
SPOKE 1

FUTURE HPC & BIG DATA

FLAGSHIP 2:
Selection of candidate prototypes for software frame-

work for acceleration Accel-SW-spec

EXECUTIVE SUMMARY

This document overviews and selects frameworks and tools for the acceleration of Deep Learning
models for HPC systems, according to the main objectives described in the milestone #5, Spoke 1 -
Flagship 2 WP2: Flagship on heterogeneous acceleration, architecture, tools, and software (Leader:
POLIMI).

The field of deep learning has made significant progress in recent years, with many breakthroughs and
advancements. As neural networks become more complex, there is an urgent need for efficient hard-
ware accelerators. Creating these accelerators requires expertise from various fields, such as computer
architecture, approximate computing, computational models, and deep learning algorithms. Moreover,
existing architectures for accelerators in deep learning applications are highly heterogeneous. So, to
achieve high performance and energy efficiency while minimizing power consumption and area metrics,
designers have adopted various methodologies, including high-level synthesis methodologies, specific
customized compilers, tools for design space exploration, modeling, profiling, partitioning, and map-
ping. These methods focus on maximizing parallelism and minimizing data movement to optimize ac-
celerator design for deep learning applications. Understanding existing frameworks and tools is crucial
for fostering innovation in this domain.

The document is structured according to different topics and sub-topics. Section 2 presents the de-
sign methodologies for the high-level synthesis of accelerators, while Section 3 discusses automated
compilation and deployment technologies for deep learning-based applications. Section 4 introduces
approaches and tools that have been proposed to distribute, partition and map deep-learning models
on heterogeneous processing systems. Section 5 describes the modeling, simulation, profiling, and de-
sign exploration frameworks currently adopted for deep-learning-based applications. The last Section
presents models of computations for HPC Deep Learning application workloads. Each of the sections in
which this document has been organized covers existing notable and influential contributions and offers
a perspective on each of the existing approaches with respect to the work that the research group will
do in Flagship 2 Spoke 1 "FutureHPC & BigData” of the Italian Research Center on High-Performance
Computing.

Perspectives on Design Methodologies for Heterogeneous
HPC Platforms for Deep Learning

FABRIZIO FERRANDI, SERENACURZEL, LEANDROFIORIN, DANIELE IELMINI, andCRISTINA
SILVANO, Politecnico di Milano, Italy
FRANCESCOCONTI, ALESSIOBURRELLO, FRANCESCOBARCHI, and LUCABENINI,Uni-
versità di Bologna, Italy
LUCIANO LAVAGNO and TEODORO URSO, Politecnico di Torino, Italy
ENRICO CALORE, SEBASTIANO FABIO SCHIFANO, and CRISTIAN ZAMBELLI, Università
degli Studi di Ferrara, Italy
MAURIZIO PALESI, GIUSEPPE ASCIA, and DAVIDE PATTI, Università degli Studi di Catania,
Italy
STEFANIA PERRI, Università degli Studi della Calabria, Italy
NICOLA PETRA, DAVIDE DE CARO, and GENNARO DI MEO, Università degli Studi di Napoli
Federico II, Italy
VALERIA CARDELLINI, SALVATORE FILIPPONE, and FRANCESCO LO PRESTI, Università
degli Studi di Roma “Tor Vergata”, Italy
FRANCESCO SILVESTRI, Università degli Studi di Padova, Italy
PAOLO PALAZZARI, ENEA, Italy

In recent years, the �eld of deep learning has seen signi�cant advancements and breakthroughs. With the
increasing complexity of deep neural networks, the need of e�cient hardware accelerators has become more
and more pressing. The design of such accelerators requires a multidisciplinary approach, combining expertise
from computer architecture, approximate computing, computational models, and deep learning algorithms.
Various methodologies have been adopted to design accelerators for deep learning, including high-level
synthesis methodologies, speci�c customized compilers, tools for design space exploration, modeling, pro�ling,
partitioning, and mapping. These methodologies aim to maximize parallelism and minimize data movement
to achieve high performance and energy e�ciency, while also reducing power consumption and area. This
document represents a comprehensive survey that explores and evaluates the most notable approaches in the
�eld and o�ers a perspective on each of the existing approaches with respect to the work done in Flagship 2
Spoke 1 "FutureHPC & BigData" of the Italian Research Center on High-Performance Computing.

1 INTRODUCTION
The �eld of deep learning has made signi�cant progresses in recent years, with many breakthroughs
and advancements. As arti�cial neural networks have becomemore complex, there is an urgent need
of e�cient hardware accelerators. Creating these accelerators requires expertise from various �elds,

Authors’ addresses: Fabrizio Ferrandi, fabrizio.ferrandi@polimi.it; Serena Curzel, serena.curzel@polimi.it; Leandro Fiorin,
leandro.�orin@polimi.it; Daniele Ielmini, daniele.ielmini@polimi.it; Cristina Silvano, cristina.silvano@polimi.it, Politecnico
di Milano, Italy; Francesco Conti, f.conti@unibo.it; Alessio Burrello, alessio.burrello@unibo.it; Francesco Barchi, francesco.
barchi@unibo.it; Luca Benini, luca.benini@unibo.it, Università di Bologna, Viale Carlo Pepoli, 3/2, 40123, Bologna, Italy;
Luciano Lavagno, luciano.lavagno@polito.it; Teodoro Urso, teodoro.urso@polito.it, Politecnico di Torino, Italy; Enrico
Calore, enrico.calore@infn.fe.it; Sebastiano Fabio Schifano, schsst@unife.it; Cristian Zambelli, cristian.zambelli@unife.it,
Università degli Studi di Ferrara, Via Giuseppe Saragat, 1, 44122, Ferrara, Italy; Maurizio Palesi, maurizio.palesi@unict.it;
Giuseppe Ascia, giuseppe.ascia@unict.it; Davide Patti, davide.patti@unict.it, Università degli Studi di Catania, Italy; Stefania
Perri, s.perri@unical.it, Università degli Studi della Calabria, Italy; Nicola Petra, nicola.petra@unina.it; Davide De Caro,
dadecaro@unina.it; Gennaro Di Meo, gennaro.dimeo@unina.it, Università degli Studi di Napoli Federico II, Italy; Valeria
Cardellini, cardellini@ing.uniroma2.it; Salvatore Filippone, salvatore.�lippone@uniroma2.it; Francesco Lo Presti, lopresti@
info.uniroma2.it, Università degli Studi di Roma “Tor Vergata”, Italy; Francesco Silvestri, francesco.silvestri@unipd.it,
Università degli Studi di Padova, Italy; Paolo Palazzari, paolo.palazzari@enea.it, ENEA, Italy.

2 Fabrizio Ferrandi et al.

such as computer architecture, approximate computing, computational models, and deep learning
algorithms. Moreover, existing architectures for accelerators in deep learning applications are highly
heterogeneous. So, to achieve high performance and energy e�ciency, while minimizing power
consumption and area metrics, designers have adopted various methodologies, including high-
level synthesis methodologies, speci�c customized compilers, tools for design space exploration,
modeling, pro�ling, partitioning, and mapping. These methods focus on maximizing parallelism
and minimizing data movement to optimize accelerator design for deep learning applications.
Understanding existing frameworks and tools is crucial for fostering innovation in this domain.
Aim and organization of the document. The document is structured according to di�erent

topics and sub-topics. As shown in Figure 1, the document deals with the design methodologies
for heterogeneous HPC platforms for Deep Learning. Each section covers notable and in�uential
contributions and tries to put in perspective the work that the research group will do with respect to
the Flagship 2 Spoke 1 "FutureHPC & BigData” of the Italian Research Center on High-Performance
Computing.

The document is structured as follows: Section 2 presents the design methodologies for the high-
level synthesis of accelerators, while Section 3 discusses automated compilation and deployment
technologies for deep learning-based applications. Section 4 introduces approaches and tools that
have been proposed to distribute, partition and map deep-learning models on heterogeneous
processing systems. Section 5 describes the modeling, simulation, pro�ling, and design exploration
frameworks currently adopted for DL-based applications. The last Section presents models of
computations for HPC Deep Learning application workloads.

To conclude, we hope this survey could be useful for a wide range of readers, including computer
architects, hardware & software developers, tool developers, HPC engineers, researchers, and
technical professionals. A major e�ort was spent to use a clear and concise technical writing style:
we hope this e�ort could be useful in particular to the young generations of master and Ph.D.
students. To facilitate the reading, a list of acronyms is reported in Table 1.

Table 1. List of acronyms

Acronym Acronym Acronym

AI: Arti�cial Intelligence ASIC: Application Speci�c Integrated Circuit AXI: Advanced eXtensible Interface
BLAS: Basic Linear Algebra Subprogram BRAM: Block Random Access Memory CIM: compute-in-memory
CLA: Carry-Look-Ahead CNN: Convolutional Neural Network CPU: Central Processing Unit
DDDG: Dynamic Data Dependence Graph DL: Deep Learning DMA: Direct Memory Access
DNN: Deep Neural Network DP: Double Precision DRAM: Dynamic Random Access Memory
DSP: Digital Signal Processing DSE: Design Space Exploration FFT: Fast Fourier Transform
FIFO: First In, First Out memory FP: Floating Point FPGA: Field-Programmable Gate Array
GCC: GNU Compiler Collection GEMM: General Matrix Multiply GPU: Graphics Processing Unit
GNN: Graph Neural Network HBM: High Bandwidth Memory HDL: Hardware Description Language
HLS: High Level Synthesis HPC: High-Performance Computing HPZMO: High Performance Zero-Memory Overhead
IEEE: Institute of Electrical and Electronics Engineers II: Initiation Interval IP: Intellectual property
IR: Intermediate Representation ISA: Instruction Set Architecture LNS: Logarithmic Number System
LUT: Lookup Table MCU:Microcontroller Unit MEC:Memory-e�cient Convolution
ML: Machine Learning MLIR:Multi-Level Intermediate Representation NN: Neural Network
NoC: Network on Chip OpenMP: Open Multi-Processing PE: Processing Element
PIM: Processing In-Memory PPA: Power, Performance, Area PPA: Parallel-Pre�x Architectures
PRAM: Parallel Random Access Machine QoR: Quality of Results RAM: Random Access Memory
RAM: Random Access Machine RISC: Reduced Instruction Set Computer RTL: Register transfer level
RU: Resource Units SIMD: Single Instruction Multiple Data SoC: System on Chip
SP: Single Precision SPP: Structured Parallel Programming SRAM: Static Random Access Memory
VHDL: Very High Speed Integrated Circuit (VHSIC) Hardware Description Language VLDA: NVIDIA Deep Learning Accelerator XML: Extensible Markup Language
IMC: In-Memory Computing

2 HLS DESIGN-BASED METHODOLOGIES
In essence, high-level synthesis (HLS) serves as a link between software and hardware modeling,
o�ering a variety of advantages. A �rst advantage is the ability towork at a higher level of abstraction
when developing high-performance hardware, which boosts the productivity of hardware designers
due to faster design changes andmuch faster functional veri�cation. Moreover, HLS o�ers the ability

Perspectives on Design Methodologies for Heterogeneous HPC Platforms for Deep Learning 3

Document Organization
§§§ 2 HLS Design-based methodologies

Vitis High-Level Synthesis
Development Flow
Optimization Directives

The Bambu open-source High-level Synthesis
Other HLS tools
hls4ml and FINN
MLIR-based approaches
IP block integration

§§§ 3 Deep Learning Compilers
Memory hierarchy management in DNN Accelerators
Deep Learning Compilers for MCUs
Deep Learning Compilers for High-Performance

§§§ 4 Hardware/Software Codesign tools: application mapping and partitioning
§§§ 5 Modeling Simulation Pro�ling and Exploration

Modeling Simulation and Exploration Frameworks
Simulation tools for emerging memories-based DNN accelerator
Cycle-Accurate Simulators
Modeling and Pro�ling FPGAs for custom accelerators

§§§ 6 Computational Models for HPC Applications
Theoretical Models of Computations

Tensor cores accelerators
Processing-in-memory architectures

Linear Algebra Tensors Machine Learning Deep Learning
Linear Algebra algorithms
Algorithmic Optimizations for CNN Acceleration

Parallel Patterns
From Algorithmic Skeletons to Parallel Design Patterns
Existing Research and Industrial Frameworks
The FastFlow Parallel Programming Framework

Approximate Computing

Fig. 1. Organization of the document

HLS Design-based methodologies

HLS tools

Vitis High-Level Synthesis [247]
Bambu [87]

Intel HLS Compiler [113]
Catapult [213]
Stratus HLS [33]

LegUp [38]

HLS-based DL frameworks

hls4ml [76]
FINN [27]

MLIR-based approaches

MLIR [139]
CIRCT [58]

ScaleHLS [252, 253]
SODA Synthesizer [9, 29]

IP block integration and interface protocols

OpenFPGA CoreLib core library interoperability e�ort [151]
AXI protocol interface [1]

IP-XACT [2]
IEEE 1735-2014 [3]

Vitis block integration [247, 248]

Fig. 2. HLS Design-based methodologies discussed in Section 2

to create various solutions on several platforms (e.g., larger or smaller FPGAs) without altering the
C/C++ source code, by just changing design directives. This makes it possible to explore the design
space and �nd the best implementation much faster than with low-level hardware design. Note that
code must be written with a hardware implementation in mind in order to meet given performance
and resource usage requirements. Arbitrary software code, written for a CPU target, can achieve
very low performance, since it typically does not expose enough parallelism to exploit the spatial

4 Fabrizio Ferrandi et al.

Fig. 3. Vitis HLS workflow (from [247])

concurrency available on an FPGA or an ASIC. A survey about HLS-based design methodologies,
with a focus on the acceleration of deep learning (DL) models, is summarized in Figure 2 and detailed
in the following sub-sections. Flagship2 selects as candidate software frameworks for the HLS of
complex DL applications the commercial tool Vitis HLS and the open-source tool PandA-Bambu.
This will foster innovation by allowing the implementation of new methodologies not yet available
in closed-source tools and guarantee state-of-the-art quality of results provided by established
commercial tools.

