1109/TNNLS.2018.2844093
https://doi.org/10.1109/ISCA52012.2021.00021
https://doi.org/10.1109/ISCA52012.2021.00021

56 Cristina Silvano et al.

[275] Pascal Vivet, Eric Guthmuller, Yvain Thonnart, Gael Pillonnet, César Fuguet, Ivan Miro-Panades, Guillaume Moritz,
Jean Durupt, Christian Bernard, Didier Varreau, Julian Pontes, Sébastien Thuries, David Coriat, Michel Harrand,
Denis Dutoit, Didier Lattard, Lucile Arnaud, Jean Charbonnier, Perceval Coudrain, Arnaud Garnier, Frédéric Berger,
Alain Gueugnot, Alain Greiner, Quentin L. Meunier, Alexis Farcy, Alexandre Arriordaz, Séverine Chéramy, and
Fabien Clermidy. 2021. IntAct: A 96-Core Processor With Six Chiplets 3D-Stacked on an Active Interposer With
Distributed Interconnects and Integrated Power Management. IEEE Journal of Solid-State Circuits 56, 1 (2021), 79–97.

[276] Ofer Shacham Preeth Venkatesan Christos Kozyrakis Mark Horowitz Wajahat Qadeer, Rehan Hameed. 2015. Con-
volution engine: balancing e�ciency and �exibility in specialized computing. Commun. ACM 58, 4 (2015), 85–93.
https://doi.org/10.1145/2735841

[277] Weier Wan, Rajkumar Kubendran, Clemens Schaefer, Sukru Burc Eryilmaz, Wenqiang Zhang, Dabin Wu, Stephen
Deiss, Priyanka Raina, He Qian, Bin Gao, Siddharth Joshi, Huaqiang Wu, H.-S. Philip Wong, and Gert Cauwenberghs.
2022. A compute-in-memory chip based on resistive random-access memory. Nature 608, 7923 (01 Aug 2022), 504–512.
https://doi.org/10.1038/s41586-022-04992-8

[278] Huizheng Wang, Weihong Xu, Zaichen Zhang, Xiaohu You, and Chuan Zhang. 2022. An E�cient Stochastic
Convolution Architecture Based on Fast FIR Algorithm. IEEE Transactions on Circuits and Systems II: Express Briefs
69, 3 (2022), 984–988. https://doi.org/10.1109/TCSII.2021.3121081

[279] Jin Wang and Shenshen Gu. 2021. FPGA Implementation of Object Detection Accelerator Based on Vitis-AI. In
2021 11th International Conference on Information Science and Technology (ICIST). 571–577. https://doi.org/10.1109/
ICIST52614.2021.9440554

[280] Jichen Wang, Jun Lin, and Zhongfeng Wang. 2018. E�cient Hardware Architectures for Deep Convolutional
Neural Network. IEEE Transactions on Circuits and Systems I: Regular Papers 65, 6 (2018), 1941–1953. https:
//doi.org/10.1109/TCSI.2017.2767204

[281] Shihang Wang, Jianghan Zhu, Qi Wang, Can He, and Terry Tao Ye. 2021. Customized Instruction on RISC-V for
Winograd-Based Convolution Acceleration. In 2021 IEEE 32nd International Conference on Application-speci�c Systems,
Architectures and Processors (ASAP). 65–68. https://doi.org/10.1109/ASAP52443.2021.00018

[282] Yizhi Wang, Jun Lin, and Zhongfeng Wang. 2019. FPAP: A Folded Architecture for Energy-Quality Scalable Convolu-
tional Neural Networks. IEEE Transactions on Circuits and Systems I: Regular Papers 66 (2019), 288–301.

[283] Sally Ward-Foxton. 2022. Axelera Demos AI Test Chip After Taping Out in Four Months. (2022).
[284] Pete Warden and Daniel Situnayake. 2019. TinyML. O’Reilly Media, Inc.
[285] Xuechao Wei, Cody Hao Yu, Peng Zhang, Youxiang Chen, Yuxin Wang, Han Hu, Yun Liang, and Jason Cong.

2017. Automated systolic array architecture synthesis for high throughput CNN inference on FPGAs. In 2017 54th
ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6. https://doi.org/10.1145/3061639.3062207

[286] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning Structured Sparsity in Deep Neural
Networks. In Proceedings of the 30th International Conference on Neural Information Processing Systems (Barcelona,
Spain) (NIPS’16). Curran Associates Inc., Red Hook, NY, USA, 2082–2090.