2.1 Vitis High-Level Synthesis
The Xilinx High-Level Synthesis tool, called Vitis HLS, allows designers to write a design to
be implemented on an FPGA using high-level languages such as C and C++, rather than using
RTL languages such as Verilog and VHDL. This design is then translated into RTL automatically,
which in turn can be implemented on an FPGA. Vitis HLS signi�cantly simpli�es the tedious,
time-consuming, and error-prone process of creating RTL code, which formerly required designers
to grapple with low-level hardware implementation.

2.1.1 Development Flow. Figure 3 illustrates the Vitis HLS Development Flow:
• Architect the algorithm using C/C++, keeping in mind the need to expose parallelism
when implemented, via pipelining and data�ow (see below).

• C-Simulation: Compile and execute the C/C++ code to simulate its behavior and ensure
that it works as expected, by checking its functionality with a C/C++ testbench.

• C-Synthesis: Generate the RTL, by synthesizing the C/C++ top function. To instruct
the synthesis process to carry out a certain optimization, HLS synthesis directives and
constraints can be imposed directly, as discussed below. When C synthesis is �nished,
a comprehensive report with time and hardware resource usage estimation is produced,
o�ering the designer crucial references for subsequent re�nement and optimization.

Perspectives on Design Methodologies for Heterogeneous HPC Platforms for Deep Learning 5

• Co-Simulation: C/RTL Co-Simulation in Vitis HLS refers to the process of verifying and
validating a hardware design written in RTL (register-transfer level) using the same C/C++
simulation testbench that was used for C functional simulation before. It thus provides the
designer with cycle-accurate performance information (and it can also spot synthesis tool
bugs).

• QOR analysis: Review and investigate the HLS synthesis reports and co-simulation reports.
• Repeat the prior steps until the desired Quality of Results has been achieved.

2.1.2 Optimization Directives. HLS synthesis directives, also known as HLS pragmas, are essential
for optimizing the HLS process in Vitis HLS. Pragmas provide directives to the compiler, guiding the
generation of hardware implementations from high-level C/C++ code. They enable users to control
the micro-architectural aspects of the design, while the macro-architecture is de�ned by the C/C++
code, allowing for the optimization of speci�c objectives such as resource usage, performance (both
number of clock cycles and clock period), or power consumption.
In Vitis HLS there are several types of synthesis directives, namely loop-level, variable-level,

data�ow-level and operation-level. These optimizations can signi�cantly improve the performance
of the synthesized hardware, albeit often at the expense of increased resource utilization.

• Loop-level pragmas focus on optimizing the execution of loops in the design, supporting
loop pipelining, loop unrolling, loop �attening, etc.
Loop pipelining reduces the initiation interval (II), i.e. the number of cycles between suc-
cessive executions of the loop body, by allowing the concurrent execution of operations.
Figure 4 shows an example of the same function with andwithout loop pipelining (pipelining
can also be applied to a function body, with the same e�ect).

Fig. 4. Comparison of a function execution with and without loop pipelining in Vitis HLS (from [247])

Loop unrolling creates multiple independent copies of the loop, which enables some or all
loop iterations to occur in parallel, with a signi�cant resource cost.
Loop �attening allows nested loops to be �attened into a single loop, so that the body of
the innermost loop is always restarted with its own II, without the cycle time overhead of
restarting upper level loops.

• Variable-level pragmas are applied to speci�c variables in the design and can be used to
control their storage or interface access characteristics. Examples include array partitioning,
which can break an array into smaller sub-arrays, improving parallel access, and array
reshaping, which changes the array’s storage organization to optimize speci�c access
patterns. They result in RTL with several small memories or multiple registers instead of

6 Fabrizio Ferrandi et al.

one large memory. They e�ectively increases the amount of read and write ports for the
storage and hence potentially improves the throughput of the design. Of course, they also
require more memory instances or registers, as is usual when improving performance. As is
well known from HW design theory (consider e.g. the roo�ine diagram model), computation
parallelism must be matched to memory access parallelism in order to create an optimal
implementation.
These pragmas can also control the implementation of the underlying RAM, e.g. by de�ning
the number of read and write ports, which in turn determines the RAM resource usage.
Other pragmas of this kind de�ne the access protocol for top-level function argument,
which become interface ports of the RTL. For example a scalar top argument can be read
or written with an AXI stream protocol, using ready and valid signals for handshaking.
Or it can be read from or written to a register which is also read or written by the code
running on the processor that manages the FPGA logic (also called “host code”), for HW/SW
interfacing.
A pointer top argument can be mapped to an on-chip RAM (also known as BRAM) or to the
o�-chip DRAM on the board, via an AXI-4 master port connected to the DRAM controller.

• Data�ow pragmas enable task-level, i.e. coarse-grained pipelining, in which functions calls
are executed in a pipelined fashion, computing the same result as if they were executed one
after the other like the original C/C++ code. This essentially enables hierarchical pipelining
and can dramatically improve the performance of an application. Scalar or array variables
written and read by functions that are in a “data�ow region” are converted into FIFO
channels and Ping-Pong bu�ers in order to ensure functional correctness with respect to
the C/C++ code.

• Operation-level pragmas determine the kind of resources to be used for speci�c operations.
For example, a multiplier with small operands can be best implemented using Look-Up
Tables (LUTs), while a wider one can exploit hardwired multiply and add resources, known
as DSP units. Moreover, the designer can decide how many resources to allocate for a given
kind of operation (e.g. a multiplication) in a given scope (e.g. a function or loop body). While
Vitis HLS uses its own heuristics to make these resource kind and sharing selections, the
designer can control them directly, to achieve a speci�c performance and resource QOR
result.

2.2 The Bambu open-source High-level Synthesis
Bambu is a command-line tool developed by Politecnico di Milano aimed at assisting the designer
during the HLS of complex applications. It supports most of the C/C++ constructs, including
function calls and sharing of the modules, pointer arithmetic and dynamic resolution of memory
accesses, accesses to arrays and structs, parameters passed by reference or copy, andmanymore. The
whole �ow is quite similar to a software compilation �ow: it starts from a high-level speci�cation,
and it produces low-level code after a sequence of analysis and optimization steps. Like in a
standard software compilation �ow, Bambu has three phases (see Figure 5): front-end, middle-
end, and back-end. In the front-end, the input code is parsed and translated in an intermediate
representation used in the following parts of the �ow. In themiddle-end target-independent analyses
and optimizations are performed. The back-end performs the actual synthesis of Verilog/VHDL
code ready for simulation, logic synthesis, and implementation through external tools.
Bambu front-end. Bambu interfaces with existing compilers, such as GCC and Clang. With

GCC, a plugin extracts the call graph and the control data �ow graph of the functions under analysis
from GCC’s internal IR. Similarly, a Clang plugin extracts the same information and serializes them
into a textual format easy to parse. Bambu then parses back all the compiler serialized information

Perspectives on Design Methodologies for Heterogeneous HPC Platforms for Deep Learning 7

c/c++

Source code
compilation

Arithmetic transformations Range Value & BitValue
optimizations LUT insertions

Code Motions
and Speculations CFG simplifications

Annotations
extractions

IR creation

gimple

FRONT-END

MIDDLE-END

CSE
DCE

Resource allocation

Scheduling

Binding: reg&FU

Controller creation

Memory allocation Function Allocation

Debugging

Interconnection

Datapath creation

RTL tool wrapper:
synthesis & simulationNetlist generation

HDL
scripts

SYNTHESIS BACK-END

IPs library

Constraints

Bambu HLS tool
https://panda.deib.polimi.it

https://github.com/ferrandi/PandA-bambu

Fig. 5. Bambu Compilation flow.

plus all the annotations to build a Static Single Assignment in-memory IR. This approach decouples
the compiler front-end code from the rest of the HLS process. Localizing all the changes in a GCC or
LLVM/Clang plugin allows rapid and easy integration of many di�erent versions of the compilers.
Bambu supports GCC versions ranging from 4.5 to 8, and LLVM/CLANG versions ranging from 4.0
to 16. Moreover, the Vivado HLS front-end [20], based on a customized version of LLVM/CLANG
and recently released in open-source, was e�ortlessly integrated into the Bambu framework.

Bambu middle-end. Starting from the intermediate representation extracted from GCC/Clang,
Bambu rebuilds data structures, such as the Call Graph and the Control Data Flow Graphs, and
builds additional data structures such as the Program Dependence Graphs. Next, it applies a set of
device-independent analyses and transformations. Some of these steps are commonly used in a
software compilation �ow (e.g., data �ow analysis, loop recognition, dead code elimination, constant
propagation, LUT expression insertion, etc.). Multiplications and divisions by constant values are
transformed into expressions that use only shifts and adders to reduce area utilization and improve
timing. The resulting expression structure depends on the target device and technology, since
adders and multipliers may have di�erent performances on di�erent devices. Di�erently from
general-purpose software compilers, designed to target a processor with a �xed-sized data-path
(usually 32 or 64 bits), a HLS compiler can exploit custom-size operators (e.g., a multiplier with the
minimum number of I/O bits) and registers. Consequently, we can select the minimal number of
bits required for the speci�c algorithm’s operations and value storage, which leads to less area,

8 Fabrizio Ferrandi et al.

less power, and shorter critical paths. At this stage, Bambu also performs Bitwidth and Range
Analysis, aiming at reducing the number of bits required by data-path operators. This analysis is
crucial during the optimization process because it impacts all non-functional requirements (e.g.,
performance, area, power) of a design without a�ecting its behavior.

Bambu synthesis back-end. In this phase, Bambu performs the actual architectural synthesis of
the speci�cation. The synthesis process acts on each function separately. The resulting architecture
re�ects the structure of the call graph. A single function includes at least two sub-modules: the
control logic and the data-path. Control logic modeled as a Finite State Machine handles the
routing of the data values and the temporal execution of the operations. The data-path is a custom
mux-based architecture with optimized data types to reduce the number of �ip-�ops and bit-level
multiplexers. It implements all the operations and memories required during the function execution.
The following paragraphs describe the sequence of steps that Bambu implements to generate
control and data-path modules.
Function Allocation. Functions Allocation associates the high-level functions with speci�c re-

sources available in the technology library associated with the target device. The technology library
coming with Bambu integrates standard functions described in Verilog or VHDL, standard system
libraries such as libc and libm, and designer-de�ned components written in Verilog or VHDL.
Bambu supports function pointers and sharing of (sub)modules across module boundaries [158].
Sharing is obtained through function proxies, which act as forwarders of function calls in the
original speci�cation to shared modules. Sharing through function proxies provides valuable area
savings when complex call graphs are considered, with no signi�cant impact on the execution
delays.

Memory Allocation. Memories Allocation de�nes the memories used to store aggregate variables
(arrays and structures), global variables, and how the dynamic memory allocation is implemented.
Bambu adopts an architecture for memory accesses that support a wide range of cases. Statically
analyzing the memory accesses, Bambu builds a hierarchical data-path where memories can be
classi�ed as read-only, local, with aligned or unaligned memory accesses, or which require dynamic
resolutions. The memory interconnection accordingly de�nes multiple busses connecting the
load/store components to their respective memories. Dual-port BRAMs or memory controllers with
complex parallel channels are supported by replicating such memory interconnections as needed.
The same memory infrastructure can also connect to external components (e.g., scratchpads, caches,
and DRAMs) or directly to the bus to access o�-chip memory. Supporting protocol-based accesses
(e.g., FIFO or stream-based access) is obtained by generating speci�c components that replace the
load/store instructions.
Resource Allocation. Resource allocation associates operations not mapped on a function to

resource units (RU) available in the resource library. During the middle-end phase, the speci�ca-
tion is inspected to identify the characteristics of the operations: these include the type of the
operation (e.g., addition, multiplication, etc.) and the types of the operands (e.g., integer, �oat,
etc.). Floating-point operations are supported through the HLS of a soft-�oat library containing
basic soft-�oat operators, or alternatively by exploiting the FloPoCo software [69], a generator
of arithmetic Floating-Point Cores. The allocation step maps operations on the set of available
RUs; their characterization includes information such as latency, area, and the number of pipeline
stages. Usually, more operation/RU matchings are feasible: in this case, selecting a proper RU is
driven by design constraints. The library of RUs used by Bambu is quite rich, and may include
several implementations for the same operation. Moreover, the library contains RUs described as
templates in a standard hardware description language (i.e., Verilog or VHDL). These templates can
be retargeted and customized according to the characteristics of the target technology. In this case,
it will be the underlying logic synthesis tool that determines the best architecture to implement

Perspectives on Design Methodologies for Heterogeneous HPC Platforms for Deep Learning 9

each operation (for example, multipliers can be mapped either on dedicated DSP blocks or imple-
mented with LUTs). To perform aggressive optimizations, each library component is annotated
with information useful during the entire HLS process, such as resource occupation and latency.
Bambu adopts a pre-characterization approach: the performance estimation considers a generic
template of the RU, which can be parametric with respect to the bit widths and pipeline stages;
latency and resource occupation are then obtained by synthesizing each con�guration and storing
the resulting metrics in the library as an XML �le.
Scheduling. By default, Bambu employs a List scheduling algorithm. In its basic formulation,

List scheduling associates each operation with a priority according to particular metrics. The List
scheduling proceeds iteratively, associating a set of operations to be executed with each control
step. Ready operations (i.e., whose dependencies have been satis�ed in previous iterations of the
algorithm) can be scheduled in the current control step considering the availability of the resources.
If multiple ready operations compete for a resource, then the one having a higher priority is
scheduled. In addition to this old but e�cient algorithm, Bambu also features a more aggressive
scheduling algorithm, the Speculative scheduling algorithm based on System of Di�erence Con-
straints [141]. This algorithm builds an integer linear programming formulation of the scheduling
problem, allowing code motion and speculation of operations that belong to di�erent basic blocks.
Module Binding. Within the computed schedule, operations that execute concurrently are not

allowed to share the same resource instance. In Bambu, binding is performed through a clique
covering algorithm on a weighted compatibility graph [222]. The compatibility graph is built by
analyzing the schedule: operations scheduled on di�erent control steps are compatible. Weights
express how much it is pro�table for two operations to share the same hardware resource. They are
computed considering area/delay trade-o�s caused by sharing; for example, RUs that occupy a large
area will be more likely shared. Weights computation also considers the cost of interconnections
required by the steering logic. Bambu also o�ers several other algorithms for solving the covering
problem on compatibility/con�ict graphs.