[287] Xilinx Inc. 2022. Vitis High-Level Synthesis User Guide. https://www.xilinx.com/support/documentation/sw_manuals/
xilinx2022_2/ug1399-vitis-hls.pdf

[288] Zhou Yu Xuan, Ching-Jui Lee, and Tsung Tai Yeh. 2022. Lego: Dynamic Tensor-Splitting Multi-Tenant DNN
Models on Multi-Chip-Module Architecture. In 2022 19th International SoC Design Conference (ISOCC). 173–174.
https://doi.org/10.1109/ISOCC56007.2022.10031596

[289] Cheng-Xin Xue, Wei-Hao Chen, Je-Syu Liu, Jia-Fang Li, Wei-Yu Lin, Wei-En Lin, Jing-Hong Wang, Wei-Chen Wei,
Ting-Wei Chang, Tung-Cheng Chang, Tsung-Yuan Huang, Hui-Yao Kao, Shih-Ying Wei, Yen-Cheng Chiu, Chun-Ying
Lee, Chung-Chuan Lo, Ya-Chin King, Chorng-Jung Lin, Ren-Shuo Liu, Chih-Cheng Hsieh, Kea-Tiong Tang, and
Meng-Fan Chang. 2019. A 1Mb Multibit ReRAM Computing-In-Memory Macro with 14.6ns Parallel MAC Computing
Time for CNN Based AI Edge Processors. In 2019 IEEE International Solid- State Circuits Conference - (ISSCC). 388–390.
https://doi.org/10.1109/ISSCC.2019.8662395

[290] Zhixi Yang, Jie Han, and Fabrizio Lombardi. 2015. Approximate compressors for error-resilient multiplier design. In
2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS). 183–186.
https://doi.org/10.1109/DFT.2015.7315159

[291] Amir Yazdanbakhsh, Kambiz Samadi, Nam Sung Kim, Hadi Esmaeilzadeh, Hajar Falahati, and Philip J. Wolfe. 2018.
GANAX: A Uni�ed MIMD-SIMD Acceleration for Generative Adversarial Networks. In 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA). 650–661. https://doi.org/10.1109/ISCA.2018.00060

[292] Hanchen Ye, HyeGang Jun, Hyunmin Jeong, Stephen Neuendor�er, and Deming Chen. 2022. ScaleHLS: A Scalable
High-Level Synthesis Framework with Multi-Level Transformations and Optimizations. In Proceedings of the 59th
ACM/IEEE Design Automation Conference (DAC). 1355–1358.

[293] Efstratios Zacharelos, Italo Nunziata, Gerardo Saggese, Antonio G.M. Strollo, and Ettore Napoli. 2022. Approximate
Recursive Multipliers Using Low Power Building Blocks. IEEE Transactions on Emerging Topics in Computing 10, 3

https://doi.org/10.1145/2735841
https://doi.org/10.1038/s41586-022-04992-8
https://doi.org/10.1109/TCSII.2021.3121081
https://doi.org/10.1109/ICIST52614.2021.9440554
https://doi.org/10.1109/ICIST52614.2021.9440554
https://doi.org/10.1109/TCSI.2017.2767204
https://doi.org/10.1109/TCSI.2017.2767204
https://doi.org/10.1109/ASAP52443.2021.00018
https://doi.org/10.1145/3061639.3062207
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2022_2/ug1399-vitis-hls.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2022_2/ug1399-vitis-hls.pdf
https://doi.org/10.1109/ISOCC56007.2022.10031596
https://doi.org/10.1109/ISSCC.2019.8662395
https://doi.org/10.1109/DFT.2015.7315159
https://doi.org/10.1109/ISCA.2018.00060

A Survey on Deep Learning Accelerators for Heterogeneous HPC Platforms 57

(2022), 1315–1330. https://doi.org/10.1109/TETC.2022.3186240
[294] Florian Zaruba, Fabian Schuiki, and Luca Benini. 2021. Manticore: A 4096-Core RISC-V Chiplet Architecture for

Ultrae�cient Floating-Point Computing. IEEE Micro 41, 2 (March 2021), 36–42. https://doi.org/10.1109/MM.2020.
3045564

[295] Georgios Zervakis, Kostas Tsoumanis, Sotirios Xydis, Dimitrios Soudris, and Kiamal Pekmestzi. 2016. Design-E�cient
Approximate Multiplication Circuits Through Partial Product Perforation. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 24, 10 (2016), 3105–3117. https://doi.org/10.1109/TVLSI.2016.2535398