Register Binding. Register binding associates storage values to registers and requires a preliminary
analysis step, the liveness analysis [222]. Liveness analysis starts from the schedule to identify each
variable’s life intervals, i.e., the sequence of control steps in which a temporary value needs to be
stored. Variables with non-overlapping life intervals may share the same register.
Interconnection Binding. Interconnections are bound according to the outcome of the previous

steps: if a functional or memory resource is shared, then the algorithm introduces steering logic on
its inputs. It also identi�es the set of control signals that will be driven by the controller.
Netlist Generation. The �nal architecture is then generated and represented through a hyper-

graph, highlighting the interconnection between modules. The netlist generation step translates
such representation in a register transfer-level (RTL) description in Verilog or VHDL. The process
accesses the resource library, which embeds the RTL implementation of each resource. This process
is target-dependent, and the hardware descriptions may di�er for di�erent technologies (e.g., ASIC
or FPGA) or target devices.
Generation of Synthesis and Simulation Scripts. Bambu automatically generates synthesis and

simulation scripts that can be customized via XML con�guration �les. The RTL-synthesis tools
currently supported are AMD/Xilinx ISE, AMD/Xilinx Vivado, Yosis-Vivado, Intel/Altera Quartus,
Lattice Diamond, NanoXplore, and OpenRoad. Supported simulators are Mentor Modelsim, Xilinx
ISIM, Xilinx XSIM, Verilator, and Verilog Icarus.

2.3 Other HLS tools
For the most part, HLS tools are provided by FPGA vendors together with a full design suite that only
supports the development of accelerators on FPGAs from the same company. The aforementioned

10 Fabrizio Ferrandi et al.

Vitis HLS, for example, is part of the AMD/Xilinx toolsuite and only supports Xilinx FPGAs. The
Intel HLS Compiler [113] is part of the Quartus design suite, it compiles C++ functions into an RTL
implementation for Intel FPGAs and optimizes them through a simple command-line interface. Intel
recently announced that the HLS compiler will be deprecated in favor of the oneAPI toolkit [112],
which could allow developers to seamlessly port OpenCL code across CPUs, GPUs, and FPGAs.
Catapult [213] is a multi-target HLS and veri�cation tool provided by Siemens, synthesizing C++
and SystemC code for FPGA and ASIC. Stratus HLS [33] from Cadence synthesizes SystemC code
written with a lower-level perspective, i.e., requiring users to explicitly describe interface protocols
between components. LegUp [38] is an open-source, LLVM-based HLS tool developed in academia,
like Bambu, later acquired by Microchip and rebranded as SmartHLS [157].

2.4 hls4ml and FINN
HLS plays a crucial role in bridging the productivity gap between the design of a new deep learning
model and its implementation on FPGA/ASIC. Several previous works proposed to exploit HLS by
using C/C++ as an intermediate representation of the input model, augmenting it with tool-speci�c
directives that drive the synthesis to obtain an e�cient design. Two popular frameworks that help
automate the design of ML accelerators are hls4ml [76] and FINN [27]. Both use commercial HLS
tools as backend (mainly Vivado or Vitis HLS); they parse a model exported from popular ML
frameworks and replace operators with C/C++ functions taken from a library of templates that
already contains pragma directives. The HLS tool processes this intermediate C/C++ representation
and produces a corresponding accelerator design without further manual intervention.
The library of templates in hls4ml and FINN is necessarily tied to a speci�c HLS tool and a

narrow set of supported models, as it requires expert HLS developers to implement in advance the
best version of all necessary operators for a pre-determined backend tool. Portability is a problem
for HLS in general, as typically there is one commercial tool for each hardware vendor and each
tool expects coding patterns, annotations, and con�guration directives that are not recognized
by other tools. In a framework that heavily relies on a library of templates, switching to a new
hardware target thus requires a new version of the library, as incompatible coding patterns and
directives would at best be ignored by the new HLS backend, resulting in ine�cient designs.

Library-based frameworks usually focus on a narrow set of models, speci�cally deep and convo-
lutional neural networks (DNNs/CNNs). Machine learning is an umbrella term that covers a broad
spectrum of algorithms, while research works about hardware acceleration and HLS-based design
�ows have mostly been focused on the subset of ML models based on dense convolutions and
matrix multiplications. Sometimes their scope is further limited by application requirements: for
example, the original implementation of hls4ml was optimized for small, fully-connected models
under tight latency constraints, re�ecting the needs of a high-energy physics experiment at CERN.
For this reason, hls4ml proposed to store network weights inside on-chip logic and unroll all loops
to increase parallelism, which quickly depletes FPGA resources when considering a neural network
with more layers and weights.

While it is true that DNNs and CNNs cover a signi�cant part of ML applications (especially in
the computer vision �eld), there is ample room for exploring other classes of models, for example
to accelerate scienti�c applications that work on sparse data structures or graphs. Large models are
often compressed to reduce their computation and memory requirements, either by employing
low-precision data types (quantization) or by removing operations with zero values (pruning).
Quantization is well suited to hardware acceleration since custom precision operators can be
implemented quickly and e�ciently (also through dedicated HLS libraries). Sparsity, on the other
hand, implies irregular computation, communication, and memory access patterns, which result
in poor e�ciency when mapped on accelerators or templates designed for dense models. Graph

Perspectives on Design Methodologies for Heterogeneous HPC Platforms for Deep Learning 11

structures provide great expressive power to represent and analyze data in a variety of applications,
from chemistry to language, social networks, recommendation systems, etc. Graph neural networks
(GNNs) could bene�t from hardware acceleration and require unique design choices: models that
work on graphs include both sparse (aggregation) and dense (feature extraction) computation
patterns, which are also a�ected by the input graph size; such characteristics could bene�t from
a task-based parallelism paradigm. Existing HLS-based design �ows are good at extracting data-
and instruction-level parallelism (e.g. by unrolling loops), but they are not equipped to deal with
the irregular task-based patterns required by graph processing. Finally, a narrow focus limits the
possibility of quickly adapting to new algorithmic approaches, which would instead be desirable in
a rapidly evolving �eld such as ML (and data science in general).
In general, there are multiple research e�orts that only use existing HLS tools as "black boxes",

exploiting as much as possible the optimization opportunities they expose. In fact, research in this
�eld is sometimes hindered by the proprietary nature of established HLS tools [176] (Bambu [87] is
a notable exception). However, there is a trend toward the democratization of hardware design,
as attested for example by the open-source release of the Xilinx Vitis HLS frontend [20] or by the
OpenROAD project for ASIC synthesis [14].

2.5 MLIR-based approaches
The Multi-Level Intermediate Representation (MLIR) [139] is a reusable and extensible infras-
tructure in the LLVM project for the development of domain-speci�c compilers. MLIR allows
de�ning specialized intermediate representations (IRs) called dialects to implement analysis and
transformation passes at di�erent levels of abstraction, and it can interface with multiple software
programming frameworks, including the ones used to implement deep learning algorithms. MLIR
has been used to build new design �ows for the generation of hardware accelerators based on HLS.
The CIRCT project [58] intends to use MLIR to build a new generation of interoperable tools

and compilers for hardware design, starting from the de�nition of circuit-level IRs and working
upwards to higher levels of abstraction (e.g., data�ow models or �nite state machines). Part of
the project is dedicated to HLS [231], particularly to the implementation of static and dynamic
scheduling through MLIR and CIRCT dialects. CIRCT could be an essential building block for future
industrial and academic design �ows; however, its degree of maturity is lower compared to HLS
tools with optimized synthesis algorithms and resource libraries supported by decades of research.
ScaleHLS [252, 253] exploits MLIR to analyze and transform input code from C or PyTorch,

generating annotated code for Vivado HLS (a slightly old version of the Xilinx HLS tool which does
not apply any automated optimization). The multiple levels of abstraction provided by existingMLIR
dialects allow ScaleHLS to reason about graph-level, loop-level, and directive-level optimizations; a
custom dialect helps the translation into C++ with pragmas. A quality of results (QoR) estimator and
a DSE engine automatically identify the best combination of optimizations following user-de�ned
constraints, without requiring long simulation or synthesis runs to evaluate the e�ect of changes
in the optimization directives.
The SOftware De�ned Architectures (SODA) Synthesizer [9, 29] is an open-source, multi-level,

modular, extensible, no-human-in-the-loop hardware compiler that translates high-level ML models
into domain-speci�c accelerators. The SODA Synthesizer comprises a compiler-based frontend that
leverages MLIR (SODA-OPT [28]) and a compiler-based backend that integrates state-of-the-art
HLS methodologies (Bambu); it generates highly specialized designs that can be synthesized with
both commercial and open-source tools on FPGAs or ASICs, and it allows the exploration of design
metrics through compilation passes and parameters, enabling the identi�cation of architectural
trade-o�s depending on the target application requirements.

12 Fabrizio Ferrandi et al.

2.6 IP block integration
When developing an HLS �ow, the possibility to import designs produced by third parties (Intellec-
tual Properties, IPs) as well as to export functionalities developed through the HLS �ow as building
blocks to be used in other designs is fundamental.
In the electronic world, it is a common practice to use IPs to add the desired functionalities to

the system being developed. The use of IPs not only saves the development time that would be
necessary if the functionality should be developed from scratch, but also frees the developers from
the burden to qualify the behavior of the functionality: when acquiring an IP from an IP provider,
we are buying not only the development time used by the developer but also the huge testing time
that has been spent to qualify the IP.

On the other side, the high level of abstraction given by HLS �ows and their maturity makes very
interesting the possibility to export functionalities developed by the HLS as IPs. A �rst attempt to
address this topic in a systematic way dates to 2008 [151], where the various strategies used by the
HLS tools to integrate IPs were analyzed.
To allow IP generation/reuse, an interfacing standard is mandatory to allow interoperability

among IPs. Currently, as a standard de facto, AXI4 [1] is used, among others, by companies like
Synopsis and Xilinx. AXI4 standard includes AXI4, AXI4-stream, and AXI4-Lite protocols used to
access memory banks, streaming channels, and memory-mapped registers.
Other than a common interface, a common language to describe the IP interfaces and the IP

organization on the �lesystem is needed. IP-XACT [2] is an XML format describing meta-data and
interfaces of IPs and is widely adopted by IP providers to describe their IPs (�le system organization,
interfaces, source �les, constraint �les, . . .).

The standardization of IPs structure for their distribution is ruled by the IEEE 1735-2014 standard
[3]. As the IEEE 1735-2014 standard does not cover IP produced by HLS, let’s see how Xilinx is
managing the import/export of IPs in its Vitis �ow.
Referring to the possibility of exporting a design produced by Vitis HLS as an IP to be used in

other designs, as shown in Figure 3, Vitis �ow allows exporting a kernel, compiled through Vitis
HLS to generate an HDL IP, to be later incorporated in a design through the Vivado IP integrator
�ow [248]; so, in the export direction, through the Vivado IP �ow there is complete support for
using IPs generated by Vitis HLS in designs containing other IPs.
Looking at the opposite direction, Vitis �ow partially opens to the import of external HDL IPs,

giving the opportunity to add HDL blackbox functions [247]. In this case, HDL IPs are limited,
being constrained to the adoption of AIX4 interface. As described in [79], when importing an HDL
IP (that can be plain HDL, the synthesized netlist, or its encrypted version), also the C model of the
IP can be provided, to allow the SW emulation of the design; this functionality is very useful to
check the functional correctness of the design. Vitis provides a wrapper around the IP to make it
compliant with the Vitis �ow. It’s worth to be underlined that the Xilinx IP �ow manages the �ow
of IP between Vivado IP integrator and Vitis, being still an open issue the standardization of HLS
IPs and their import/export among tools from di�erent vendors.

3 DEEP LEARNING COMPILERS
Development of innovative hardware architecture, particularly for highly parallelizable applications
such as Deep Learning, is only half of the picture. The other half is that of e�ective automated de-
ployment technologies that enable to use novel architecture to run complex real-world applications.
Managing the memory hierarchy and compile high-level signal processing and machine learning
graphs into a representation is a complex research problem, which has been extensively studied in
the pas few years (Fig. 6). In Flagship 2, the development of novel high-performance acceleration

Perspectives on Design Methodologies for Heterogeneous HPC Platforms for Deep Learning 13

techniques will be coupled with that of automated compilation and deployment technologies to
boost real-world applicability of the developed hardware.

Deep Learning Compilers

Memory hierarchy management in DNN Accelerators

Ivanov et al. [114]
DMazeRunner [65]

Maestro [134]
Interstellar [249]
Timeloop [182]

Deep Learning Compilers for MCUs

TFLite Micro [66]
Larq Computing Engine (LCE) [96]

X-CUBE-AI [221]
GWT AutoTiler [4]

DORY [32]

Deep Learning Compilers for High-Performance and Embedded

TVM [49]
HTVM [232]
Halide [194]

Tensor Comprehensions [237]
Glow [198]
Relay [196]
ONNC [146]

MLIR [122, 140]

Fig. 6. Taxonomy of Deep Learning Compilers discussed in Section 3

3.1 Memory hierarchy management in DNN Accelerators
E�ectivemanagement of memory hierarchy is a critical challenge in deploying deep neural networks
(DNNs), which generate high amounts of weight and activation tra�c between di�erent levels
of memory hierarchy. To tackle this problem, various methods have been proposed for data �ow
scheduling and generation across three broad classes of devices: high-performance computing
systems, DNN accelerators, and embedded systems. For high-performance computing systems,
Ivanov et al. [114] have proposed new transformer primitives to exploit data reuse and limit
data movement. Meanwhile, DMazeRunner [65], Maestro [134], Interstellar [249], Timeloop [182]
discuss DNN optimization on AI-specialized accelerators based on systolic arrays of processing
elements (PEs), with a focus on loop tiling and/or reordering to optimize PE utilization. These
tools can output an accelerator model to run a given DNN or spatial scheduling to maximize PE
array utilization. MCU data �ow scheduling tools are similar to frameworks like DMazeRunner
as both optimize data�ow schedules given an externally known architecture. However, DNN
execution on MCUs presents unique challenges such as adapting to a general-purpose architecture
and limited memory. Additionally, kernel instructions are heavily in�uenced by the register �le’s
limited size, resulting in increased load-store operations and a demand for optimal loop sizing to
avoid register spilling overhead. Academic researchers and industries have investigated this aspect
by incorporating specialized caches or explicitly managed scratchpad memories into their edge-
node solutions. For example, NXP o�ers specialized caches in their Cortex M4/M0 MCU, as does
STMicroelectronics with its STM32 Cube-AI tool�ow; on the other hand, GreenWaves Technologies
provides explicitly managed scratchpad memories [89], with a GAPFlow tool dedicated to managing
them appropriately.

3.2 Deep Learning Compilers for MCUs
The introduction of the �rst generation of low-power neural-network oriented MCUs has increased
this need, as these platforms need to utilize optimized software and ISA extensions for DNN
computing alongside traditional control and I/O-bound activities. To allow for optimal execution of
both types of tasks, theseMCUs employ parallel and heterogeneous processing. STMicroelectronics1
and NXP have recently introduced new-generation dual-core microcontrollers with an ARM M0
processor dedicated to I/O and an ARM M4 processor with single-cycle multiply-and-accumulate
and SIMD capabilities. These platforms show an increased complexity in terms of memory hierarchy
compared to conventional �at-memory MCUs, with an L1 memory optimized for speed and an L2
1https://www.st.com/en/microcontrollers-microprocessors/stm32h7-series.html

https://www.st.com/en/microcontrollers-microprocessors/stm32h7-series.html

14 Fabrizio Ferrandi et al.

optimized for capacity. At the same time, there is a trend towards explicit management of memory
hierarchy, with hand-tunable data caches featuring locking for hand-crafted data management.
For instance, the Kendrite K210 2 is a RISC-V dual-core 64 bits system-on-chip with a neural
network processor (KPU) on which the cores can o�oad the computation. It also includes dedicated
memory banks for the NN accelerator and a DMA unit to explicitly manage the transfers. The
SONY Spresense board 3 features a 6-cores M4 accelerator with a maximum clock speed of 156 MHz,
1.5 MB of SRAM and 8 MB of Flash. The GreenWaves Technologies GAP-8 [89] system-on-chip was
introduced in 2018 as a commercial embodiment of the Parallel Ultra-Low-Power paradigm [60]: it
features one I/O core and an 8-core SIMD-optimized DSP cluster accelerator using an extension of
the RISC-V ISA. To manage this complexity, these MCUs include dedicated infrastructure for data
marshaling, such as general-purpose DMA controllers to speed-up memory transfers and reduce
the memory access bottleneck.
New tools such as TFLite Micro [66] and the Larq Computing Engine (LCE) [96] o�er a model-

agnostic deployment framework and overcome these problems. Both are non-vendor-locked tools
supporting ARMCortex-M and RISC-V cores. Their library memory footprints require only 16 kB on
a Cortex-M3; however, by default they rely on graph interpretation at runtime, limiting achievable
performance. To o�set this limitation, TFLite Micro allows plugging in optimized kernels and
declaring vectors in di�erent memory regions. However, it does not include any tiling mechanism
to execute layers that do not �t on-chip memory.

The two most powerful DNN deployment tools for microcontrollers available in the state-of-the-
art have been proposed by the industry as proprietary, vendor-locked solutions for their own MCUs.
X-CUBE-AI [221] from STMicroelectronics is an automatic NN library generator optimized on
computation and memory. It converts a pre-trained DNNmodel from DNN tools such as Tensor�ow
into a precompiled library for the ARM Cortex-M cores embedded in STM32 series MCUs. X-CUBE-
AI relies on relatively large on-chip L1 caches (up to 16 kB) to deliver performance on STM32 MCUs,
and it does not tackle software-based memory management. On the other hand, GWT designed a
tool called AutoTiler, to target the GAP-8 RISC-V based multi-core ultra-low-power microcontroller.
One of its primary functions is to take a pre-trained DNN and generate code for memory tiling and
e�cient transfers of weight and activation data between all memory levels (on- and o�-chip). The
GWT AutoTiler directly tackles the data-movement and tile sizing challenge to optimize memory
access, reaching state-of-the-art performance on the execution of many networks. The tool is
proprietary, but its backend basic kernels are available as open-source as part of the GAP-8 SDK4.
DORY [32] targets the same platform with an open-source tool. It optimizes the memory tra�c
for DNN deployment on specialized edge devices. By generating C code that tiles the execution
of a dedicated kernel library, DORY reduces the size of intermediate bu�ers. This is crucial since
microcontrollers often have limited level-1 (L1) memory. To achieve this, DORY formalizes tiling as
an optimized constraint programming problem with kernel-speci�c heuristics. The produced code
is more optimized but less general than previous solutions. Using DORY on a new architecture
requires creating a new dedicated kernel library, new templates, and reprogramming the tiler to
tailor it to speci�c hardware.

3.3 Deep Learning Compilers for High-Performance
A popular DNN deployment framework that targets both high-performance embedded and edge
devices is TVM [49]. TVM’s primary optimization mechanism is autotuning: it quickly compiles

2https://canaan.io/product/kendryteai
3https://developer.sony.com/develop/spresense/
4https://github.com/GreenWaves-Technologies/gap_sdk

Perspectives on Design Methodologies for Heterogeneous HPC Platforms for Deep Learning 15

di�erently-scheduled yet equivalent kernel implementations, and after running those on hardware,
the most optimal kernel is selected. As such, TVM can implicitly improve the execution time on
CPUs and GPUs and �ne-grained general matrix multiply (GEMM) accelerators like VTA [164].
Moreover, TVM’s runtime can link in (vendor-provided) optimized kernels in LLVM IR, CUDA
C, C/C++ into a standalone artifact with the bring your own codegen (BYOC) [51] infrastructure.
However, using TVM’s autotuning pipeline is impractical for specialized coarse-grained accelerators
since proving coarse-grained kernel equivalence requires complex loop nest analysis. This can
be bypassed by using BYOC, but in this way, many of the automatic optimization opportunities
presented by the framework are lost. HTVM [232] uses DORY as a backend of TVM employing
this technique.

A popular research avenue has been to increase the level of abstraction to compile Deep Learning
based applications, using Domain Speci�c Language that mainly address tensor-level representa-
tions, such as the early examples of Halide [194] and Tensor Comprehensions [237]. Dedicated
Deep Learning compilers such as Glow [198] have been focused on graph lowering techniques,
using these earlier developments and ideas to build up systems that take a high-level description of
a Deep Learning program, typically in the form a data-�ow graph of operators, lower it into a set
of Intermediate Representations (IRs) still centered on tensor-aware operations, and then deploy
on target machine-speci�c code. A common graphical format for the input of such lowering passes
is ONNX5, whereas intermediate representations can be custom and dedicated to one particular
framework (e.g., Relay [196] for Amazon’s open source NNVM compiler) or deployed as a special-
ization of a more general IR [146]. In this regard, the most relevant example is MLIR [122, 140], a
framework proposed in the context of the LLVM project that enables building custom intermediate
representations for domain-speci�c computing. While this tool is not exclusive to Deep Learning,
it has been proposed in response to the needs of the Deep Learning community and quickly risen
to prominence.

4 HARDWARE/SOFTWARE CODESIGN TOOLS: APPLICATION PARTITIONING AND
MAPPING

Application partitioning and mapping

Hardware-based search

Abdelfattah et al. [6]
Jiang et al. [120]

Distributed training

Data parallelism

Krizhevsky et al. [132]

Model parallelism

heuristics [154]
reinforcement learning [159, 160]

transfer learning-based approaches [8, 261]
genetic algorithms [180]

classic scheduling on multiple machines [100, 128, 142, 181, 212, 216]
DNN-based scheduling [117, 173]

Pipeline parallelism

GPipe [108]
PipeDream [165, 173]

Hybrid solutions

layer-wise parallelism [117]
DAPPLE [85, 179]

Fig. 7. Application partitioning and mapping discussed in Section 4

The ever increasing rate of data production in the era of Big Data, Internet of Things, and smart
cyber physical systems pose incessantly escalating demands for massive data processing, storage
and transmission as required by DL models training and inference6.
5https://onnx.ai/
6Brie�y speaking, the training process consists in adjusting themodel parameters according to the results by backpropagation,
while the inference process is enacted - without changing the parameters - when the network is then used to classify
observed data.

16 Fabrizio Ferrandi et al.

Training large DL models with vast amounts of data and serving them (i.e., using trained DL
models for inference) is a non-trivial task. Today, it is often performed in a distributed infrastructure
composed of multiple, possibly heterogeneous compute nodes. The complexity is further exacer-
bated by the recent trend to integrate the high-performing computing and storage equipment in
the cloud and HPC data centers to that provided at the edges of the network, where computing and
memory resources are however constrained. The goals of this compute continuum trend are to
achieve better privacy, higher autonomy and energy e�ciency as well as to reduce response latency,
cost, and bandwidth demand to the cloud [45]. In this complex and heterogeneous setting, designers
need to optimize the complete system stack: from ML/DNN algorithms, to model optimization
and compression, implementation of algorithms onto the hardware platforms enriched with DL
accelerators as well as the underlying hardware architecture design [102, 115, 121, 228].
In this section, we review some approaches and tools that have been proposed in literature to

distribute, partition and map DL training and inference applications on the processing nodes in the
underlying computing infrastructure. First, we brie�y analyze how DNN models can be optimized
for execution on a plethora of hardware devices. We then focus on the approaches for training DL
models in the context of distributed computing infrastructures. Finally, we conclude the section
by identifying related open issues that can be addressed in the context of Flagship 2. They mainly
stem from the need to reduce the energy footprint of DNN applications while keeping satisfactory
levels of performance and accuracy. Figure 7 shows the main references to the methodologies,
frameworks and tools that we discuss in the following of the this section.
The hardware-aware design of DNNs has recently received increasing attention to tackle hard-

ware devices heterogeneity, especially to perform DNN inference. Indeed, to deploy computationally
demanding DNNs for model inference in resource-constrained edge systems while maintaining
acceptable performance, system designers have to trade o�model accuracy against implementation
e�ciency. However, the plethora of available hardware devices available makes it very di�cult to
choose one solution for all cases. Therefore, in addition to techniques for model compression, such
as quantization-aware training and pruning (e.g., [115, 228]), hardware-aware neural architecture
search [52], that takes hardware characteristics like latency, power, or area into account, has become
a central aspect in automating the process of designing e�cient and accurate architectures for
DNN applications executed at the network edges. Di�erent methodologies have been exploited
to search for the optimal performing model architecture, ranging from reinforcement learning to
evolutionary algorithms. For example, in [6, 120] reinforcement learning-based neural architecture
search is extended to include search for an accelerator con�guration on FPGAs and optimize it for
latency and area.
Nevertheless, in the context of a distributed infrastructure with an ever increasing number of

available nodes and resources, it is parallelization which appears to o�er the solution for the ever
growing need of accelerating the training of DNN applications. DNN models lead themselves with
many possibilities for parallelization, namely data, model, pipeline and hybrid parallelism.
In data parallelism, a number of workers (machines or devices, e.g., GPUs) load an identical

copy of the DL model. The training data is split into non overlapping portions and fed into the
model replicas of the workers for training [132]. Each worker performs the training on its portion
of training data, which leads to updates of the model parameters. Hence, the parameters of the
model among the workers need to be synchronized. The main advantage of data parallelism is that
it is applicable to any DL model architecture without further domain knowledge of the model. It
scales well for operations that are computationally intensive, but have only few parameters, such
as CNNs. However, data parallelism is limited for operations that have many parameters, as the
parameter synchronization leads to a signi�cant communication overhead and may become the
bottleneck [117]. To address such scalability and single point of failure bottleneck, the parameters

Perspectives on Design Methodologies for Heterogeneous HPC Platforms for Deep Learning 17

synchronization can occur in a decentralizedmanner [153], with themain disadvantage of increasing
the communication cost among workers.