[296] Chen Zhang, Di Wu, Jiayu Sun, Guangyu Sun, Guojie Luo, and Jason Cong. 2016. Energy-E�cient CNN Im-
plementation on a Deeply Pipelined FPGA Cluster. In Proceedings of the 2016 International Symposium on Low
Power Electronics and Design. Association for Computing Machinery, New York, NY, USA, 326–331. https:
//doi.org/10.1145/2934583.2934644

[297] Jie-Fang Zhang, Ching-En Lee, Chester Liu, Yakun Sophia Shao, StephenW. Keckler, and Zhengya Zhang. 2019. SNAP:
A 1.67 — 21.55TOPS/W Sparse Neural Acceleration Processor for Unstructured Sparse Deep Neural Network Inference
in 16nm CMOS. In 2019 Symposium on VLSI Circuits. C306–C307. https://doi.org/10.23919/VLSIC.2019.8778193

[298] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo, Tianshi Chen, and Yunji Chen. 2016.
Cambricon-X: An accelerator for sparse neural networks. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO) (Taipei, Taiwan) (MICRO-49). Article 20, 12 pages. https://doi.org/10.1109/MICRO.2016.
7783723

[299] Xiaowu Zhang, Jong Kai Lin, Sunil Wickramanayaka, Songbai Zhang, Roshan Weerasekera, Rahul Dutta, Ka Fai
Chang, King-Jien Chui, Hong Yu Li, David Soon Wee Ho, Liang Ding, Guruprasad Katti, Suryanarayana Bhattacharya,
and Dim-Lee Kwong. 2015. Heterogeneous 2.5D integration on through silicon interposer. Applied Physics Reviews 2,
2 (2015). https://doi.org/10.1063/1.4921463

[300] Yongwei Zhao, Chang Liu, Zidong Du, Qi Guo, Xing Hu, Yimin Zhuang, Zhenxing Zhang, Xinkai Song, Wei Li,
Xishan Zhang, Ling Li, Zhiwei Xu, and Tianshi Chen. 2021. Cambricon-Q: A Hybrid Architecture for E�cient
Training. In 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA). 706–719. https:
//doi.org/10.1109/ISCA52012.2021.00061

[301] Brian Zimmer, Rangharajan Venkatesan, Yakun Sophia Shao, Jason Clemons, Matthew Fojtik, Nan Jiang, Ben Keller,
Alicia Klinefelter, Nathaniel Pinckney, Priyanka Raina, Stephen G. Tell, Yanqing Zhang, William J. Dally, Joel S. Emer,
C. Thomas Gray, Stephen W. Keckler, and Brucek Khailany. 2020. A 0.32–128 TOPS, Scalable Multi-Chip-Module-
Based Deep Neural Network Inference Accelerator With Ground-Referenced Signaling in 16 nm. IEEE Journal of
Solid-State Circuits 55, 4 (2020), 920–932. https://doi.org/10.1109/JSSC.2019.2960488

https://doi.org/10.1109/TETC.2022.3186240
https://doi.org/10.1109/MM.2020.3045564
https://doi.org/10.1109/MM.2020.3045564
https://doi.org/10.1109/TVLSI.2016.2535398
https://doi.org/10.1145/2934583.2934644
https://doi.org/10.1145/2934583.2934644
https://doi.org/10.23919/VLSIC.2019.8778193
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1063/1.4921463
https://doi.org/10.1109/ISCA52012.2021.00061
https://doi.org/10.1109/ISCA52012.2021.00061
https://doi.org/10.1109/JSSC.2019.2960488

	CN_HPC_FL2_survey-3.pdf
	Abstract
	1 Introduction
	2 Deep Learning Background: Concepts and Terminology
	3 GPU- and TPU-based accelerators
	3.1 GPU-based accelerators
	3.2 TPU-based accelerators

	4 Hardware Accelerators
	4.1 Reconfigurable Hardware Accelerators
	4.2 ASIC-based Accelerators
	4.3 EDA Frameworks
	4.4 Accelerators based on open-hardware RISC-V

	5 Accelerators based on Emerging Computing Paradigms
	5.1 Arithmetic Data-paths
	5.2 Accelerators for Sparse Matrices
	5.3 Emerging 3D-stacked Processing-in-memory Technologies
	5.4 In-memory computing accelerators based on emerging memories
	5.5 Full-digital Neuromorphic Accelerators
	5.6 Accelerators based on Multi-Chip Modules

	6 Open Challenges and Conclusions
	Acknowledgments
	References