In contrast, inmodel parallelism, the DL model is partitioned into multiple parts and each worker
loads a di�erent part of the ML/DNN model for training. A major challenge of model parallelism is
how to split the model into partitions that are assigned to the parallel workers [154]. In the context
of ML/DNN workloads, model partitioning across di�erent devices has initially mostly been a
manual process driven by human experts. A common approach to �nd a good model splitting is to
use reinforcement learning [159, 160]. Starting from some initial partitioning, permutations on that
partitioning are performed, and performance is measured (e.g., for one training iteration) or learn a
placement policy that can then be adjusted for new workloads via transfer learning, see e.g., [8, 261]
or used to bootstrap a genetic algorithm [180]. Unfortunately, these methods are computationally
expensive, as they need to evaluate large numbers of placements and measure the runtime of
several inference/training steps. Alternatively, the problem is casted into an o�ine optimization
problem of �nding good partitions and schedules. This includes classic results in scheduling on
multiple machines and/or devices [100, 128, 142, 181, 212, 216], as well as modern DNN scheduling
works [117, 173]. Such algorithms use pro�led compute time of each node (layer or operator)
and data-transfer requirements between nodes in a graph, and the target deployment system
infrastructure such as machine and network properties (e.g., measured bandwidths). However, such
techniques do not evaluate the performance of splits in an online fashion. Nevertheless, it has
been demonstrated that for well-de�ned cost models the objective function closely matches real
performance, see, e.g., [118, 173].

Pipeline parallelism combines model parallelism with data parallelism. In pipeline parallelism, the
model is split and each worker loads a di�erent part of the DL model for training. Recent approaches
that support pipeline parallelism include GPipe [108] and PipeDream [165, 173]. Speci�cally, in
pipeline parallelism the model is divided among available workers, assigning a group of consecutive
operators (called layers in DNN terminology) in the operator graph to each of them, and then
overlapping the computation and communication of di�erent inputs in a pipelined fashion. This
process can greatly reduce inter-worker communication. While pipelining is a simple and widely
adopted idea, DNN training poses an important challenge not present in traditional pipelining:
DNN training is bi-directional, being the forward pass followed by a backward pass through the
same layers in reverse order, using state and intermediate results from the forward pass. This
results into low hardware e�ciency or low statistical e�ciency unless resorting to parallelization
optimization [173].
Proposals related to pipeline training can be classi�ed according to the temporal aspect, that

is synchronous vs. asynchronous training. The �rst requires to execute gradient synchronizations
between adjacent training iterations to ensure convergence [108]. However, it su�ers from a
signi�cant memory consumption, that can be partially mitigated by re-computation. Asynchronous
training inserts micro-batches into the pipeline concurrently to achieve maximum throughput,
e.g., [173]. However, it is not a common practice due to convergence concerns and increased
memory demand to store multiple versions of model parameters.
A few frameworks attempt to �nd a hybrid solution instead that combines some of the best

properties of each model of parallelism and diminishes some of the drawbacks. For example, layer-
wise parallelism [117] proposes to apply di�erent parallelization strategies to each individual layer
of the neural network rather than the same parallelization strategy (i.e., data or model parallelism)
to all layers. The solution to �nd the optimal parallelization strategy for each layer is based
on a dynamic programming based graph search algorithm. DAPPLE [85, 179] is a synchronous
training framework which combines data parallelism and pipeline parallelism for large DNNmodels
to ensure training convergence and reduce memory consumption. To this end, it exploits early

18 Fabrizio Ferrandi et al.

backward scheduling by scheduling backward tasks as early as possible to release the memory
occupied by activations produced by corresponding forward tasks.
The approaches to distribute DL training and inference we have reviewed above aim typically

to speed-up performance, for example by achieving better throughput and scalability, reducing
communication costs, while improving (or at least without deteriorating) model accuracy. In the
recent years, following a general trend within the industry at large, the reduction of carbon emission,
the so called green carbon footprint, has started to receive increasing attention also within the HPC
and ML/DNN communities in order to realize environmentally-responsible solutions, e.g., [243].
Given the high computational demand of DL training and inference jobs, there is a large opportunity
for energy saving. For instance, it is possible to save energy while maintaining adequate level of
accuracy at the software level by trading o�model variants, i.e., low and high quality models. At the
hardware level, multiple solutions can be exploited, ranging from the adoption of energy-e�cient
FPGAs to novel GPU partitioning schemes, that can reduce energy consumption by allowing GPU
sharing [143]. Coupling with proper distributed resources scheduling, there is therefore a large
opportunity for improving performance while reducing cost and carbon emission.

Within this general context, our work within the framework of Flagship 2 will address the need
to develop DL application partitioning and mapping strategies for the edge-cloud continuum. Our
goal is to design autonomic strategies optimized for both the training and inference phase which
account for di�erent non-functional requirements such as performance (e.g., training time), energy
consumption as well as results accuracy in an ever growing, highly heterogeneous edge-cloud
landscape in which ML/DNN workloads are executed. In this context, heterogeneity stems from
the many di�erent hardware/software platforms which comprise today’s edge-cloud computing
infrastructures. To this end, we plan to adopt reinforcement learning techniques, which has been
widely used in the literature, see, e.g. [120, 160, 200], and DL in particular, to account for the large
state space which characterizes the edge scenarios, whereby multiple nodes, possibly characterized
by their own processing, memory, networking capabilities, and energy footprint are pooled to train
and serve ML/DNN models.

5 MODELING, SIMULATION, PROFILING AND EXPLORATION
Hardware accelerators are becoming increasingly important in the �eld of deep learning, as they can
signi�cantly improve the speed and e�ciency of deep learning computations. To e�ectively design a
hardware accelerator for deep learning, it is essential to have access to powerful modeling tools that
can provide detailed insights into the power consumption, performance, and area requirements of
the accelerator. In this section, we will explore some of the most popular and e�ective tools available
for modeling hardware accelerators for deep learning, and discuss their key features and capabilities.
These tools enable designers to experiment with various design choices and con�gurations, and to
optimize their designs for speci�c PPA metrics, such as power e�ciency, throughput, or chip area.
By leveraging these tools, designers can create hardware accelerators that meet the demanding
performance and energy e�ciency requirements of modern deep learning applications.
The simulation and exploration techniques, along with the pro�ling techniques discussed in

this section, will serve as a foundation for selecting the most suitable approaches to address the
design and optimization challenges of Flagship 2. Speci�cally, we are referring to challenges such
as: a) Simulating complex heterogeneous accelerator architectures at a high level of abstraction,
while being able to assess various �gures of merit typically obtained at a low level of abstraction;
b) Exploring the extensive design space encompassing architectural parameters and mapping
possibilities to determine the optimal accelerator architecture for speci�c workloads; c) Utilizing
appropriate techniques for modeling and pro�ling FPGAs speci�cally for custom accelerators.

Perspectives on Design Methodologies for Heterogeneous HPC Platforms for Deep Learning 19

Modeling, Simulation, Pro�ling, and Exploration

Modeling, Simulation,
and Exploration

NVDLA [178]
MLPAT [227]

MAESTRO [135]
Timeloop [183]
LAMBDA [199]

DNN-Chip Predictor [260]
DNNExplorer [259]

Gemmini [97]
Interstellar [250]
Aladdin [209]

Simulation tools for emerging
memories-based DNN accelerator

DNN+NeuroSim [185]
SySCIM [207]

MemTorch [137]
MNSIM [246]

Reiser et al. [195]

Cycle-Accurate Simulators

SCALE-SIM [203]
STONNE [168]
SimuNN [39]

AccTLMSim [130]
QADAM [110], QAPPA [111]

Juraci et al. [124]

Modeling and Pro�ling FPGAs
for custom accelerators

Shuhai [240]
HPCChallenge [156]

HPCG Benchmark [256]
Da Silva et al. [61]

Siracusa et al. [214, 215]
Muralidharan et al. [166]

ERT [174, 175]

Fig. 8. Modeling, Simulation, Profiling, and Exploration tools and methodologies discussed in Section 5

This section is organized into four subsections as follows. Section 5.1 provides a review of
representative simulation and exploration platforms that operate at a high level of abstraction.
These platforms allow for the simulation and evaluation of domain-speci�c hardware accelerators,
as well as the optimization of system architecture to achieve speci�c objectives such as delay and
energy e�ciency. Section 5.2 presents a collection of simulation tools and frameworks for assessing
DNN accelerators that utilize emerging memory technologies. Section 5.3 focuses on simulation
frameworks that ensure cycle accuracy. Lastly, Section 5.4 addresses the challenge of modeling
and pro�ling FPGAs for custom accelerators. Figure 8 shows the references to the various tools,
frameworks, and methodologies discussed in the aforementioned subsections.

5.1 Modeling, Simulation, and Exploration Frameworks
In this section, we aim to provide a comprehensive overview of the most in�uential frameworks
utilized for modeling, simulating, and exploring the design space of hardware accelerators for deep
learning. These frameworks can aid researchers in identifying the most e�ective hardware designs
for speci�c deep learning tasks and can help accelerate the overall design process.
NVIDIA Deep Learning Accelerator (NVDLA) [178] is an open-source framework designed to

facilitate the implementation of machine learning applications. It includes a complete training
infrastructure and a compiler to convert existing models for use by NVDLA software. NVDLA
can read a neural network from a front-end environment like Ca�e and map it to the NVIDIA
accelerator.

The MLPAT framework [227] enables modeling of power, area, and timing for machine learning
accelerators, supporting components like systolic arrays, memory, and activation pipeline, as well
as di�erent precision types and data�ows. Input parameters include the accelerator architecture,
circuit, and technology, and MLPAT generates an optimized chip representation to report results
such as area, power, and performance.
MAESTRO [135] is a framework designed to analyze and describe neural network processing

engines, providing information on the hardware cost required to implement a target architecture.
It features a domain-speci�c language for data�ow description, which enables the speci�cation of
parameters such as the number of processing elements, memory size, and NoC bandwidth. The
framework generates performance analysis results.
Timeloop [183] is an infrastructure that helps explore and evaluate the architecture design

space of deep neural network (DNN) accelerators. It consists of two main components: a model
that provides projections for performance, area, and energy, and a mapper that constructs and
searches through the mapspace of a given workload on a targeted architecture. To use Timeloop,
the user describes the architecture’s organization using a con�gurable template that includes

20 Fabrizio Ferrandi et al.

Table 2. Modeling, simulation, and exploration tools.

Integration with
NN frameworks

Model
type

Full
SoC

Evaluation
metrics Target Estimation

error

MLPAT [227] No Analytical No PPA ASIC <5% area
<10% power

MAESTRO [135] No Empirical No Performance ASIC 5%

Timeloop [183] No Analytical/
Empirical No PPA ASIC 5%

LAMBDA [199] No Analytical/
Empirical No PPA ASIC 5%

DNN-Chip Predictor [260] No Analytical No Performance
Energy FPGA/ASIC <18%

DNNExplorer [259] Ca�e, PyTorch – No Performance FPGA –

Gemmini [97] No Simulation Yes +
OS support Performance FPGA/ASIC –

Interstellar [250] No Analytical No PPA ASIC 2%

Aladdin [209] No Simulation
Analytical No PPA ASIC

1% performance
5% power
7% area

SCALE-SIM [202, 203] No Empirical Yes Performance, Area ASIC –

STONNE [168] Ca�e Cycle level
simulation Yes Performance ASIC <3%

SimuNN [39] TensorFlow Cycle level
simulation Yes PPA FPGA/ASIC –

AccTLMSim [130] No Cycle level
simulation Yes Performance ASIC 3%

Juracy et al. [124] TensorFlow Cycle level
simulation No PPA ASIC <7%

DNN-NeuroSim [185] Tensor�ow, PyTorch Instruction accurate
simulation Yes PPA ASIC -

SySCIM [207] No Circuit level
simulation No Accuracy ASIC <4% accuracy

Memtorch [137] PyTorch Analytical/
Empirical Yes PPA ASIC -

MNSIM [246] No Cycle level
simulation Yes PPA ASIC -

abstractions for compute units, memories, and communication links. Themapper then constructs the
mapspace and searches for an optimal mapping using the model’s speed and accuracy. Timeloop’s
e�ectiveness has been validated against existing designs. PPA �gures can be obtained by integrating
it with Accelergy [245]. Accelergy is a versatile energy estimation technique that can be used
for accelerators. It enables designers to create speci�cations using custom high-level compound
components and low-level primitive components, which can be evaluated using third-party energy
estimation plug-ins. LAMBDA [199] is a framework based on Timeloop/Accelergy infrastructure
that allows exploring the design space of con�gurable DNN accelerators taking into account a
variety of architectural and microarchitectural parameters.

The DNN-Chip Predictor [260] is a tool that can predict the energy consumption, throughput,
and latency of DNN accelerators before they are implemented. It o�ers two advantages: (1) it
uses an analytical performance formulation to enable rapid exploration and optimization of DNN
ASIC/FPGA accelerator designs; and (2) it supports di�erent algorithm-to-hardware mappings and
hardware architectures. Experiments involving two DNN models and three ASIC/FPGA implemen-
tations demonstrated that the predicted performance of DNN-Chip Predictor di�ered from the chip
measurements of FPGA/ASIC implementation by no more than 17%, even when using di�erent
DNN models, hardware architectures, and data�ows.

DNNExplorer [259] is a tool that helps to test customized hardware accelerators for DNNs and
explore new accelerator designs with better performance and e�ciency. It supports popular machine
learning frameworks (Ca�e and PyTorch) for analyzing DNN workloads and provides analytical

Perspectives on Design Methodologies for Heterogeneous HPC Platforms for Deep Learning 21

models for accelerator benchmarking. It has a high-dimensional design space and �ne-grained
adjustability to overcome design limitations, and a design space exploration engine to generate
optimized accelerators based on targeted AI workloads and available hardware resources.

Gemmini [97] provides an e�ort to assess DNN accelerators, taking into account cross-stack and
system-level e�ects in real-world scenarios. This enables a better understanding of the impact of SoC
resource contention, OS overheads, and programming stack ine�ciencies on overall performance
and energy e�ciency. Gemmini is an open-source DNN accelerator generator that enables users
to design custom hardware accelerator systems for rapidly evolving DNN workloads. It provides
a complete solution that spans both hardware and software stack, and is compatible with the
RISC-V ecosystem. Gemmini’s hardware design options can be tuned for performance, e�ciency,
and extensibility. It implements a multi-level software stack with an easy-to-use programming
interface and tight integration with Linux-capable SoCs. Gemmini-generated accelerators have
been successfully fabricated in TSMC 16 nm FinFET and Intel 22 nm FinFET Low Power process
technologies, and deliver comparable performance to state-of-the-art commercial DNN accelerators.
DNN accelerator micro-architectures and their program mappings are speci�c choices of loop

order and hardware parallelism for computing the seven nested loops of DNNs. It has been observed
that these hardware variants can be precisely and concisely represented by Halide’s scheduling
language. In Interstellar [250], modi�cations were made to the Halide compiler to generate hardware
that allows for fair comparisons with prior accelerators. Interstellar highlights the signi�cance of
optimizing the memory hierarchy since it is noted to have a greater impact on energy metrics than
the selection of data�ow.

Aladdin [209] is a simulation tool that allows for quick exploration of design options for systems
that are focused on accelerators. It is a pre-RTL and power-performance simulator that takes
in algorithm descriptions in high-level languages and uses dynamic data dependence graphs
(DDDG) to represent an accelerator without the need to generate RTL. It applies optimizations
and constraints to an unconstrained program DDDG to create an accurate model of accelerator
behavior. Its e�ectiveness has been con�rmed through comparison with RTL implementations of
accelerators created with both handwritten Verilog and commercial HLS tools, demonstrating that
it can model performance, power, and area with high accuracy. Furthermore, Aladdin provides
these estimates much more rapidly than traditional RTL �ows, at over 100 times faster.

5.2 Simulation tools for emerging memories-based DNN accelerator
Another set of tools for DNN modeling, simulation and pro�ling is that related to emerging
memories-based accelerators.
DNN+NeuroSim [185] is an integrated framework to benchmark compute-in-memory (CIM)

accelerators for deep neural networks, with hierarchical design options from device level, to circuit-
level and up to algorithm-level. A python wrapper is developed to interface NeuroSim with popular
machine learning platforms such as Pytorch and Tensor�ow. The framework supports automatic
algorithm to hardware mapping, and evaluates both chip-level performance and inference accuracy
with hardware constraints.

SySCIM [207] considers the impact of the non-idealities of the CIM components, including mem-
ristor device, memristor crossbar (interconnects), analog-to-digital converter, and transimpedance
ampli�er, on the vector-matrix multiplication performed by the CIM unit. The CIM modules are
described in SystemC and SystemC-AMS to reach a higher simulation speed while maintaining high
simulation accuracy. Experiments under di�erent crossbar sizes show SySCIM performs simulations
up to 117⇥ faster than HSPICE with less than 4% accuracy loss.
MemTorch [137], is an open-source framework for customized large-scale memristive Deep

Learning (DL) simulations, with a re�ned focus on the co-simulation of device non-idealities.

22 Fabrizio Ferrandi et al.

MemTorch also facilitates co-modeling of key crossbar peripheral circuitry. MemTorch adopts
a modernized software engineering methodology and integrates directly with the well-known
PyTorch Machine Learning (ML) library.
MNSIM [246] proposes a simulation platform for the memristor-based neuromorphic system

with a hierarchical structure and �exible interfaces for customization. A detailed reference design
is provided for large-scale applications like ISAAC or PRIME accelerators demonstrated in the
previous deliverable. A behavior-level computing accuracy model is incorporated to evaluate the
computing error rate a�ected by interconnect lines and nonideal device factors. Experimental
results show that MNSIM achieves over 7000 times speed-up than SPICE simulation. MNSIM can
optimize the design and estimate the tradeo� relationships among di�erent performance metrics
for users.

In [195], we wanted to propose a simulation framework which comes with the suitable abstrac-
tions to propagate the e�ects of those RRAM crossbar con�guration parameters to their ultimate
implications over inference performance stability. RRAM devices non-idealities result in signi�cant
inference accuracy drops compared with software baseline accuracy. A critical one is related to the
drift of the conductance states appearing immediately at the end of program and verify algorithms
that are mandatory for accurate multi-level conductance operation. The support of drift models in
state-of-the-art simulation tools of memristive CIM is currently only in the early stage, since they
overlook key device- and array-level parameters a�ecting drift resilience such as the programming
algorithm of RRAM cells, the choice of target conductance states and the weight-to-conductance
mapping scheme. In this work we fully exposed these parameters to RRAM crossbar designers as a
multi-dimensional optimization space of drift resilience.

5.3 Cycle-Accurate Simulators
For accurate simulations, it is crucial that the simulation tools provide cycle accuracy, which means
that they must model the behavior of the hardware accelerator at a cycle-by-cycle level, accounting
for all the interactions between the di�erent hardware components. This section will focus on
simulation tools for hardware accelerators that o�er cycle accuracy.
SCALE-SIM (SystoliC AcceLErator SIMulator) [202, 203] is a simulator that provides cycle-

accurate modeling for DNN accelerators. It takes into account various factors such as on-chip and
o�-chip memory accesses, and interface bandwidth information for a given neural network. It has
two primary components: (i) a compute unit that utilizes a systolic array that can be customized
according to size and aspect ratio, and (ii) an accelerator memory system that features three
double-bu�ered SRAM memories with user-speci�ed sizes. These bu�ers store the matrices for
two operands and one result. SCALE-SIM gets in input the layer dimensions of a speci�c neural
network workload and the hardware architecture parameters and provides in output performance
and energy �gures.

STONNE (Simulation Tool for Neural Network Engines) [168] is a highly modular and extensible
simulation framework that enables the end-to-end evaluation of �exible accelerator architectures
running complete contemporary DNN models with cycle accuracy. STONNE has been validated by
simulating the MAERI architecture and comparing the total executed cycles with that of a BSV-
coded MAERI implementation. The results showed an average deviation of 15%. Like in Timeloop,
STONNE uses the Accelergy energy estimation tool to estimate energy and area.

SimuNN [39] is a pre-RTL neural network simulator that allows for early phase veri�cation and
fast prototyping before the design is converted into hardware. It supports di�erent data precision
and is compatible with TensorFlow. SimuNN provides multi-level trace results that can be used as a
reference for the �nal hardware design. Additionally, it can evaluate the hardware performance
under various quantizations, data�ow, and con�gurations based on a generalized hardware model.

Perspectives on Design Methodologies for Heterogeneous HPC Platforms for Deep Learning 23

AccTLMSim [130] is a pre-RTL simulation tool which utilizes SystemC transaction-level modeling
(TLM) to simulate convolutional neural network (CNN) accelerators with cycle accuracy. The tool
includes a detailed model of the interface with the DRAM, allowing for precise tracking of each bus
transaction between the accelerator and DRAM while considering the communication bandwidth.
The validity of the simulation results is con�rmed by comparing them to the implementation results
on the Xilinx Zynq, resulting in an average estimation error of less than 10%.
QADAM [110] and its evolution QAPPA [111] are parameterized RTL frameworks that have

been designed to model the power, performance, and area of quantization-aware deep neural
network (DNN) accelerators. The frameworks allow for design space exploration and Pareto-
e�ciency analysis for a range of design choices, including bit precision, processing element (PE)
type, scratchpad sizes of PEs, global bu�er size, total number of PEs, and DNN con�gurations. By
using QADAM/QAPPA, researchers can examine the impact that di�erent bit precisions and PE
types have on performance, area, and energy consumption.
In [124], a DSE approach for CNNs that is both fast and accurate is introduced. The approach

employs an analytical model which is derived from the physical synthesis of hardware accelerators.
This model is integrated into CNN frameworks such as TensorFlow, enabling it to produce precise
outcomes. The analytical model provides estimations for various factors, including area, perfor-
mance, power, energy, and memory accesses. The accuracy of the model was tested by comparing
it to data obtained from physical synthesis, and it was observed that the average error was less
than 7%.

5.4 Modeling and Profiling FPGAs for custom accelerators
The use of o�-the-shelf highly parallel hardware accelerators to boost the performance of software
applications, and deep learning algorithms in particular, is nowadays a very common option,
adopted by a large and increasing share of HPC systems. In this sector, GPUs are de�nitively the
most common accelerators, while FPGAs are hardly, or even not, used at all. Despite this, some data
centers have recently started to adopt FPGAs to speed-up network interconnects [192], and speci�c
workloads [19] such as Machine Learning (ML) inference algorithms [91, 210]. In fact, FPGAs could
represent an interesting trade-o�, allowing user customizations, as well as the use of o�-the-shelf
hardware, to implement custom deep-learning accelerators.

Given the rapidly increasing use of ML methods in several application �elds, and the interest in
recon�gurable architectures, which is rising in the HPC community since several years [80, 234, 238],
we may expect FPGAs to become a more common option, as accelerators, for next generations
of HPC systems. In the past, several reasons have prevented this. First, FPGAs were not designed
to provide high �oating-point (FP) computing performance [238], while typical HPC workloads
usually require double-precision (DP) and single-precision (SP) FP computations. Secondly, FPGA
programming could be a very time consuming process, requiring the use of speci�c hardware
programming skills and the use of programming languages not common among HPC developers
communities [23]. Thirdly, the code written for one FPGA could hardly run across di�erent devices
without a complete re-design, causing serious portability issues not acceptable for a wide set of
HPC applications, for which even the porting to GPUs had been a long and su�ered process [233].
However, more recently, these barriers started to fade thanks to improvements in hardware

architectures and programming frameworks. In fact, latest generations of FPGAs integrate thousands
of programmable DSPs (Digital Signal Processors) able to implement SP- and DP-FP operations [31,
197, 235], and may also embed custom FP DSP blocks. This is leading to devices able to reach a
performance in the same order of magnitude as commodity HPC processors (i.e. TFLOP/s), and
in some cases able to deliver a better energy-e�ciency [25, 263]. At the same time, the recent
improvements of synthesis tools, and the development of new programming approaches such as

24 Fabrizio Ferrandi et al.

HLS (High Level Synthesis) [171], allow programmers to develop codes using high level languages.
As an example, OpenCL [263] could be used, as well as plain C/C++ annotated with pragma
directives to guide the compiler to automatically map the code onto FPGA hardware resources [70].
These approaches are very similar to those (e.g. OpenMP and OpenACC) commonly used by HPC
developers to target multi-core CPUs and other accelerators, which are also able to guarantee a fair
level of code portability [30].
All the above improvements combined with the urging quest for higher energy-e�ciency and

lower latency interconnects in exascale HPC systems, are leading to a signi�cant increase in the
interest towards heterogeneity and specialized computing in the form of recon�gurable accel-
erators [251]. This makes the use of FPGAs very attractive as they allow to scale-out resources
by enabling distributed computing, and can be programmed to be network-capable processors
implementing custom interconnects featuring low-latency communications without involving the
CPU control [138].

First prototypes of FPGA accelerated HPC systems are already being designed and deployed. One
example is the Alveo FPGA Cluster installed at ETH Zurich in the context of the Xilinx Adaptive
Compute Clusters (XACC) initiative, using commodity hardware to support novel research in
adaptive compute acceleration for HPC. Another example is the EU-H2020 EuroEXA Project, which
has developed a HPC system prototype with custom hardware, adopting FPGA based accelerators
for both computing and networking [138].
Consequently, as a future scenario we may expect next generations of HPC systems to be

equipped with FPGA-based accelerators, probably alongside other accelerators, such as GPUs,
being programmed with high level languages, possibly based on pragma directives, allowing to
address several kind of di�erent accelerators in a uniformed way [30].
In this context, application developers need to estimate the performance achievable on target

FPGAs, to decide whether an application kernel is worth to be ported, or which FPGA better �ts
its computing requirements. At the same time, system architects and engineers need to estimate
the performance of a single FPGA, to feed performance models to tune, balance and optimize the
performance at system level [251].

Several research works have investigated FPGAs performance when used as hardware accelera-
tors, mostly using synthetic benchmarks to estimate the bandwidth of o�-chip memories [169, 240,
264], and OpenCL kernels to measure the FPGA computing performance [123, 156, 256].
In [240] is presented the Shuhai Verilog benchmark, used to characterize the performance of

HBM and DDR o�-chip memories embedded in the Xilinx Alveo U280. In [156] is presented an
OpenCL implementation of the HPCChallenge Benchmark Suite, reporting the results for di�erent
FPGAs. In [256] is reported a C/HLS implementation of the HPCG Benchmark targeting FPGAs.
Interestingly, in this case the Roo�ine Model has been used, but only to assess the optimization
level of the speci�c application, with respect to theoretical estimations.
In fact the Roo�ine Model has already been used in the past to evaluate the performance of

speci�c applications [170], being ported to FPGAs. But few works provide a generic application-
independent extension of this model for these architectures, mainly due to the di�culty in de�ning
the maximum compute performance for a recon�gurable device. A �rst comprehensive work
extending the Roo�ine Model to FPGAs has been presented in [61], here authors focus mainly
on aiding developers to explore the design space options. Building on the same principle, more
recently, in [215] and in its extended version [214], a semi-automated performance optimization
methodology based on the Roo�ine model for FPGAs has been proposed. In this case the authors,
aim for a tool to explore the design space, while in our case we aim to provide a benchmarking tool.

The �rst work proposing a methodology for the performance analysis of FPGAs allowing to make
Roo�ine plots and cross-architectural comparisons, has been reported in [166]. In this case, the

Perspectives on Design Methodologies for Heterogeneous HPC Platforms for Deep Learning 25

authors use OpenCL as programming language to provide mini-apps, such as SHOCL0, LINPACK
and STREAM, to measure the computing performance and the memory bandwidth of the o�-chip
memory. Using OpenCL also the ERT benchmark has been reported to run on FPGAs in [175] and
in its extension [174].

In [35] have been reported the �rst C/HLS benchmark tool able to provide empirical Roo�ine plots
for FPGAs. Later extended to support the Xilinx Vitis work�ow to allow for a wider adoption [36].
This tool, named FER (FPGA Empirical Roo�ine) [37], and available as Free Software [34], has been
developed by INFN and the University of Ferrara, and it allows for application-agnostic performance
assessment of FPGA based accelerators, aiming to a comprehensive machine characterization,
allowing for cross-architectural comparisons and for performance estimations of generic HPC
kernels on a given device. To this aim, FER is able to measure both the computing peak performance
of FPGAs, and the bandwidths of on-chip and o�-chip memories. It is based on the Roo�ine
Model and it is implemented having at its core a directives annotated C/HLS kernel, with tunable
operational intensity and hardware resources usage. Moreover, it relies on a theoretical model
aiming to strictly link the performance results to the available hardware resources. The choice of
C/HLS allows at the same time to expose to the users low level �ne tuning knobs, as well as to
use a high-level programming paradigm that can easily be used by the HPC user community for
development and porting.

FER has been used to measure the double-, single- and half-precison �oating-point performance,
as well as �xed-point precision performance, of several FPGAs [37], but could also be easily
adapted to measure the performance of deep learning speci�c operations using custom precision,
in the context of the Roo�ine theoretical model, easily highlighting performance limits of di�erent
hardware devices.

6 COMPUTATIONAL MODELS FOR HPC APPLICATIONS
For the design of next generation HPC systems, in addition to tools and platforms suitable for
the realization of hardware accelerators, appropriate models of computations are highly desirable.
In fact, a computational model provides the designer with a proper level of abstraction from
the low-level details, thus making possible to capture the main features mostly a�ecting speed
performances and power consumption achievable on the target hardware platform. For this reason,
several tools and computational models have been developed in the past with the objective of
supporting e�ciently the design of hardware accelerators for DL by two ways: estimating detailed
insights of features and capabilities of the accelerators under design; and improving their behavior
in terms of power consumption, performance, and resources requirements. In this section, we will
explore some of the most popular computational models suitable, on the one hand, to investigate
strengths, weaknesses, limits and bottlenecks of hardware accelerators, and, on the other hand, to
�t the computational requirements by choosing the proper parallelism level, by minimizing the
number of operations and by reducing the power consumption.
As discussed in the following, some of the explored computational models allow performing

a theoretical analysis of new hardware architectures (e.g. tensor cores and PIM), whereas others
are useful to approach the use of linear algebra inside HPC applications. Finally, approximate
computing is analyzed as an emerging computational model to reduce computational delay and
energy consumption of typical HPC workloads.

This Section furnish to application developers a thorough description of computational models
exploitable to estimate the performance achievable on di�erent implementation platforms, to decide
whether a given hardware architecture is worth to be adopted, or which approximate computing
approach better �ts the computing requirements.

26 Fabrizio Ferrandi et al.

6.1 Theoretical Models of Computations
Amodel of computation is a theoretical framework for the design and analysis of e�cient algorithms
for a given computational architecture: the goal of a computational model is to abstract from the
low-level details and to capture the main features that a�ect the most the performance on the
target architecture. The Random Access Machine (RAM) model is the most common computational
model and it has been a cornerstone of the history of computing: its main goal is to design e�cient
algorithms that minimize the number of CPU operations and to investigate the limits of computing.
However, the RAM model does not e�ciently capture the main features and bottlenecks of modern
hardware. A well-known example is provided by memory hierarchy: the RAM model does not
capture the memory bottleneck and the di�erent times to access data in di�erent positions of
the memory. Therefore several works have addressed how to extend the RAM model to include
such characteristics: the most notable is the External Memory model that has been widely used
for designing and analyzing e�cient algorithms and data structures that fully exploit the memory
hierarchy (see e.g. [239]). Other examples have been provided by the several computational models
that have been developed for parallel architectures, such as BSP, PRAM, LogP, and MapReduce.
We refer to [26] for a general exposition of theoretical computational models for parallel and
hierarchical architectures.
As already presented in this survey, there are several emerging technologies, like tensor core

accelerators and processing-in-memory (PIM) architectures, that can potentially speed up com-
putations. However, the process of algorithm design must take into account these technologies.
From a theoretical perspective, suitable models of computations should be introduced for these
new architectures. In this section, we brie�y review the recent results on computational models for
tensor cores accelerators and PIM architectures.

6.1.1 Tensor cores accelerators. Themost important feature of tensor cores is the ability to e�ciently
perform matrix multiplications thanks to suitable hardware. While tensor cores have been widely
used for the training of neural networks, a few works have applied these architectures in other
computational domains. Works like [62, 150, 218] have studied how to expand the application
domain of tensor core accelerators by targeting linear algebra and graph analytics. These works
provide an experimental analysis of the proposed algorithms, but do not provide a theoretical
analysis of their performance, nor introduce a computational model for tensor cores. The �rst
work in this direction appeared in [56]. This work introduces a computational model capturing the
features of tensor cores: the model captures the ability of the tensor core to e�ciently perform dense
matrix multiplication of �xed size and it is characterized by two parameters< and ✓ . Speci�cally, the
model enriches a traditional RAMmodel with a hardware unit to perform a matrix multiplication of
given size

p
< ⇥ p< in time $ (< + ✓) where ✓ is a latency cost. This model has been then used for

analyzing the performance of algorithms for linear algebra, graph, and stencil algorithms, sparse
matrix multiplication [136], and similarity search [12].

6.1.2 Processing-in-memory architectures. With the advent of commercial accelerators such as
UPMEM, several results have been published on algorithms optimized for this class of accelerators,
although they do not provide theoretical guarantees. For instance, [265] proposed algorithms for
skyline computations, while [55] described data structures like linked lists, FIFO queues, and skip
lists. These works provided an empirical evaluation of algorithms for PIMs and did not de�ne a
model of computation. The paper [148] presented a performance model for PIM with parameters
for the latency of memory access by a CPU core, the latency of local memory access by a PIM core,
and the latency of last-level cache access by a CPU core. To the best of our knowledge, the only
result with a model of computation for PIM and with a theoretical analysis is provided in [126]. The

Perspectives on Design Methodologies for Heterogeneous HPC Platforms for Deep Learning 27

paper proposed a computational model for PIM inspired by the UPMEM architecture: the model
combines a CPU side consisting of parallel cores with fast access to a small shared memory of size
" words, and a PIM side consisting of % PIM modules, each with a core and a local memory of
size ⇥(=/%) words, = denotes the input size of the problem. The model has then been used for
designing a skip-list [126] and an index for skewed data [127] that exploit PIM systems.

6.1.3 Future work. During the project, we will investigate how to further extend the aforemen-
tioned computational models for emerging technologies. We will then use these models to design
and theoretically analyze e�cient algorithms and data structures that fully exploit such technologies.
We will in particular address important primitives for machine learning and data analysis.

6.2 Linear Algebra, Tensors, Machine Learning/Deep Learning
6.2.1 Linear Algebra algorithms. Linear Algebra is and will continue to be at the heart of HPC
applications for the foreseeable future. An immense amount of research has been devoted to the
e�cient implementation of linear algebra; among these e�orts we can identify some that are more
concerned with the computational models needed in approaching the use of linear algebra inside
applications.

Among these trends we �nd the emergence of the so-called task-based runtime environment [10,
11, 42, 105, 184]; these systems provide a novel way to encode complex algorithms by specifying
a set of dependencies among various building blocks. The programmer builds a DAG (directed
acyclic graph) specifying for each node a kernel to be executed on a certain portion of the data, and
connecting the nodes with directed arcs to specify an input-output relationship among the various
computations. The end result is the increase in programmability of various kinds of complex linear
algebra algorithms [95, 193, 205].
As we mentioned previously, linear algebra has elicited an immense amount of research work,

due to its importance in providing application building blocks; and yet, there is a certain amount of
disconnection between the users and programmers of applications, and the developers of libraries.
The libraries encompass a body of knowledge on what constitute e�cient implementations, but the
users tend to rely ever more on environments that may or may not provide an optimal mapping from
problem to function calls. As noted in the survey [191], the mapping problem itself is NP-complete,
hence there is a need for further activity in this �eld to help users identify the best possible ways
to frame the applications in ways that are conducive to exploitation of exascale resources.
One of the essential ingredients of modern HPC architectures is their heterogeneity; handling

heterogeneity in the applications has been addressed e.g. by using the techniques in [41, 44, 88];
more work is de�nitely needed in enabling end-users to handle heterogeneity in a convenient and
transparent way.
Two major trends in recent years have been quite visibile and relevant. The �rst trend is the

emergence of variants of existing Krylov methods designed to reduce communications; these topics
have been the subject of very intense research, since the reduction of communication is a necessary
step in the full exploitation of exascale architectures. The communication avoiding developments
have been spearheaded by the group of J. Demmel‘[43, 71, 155] on both conventional and accelerator
architectures.

Another major trend which is connected to the emergence of accelerators is the usage of mixed-
precision algorithms. This trend has achieved prominence because on many accelerator plaftorms,
the speed of single and reduced precision arithmetic is signi�cantly faster than that of the usual
double precision computations; thus, the study of algorithms that can be formulated using mixed
precision modes is a very attractive feature. To get an overview, see the papers [5, 90, 107]. In the
same vein, we can look at the use of randomization in algorithms [167].

28 Fabrizio Ferrandi et al.

Many important software techniques have been implemented in the form of high performance
libraries. The most well known ones include LAPACK and ScaLAPACK [74], Trilinos [106] and
PETSc [24]. Sparse linear algebra libraries have long been developed by our group, and we have
recently introduced new versions [63, 77], where we implement some among the most e�ective
solver techniques available, i.e. algebraic multigrid preconditioners coupled with Krylov subspace
solvers. Our recent research has been focused on the implementation of more e�ective strategies
for building the multigrid hierarchy; our research program has been granted early access to the new
Leonardo computational facility at CINECA, where we are actively exploring extreme scalability of
multigrid construction based on graph matching.

Sparse linear algebra is central in many applications, including machine learning; for a general
discussion of the use of sparse linear algebra in machine learning, see [78, 94, 177]; a discussion
of the GPU applications can be found in [94]. An interesting facet is that the relationship is also
active in the other direction, i.e. use of machine learning tecchniques in sparse linear algebra; see
e.g. [225].

6.2.2 Algorithmic Optimizations for CNN Acceleration.
Deep Convolutional Neural Networks (CNNs) have been extensively used for processing images,
sounds, and more generic sensor data, for detecting objects, patterns, and events [133, 226, 254].
Convolutional layers in CNNs are expensive in terms of compute and memory resources. There
are many ways in which a convolution layer can be implemented. Without loss of generality, the
methods discussed in this subsection refer to the case of single-image inference. Batched inferences
can be considered an extension of the single-image case.

Typically, the convolution is implemented using a traditional sliding window approach across the
activation data matrix, together with the application of a kernel function [206]. However, this type
of computation in HPC systems is not e�cient due to the irregularity of the data access pattern.

In order to reduce the number of �oating point operations needed for computing the convolution,
Fast Fourier Transform (FFT)-based implementations were proposed [152, 236]. The convolution is
computed in the frequency domain as a Hadamard product (element-wise matrix multiplication),
after Fourier transforming the activation data. After the product, results are transformed back
in the frequency domain applying an inverse FFT. Even though FFT provides an asymptotically
superior approach, the gap between the input feature map size and kernel size makes it often very
ine�cient as, for the computation to be performed, the kernel weights have to be padded to the
size of the input image, incurring in a signi�cant memory overhead, in particular when the kernels
themselves are small [258].
Another type of computational transformation, particularly e�cient when processing small

kernels (size 3), and that can be applied to convolutions in which the stride is 1, is the Winograd
minimal �lter algorithm [7, 242]. The Winograd convolution algorithm �rst divides the output
activation matrix into tiles and computes each tile as�) [(⌧6) � (⌫)3)], where 6 is the convolution
�lters and 3 is the input activation matrix. �, ⌫, and ⌧ are transformation matrices, which are
constants for a given value of tile size and convolution �lter size. � denotes the Hadamard product.
The Winograd convolution reduces the number of multiplications and, as the matrix multiplication
of smaller transformed matrices has more independent workloads, increases the thread-level
parallelism. However, this comes at the cost of extra �oating-point additions and the extra global
memory accesses that are needed to implement the matrices’ transformations. This process, for
large convolution �lters, may overwhelm the bene�ts of multiplication reduction [116].
Another common approach is to reshape and selectively duplicate parts of the original input

activation data to create a lowered matrix [21, 46, 54]. This allows to implement the convolution
as a multiplication between the newly generated matrix of input data and a properly arranged

Perspectives on Design Methodologies for Heterogeneous HPC Platforms for Deep Learning 29

Fig. 9. im2col activation data packing.

Fig. 10. MEC activation data packing.

matrix of kernel weights, and to leverage the highly optimized high performance matrix-matrix
multiplication routines that can be found in Level 3 Basic Linear Algebra Subprogram (BLAS)
libraries [73].
The �rst of these methods, the image-to-column (im2col) algorithm [46], transforms the input

activation matrix into a Toeplitz matrix by unrolling overlapping patches of the input matrix into
columns (Figure 9). In the dual approach, image-to-row (im2row), the lowered matrix is created by
unrolling the patches into rows [21]. Both methods require an additional memory space of size
(⇥ ⇥⇠�) ⇥ (�$ ⇥,$) for storing the lowered input matrix.
In the Memory-e�cient Convolution (MEC) algorithm [54], di�erently then with the im2row

algorithm, multiple rows of the activation matrix are lowered at once, by transforming [��] ⇥
[] ⇥ [⇠�] submatrices into rows. As shown in Figure 10, the resulting lowered matrix is of
size,$ ⇥ �� ⇥ ⇥ ⇠� , i.e., smaller than the lowered matrix generated in the case of im2row.
The convolution is computed by multiplying the weights matrix with �$ submatrices of size
[,$] ⇥ [⇥ ⇥⇠�], obtained by shifting, over the lowered matrix, the submatrix to the right by
B ⇥ .MEC intuitively eliminates the vertical redundancy of the im2row approach, while recovering
the information by shifting the submatrix by a constant interval [54].

30 Fabrizio Ferrandi et al.

Fig. 11. kn2row activation data packing.

While enjoying the speed-up given in the execution by the use of architecture-optimized routines,
these approaches su�er from the time penalty of implementing the bandwidth-bounded packing
of the input matrix, as well as from the mismatch between the sizes of the matrices used in the
calculation of the convolution and those for which traditional high-performance systems are
optimized. Moreover, additional memory space is needed for storing the lowered matrices.

Direct methods, which do not involve the packing of matrices before the computation, have been
also proposed. Vasudevan et al. [21] introduces the kernel-to-row (kn2row) algorithm to avoid data
replication in the input, at the cost of increasing the size of the output. As shown in Figure 11, the
convolution is computed as the sum of ⇥ separate 1⇥ 1 convolutions. Each 1⇥ 1 convolution is
calculated by considering only one of the ⇥ kernel components at the time, and multiplying it
with the input activation matrix, therefore by performing a matrix-matrix multiplication between
the corresponding [⇠$] ⇥ [⇠�] weight matrix and the [⇠�] ⇥ [�� ⇥,�] activation matrix. All the
 ⇥ separate 1⇥1 convolutions can be computed using a single matrix multiplication by reordering
the �lter matrix by laying out contiguously the ⇠$ channel data. This results in multiplying a
[⇥ ⇥⇠$] ⇥ [⇠�] weight matrix to a [⇠�] ⇥ [�� ⇥,�] activation matrix. The result matrix, of
size [⇥ ⇥⇠$] ⇥ [�� ⇥,�], is stored in memory at the end of the multiplication.

In order to obtain the desired [⇠$]⇥ [�$ ⇥,$] output activation matrix, the results of the ⇥
separate 1 ⇥ 1 convolutions are added together by appropriately shifting the data vertically and/or
horizontally, depending on the position of the relative weight with respect to the central kernel
weight (i.e., top, bottom, left, right, and diagonal positions). Some of the results of the intermediate
1 ⇥ 1 convolutions are outside the boundaries of the �nal result matrix and they are discarded
during the �nal sum. Filter weights are arranged in the desired position ahead of time.
In [21], the kn2row approach is modi�ed by performing the shift-add operation at the end of

the calculation of each separate 1 ⇥ 1 convolution. The needed temporary storage is reduced to
[2X +⇠$] ⇥ [�� ⇥,�], where X is the number of extra rows in the result matrix needed to support
the shifting of the result data.
By swapping the dimensions of the �lter and of the input activation matrices to make ⇠� the

innermost dimension, it is possible to obtain the dual methods (kernel-to-col).
The High Performance Zero-Memory Overhead (HPZMO) Direct Convolutions approach [258]

implements the convolution by reading the activation and �lter weights’ data directly frommemory,
without the need of additional memory space at the input or at the output. The HPZMO algorithm

Perspectives on Design Methodologies for Heterogeneous HPC Platforms for Deep Learning 31

is show in Algorithm 1, which is obtained by rearranging and optimizing the naive convolutional
algorithm for taking into account its execution over multi-threaded Single-InstructionMultiple-Data
(SIMD) architectures and an output-tiled approach, in which the partial results of the convolution
of,>,1 elements are accumulated into the register �le. The HPZMO approach relies on the vector
units of the computing architecture. The algorithm extracts parallelism in the output channel (⇠$)
dimension, which allows the sharing of the input data among threads/PEs for calculating di�erent
sets of output channels. Both input and output activation data, as well as the �lter weights, are
organized in the channel-last structure, and into blocks of � ⇥, ⇥⇠1 , where ⇠1 is a multiple of
the SIMD vector length.

Algorithm 1 Parallelized Direct Convolution Algorithm - HPZMO
Input: Activation I, Filter weights, Stride s = 1;
Output: Activation O;

for 8 1 to ⇠$/⇠$,1 in Parallel do
for : 1 to �$ do

for ; 1 to,$/,$,1 do
for< 1 to � do

for = 1 to, do
for 9 1 to ⇠� do

for ;; 1 to,$,1 do
for 88 1 to ⇠$,1 do

$8 ·⇠$,1+88,; ·,$,1+;;,: += � 9,; ·,$,1+;;+=,:+<⇥
� 9,8 ·⇠$,1+88,=,<

6.3 Parallel Pa�erns
This section will provide an overview of the methodology of Structured Parallel Programming (SPP),
where complex parallel applications are provided as composition of few components properly
combined and nested with each other. The general objective of this approach is to improve the
productivity of parallel software, which should be implemented in an e�cient manner and quite
easily by a broad spectrum of programmers also including experts of application domains (which
are not necessarily experts of concurrent/parallel programming). In the next part we review the
idea of SPP, then we will describe existing research and industrial frameworks adopting this design
methodology. Finally, we carefully consider FastFlow as a prototype framework for bringing the
SPP approach in emerging application domains such as Data Stream Processing, Machine Learning
and others.

6.3.1 From Algorithmic Skeletons to Parallel Design Pa�erns. SPP was originally made available
through the Algorithmic Skeletons programming model [59], where parallelism can be expressed
and orchestrated using structured compositions of prede�ned parallel components representing
recurrent schemas of parallelism exploitation. Although prede�ned, such components are often
parametrizable, e.g., in their parallelism degree (number of concurrent/parallel entities composing
the component), and their regular structure in terms of interaction and synchronization allows
performance metrics such as throughput and latency to be predicted using analytical cost models.
Furthermore, the exposition of the complete structure of the parallel application allows the use of
di�erent heuristics when porting an application from one target architecture to a di�erent one, so
helping the so-called performance portability of parallel software. Example of such skeletons are

32 Fabrizio Ferrandi et al.

map, reduce, parallel-for, stencils (often applied in linear algebra problems), farm, pipeline, divide-
and-conquer and iterative computations expressed, for example, by a macro data�ow engine [67].
Such skeletons are often provided as higher-order functions in functional programming languages,
or as classes in object-oriented imperative programming languages that can be instantiated with
the business logic code by hiding to the user all the low-level details of the underlying parallel
implementation.
There is a certain di�erence between the original view of Algorithmic Skeletons and the more

recent vision of Parallel Design Patterns [64]. The latter represents a renewed instantiation of
the SPP programming approach, where instead of providing a prede�ned and somehow rigid set
of skeletons, the programming framework provides some mechanisms and construct (a sort of
intermediate abstractions) used by the application programmer to instantiate a parallelism pattern
having speci�c properties. In this case, the programming burden is often higher than using pure
skeletons, and the research is quite vivid in understanding which intermediate abstractions can be
provided to application developer the help in building their own patterns easily and e�ciently.

6.3.2 Existing Research and Industrial Frameworks. Over the years, a broad space of programming
tools and frameworks adopting the SPP methodology have been provided both as research pro-
totypes and as industrial tools. Historical tools fostering the Algorithmic Skeletons approach are
Muesli, SkeTo, SkePU (which poses special emphasis on GPU accelerations), Lithium, Muskel,
GrPPi, FastFlow, and many other as described in a survey on this topic [99]. More recently, with
the renewed interest in SPP through the new design patterns perspective, several tools are now
compliant with the pattern-based approach to parallel programming, such as Microsoft PPL, Intel
TBB now subsumed by the OneAPI framework), OpenMP. Furthermore, in the �eld of Big Data
processing tools, some open-source frameworks for data-intensive computing such as Apache
Spark, Flink and Storm provide some data�ow abstractions and operators (e.g., working on streams
in a structured manner) that might be considered as special instantiation of the parallel pattern
idea to a speci�c application domain.

6.3.3 The FastFlow Parallel Programming Framework. FastFlow [16] is a C++ parallel programming
environment based on the SPP methodology. It incorporates both Algorithmic Skeleton concepts as
well as intermediate-level mechanisms and concepts useful to ease a quick prototyping of parallel
patterns of di�erent kinds. The layered structure of the framework is sketched in Fig. 12. The higher
layer is represented by a set of high-level skeletons modeling built-in parallel patterns such as map,
reduce, parallel-for and others. Each skeleton is implemented as a C++ class that can be created by
providing the business logic code through functions or lambda objects.

The intermediate layer consists of a set of building blocks, which represent the available structures
that can be used by programmers to instantiate their own parallel patterns that are not directly
modeled by the set of built-in skeletons. Such building blocks allows the ease development of
data-�ow graphs of parallel activities, where nodes are implemented by dedicated threads, and
communications are performed via shared memory by exchanging memory pointers. Building
blocks can be classi�ed in sequential blocks such as seq and combiners. The �rst wraps a sequential
function applied in a streamed fashion on each input item in a single data-�ow node. The second
allows more seqs or other combiners to be incorporated into a data-�ow node, so implementing
the sequential composition or more functions applied on streams. Parallel building blocks allow
sequential blocks, and recursively other parallel blocks, to be connected in complex but regular
structures. The pipeline blocks model temporal parallelism, with each node working in parallel on
di�erent inputs. The farm block implements spatial parallelism, with the same function replicated
in more nodes fed by an emitter node with scheduling purposes. Results are collected by a collector
node multiplexing outputs into a single outcoming stream. Finally, the all-to-all block allows the

Perspectives on Design Methodologies for Heterogeneous HPC Platforms for Deep Learning 33

Low-level Mechanisms for Multicores,
GPUs, FPGAs, Distributed

(threads, lock-free SPSC queues, memory allocators,
distributed communication libraries, …)

Sequential and Parallel Building Blocks
(seq, combiner, pipeline, farm, all-to-all, wrap_around, …)

High-level Parallel Skeletons
(map, reduce, stencils, parallel-for, pool evolution, divide-and-

conquer, …)

f
seq combiner

f g

f g h

pipeline

e

w

w

c

farm

.

.

.

l

all-to-all

l

.

.

.

r

r

.

.

.

fastflow node shared-memory SPSC queue

distributed-memory channelfeedback queues/channels

LEGEND

Fig. 12. Layered architecture of FastFlow.

complete connection between nodes (or blocks) in the left-hand set to the nodes (or blocks) of the
right-and set. All the parallel blocks can be con�gured with the wrap-around modi�er, which adds
feedback connections creating controlled cycled in the data-�ow graph. Such kind of feedbacks
are of special importance to model parallel patterns incorporating iterative computations such
as parallel graph and machine learning algorithms. In addition to the implementation of speci�c
patterns, building blocks can be used by system programmers to develop new runtime systems
for speci�c application domains. This idea has been recently applied to the WindFlow library
for data stream processing [R], whose multi-core implementation is essentially based on formal
compositions of the FastFlow’s building blocks.
The last layer of the hierarchy is composed by a set of low-level mechanisms invisible to both

domain experts using high-level parallel skeletons as well as by programmers using the building
block abstractions. Examples of such mechanisms are lock-free queues used for pointer-passing
between threads, which are available with di�erent concurrency control approaches (e.g., based on
busy-waiting synchronization or using exponential backo� and thread suspension).

6.4 Approximate Computing
In the last years, approximate computing has emerged as a powerful technique to reduce energy
consumption and computational delay in error-resilient applications such as multimedia processing,
deep learning (DL), digital signal processing, and wireless communications [17, 18, 101, 211]. Even
though the basic principle is very simple, i.e. by relaxing the requirement of an exact computation,
it is possible trading o� the quality of the computation result for speed performances and energy
dissipation, achieving the expected bene�ts is not trivial.
Nevertheless, approximate computing o�ers several opportunities to design e�cient hardware

accelerators for DL. For this reason, the contribution that the National Research Center can provide
in this context is crucial. In fact, as summarized in Fig. 13, we are able to exploit approximate
computing at di�erent design levels: starting from the algorithm, passing through the architecture,
up to the gate- and the transistor-level circuit topologies [119]. As an example, the approximation
strategies presented in [40, 98, 204, 219, 220, 262] can be adopted at the algorithmic level to
signi�cantly reduce the complexity and the energy consumption of critical layers typically employed
in DLmodels, such as the SoftMax and the convolutional layers interleaved by non-linear activations
and down-sampling, at the expense of a reasonable accuracy loss.

34 Fabrizio Ferrandi et al.

Approximate computing approaches

Algorithmic level

Approximate SoftMax [40, 219, 262]
Approximate sensors,memory,

compute and communication [98]
Approximate Pooling layers [204, 220]

Architecture, Gate- and transistor-level

ASICs

Multipliers and MACs

Encoded [50, 53, 217]
Not encoded [83, 86, 224]
Dynamic accuracy [15, 93]

With error correction [145, 188]
Not encoded with approximate

compressors [22, 84, 163, 189, 223]
Speculative architectures [57]

Truncate rows of the PP matrix [257]
Based on LNS [147]

Static segmentation [72, 172, 224]
Dynamic segmentation [103]

An overview [129]
Approximate MACs [68]

Adders

CLA and PP
[81, 82, 125, 162, 208]
Rippling topologies

[75, 131, 144]

Dividers

Unsigned Non-Restoring [47]
Restoring [48]

Segmentation/rounding [104, 255]
Run-time recon�gurable [109]

Based on the LNS [149]
With error correction [201]
Based on curve �tting [244]

FPGA-based designs

Adders
[13, 186, 190]
Multipliers

[187, 229, 230, 241]

Fig. 13. Taxonomy of the approximate computing approaches discussed in Section 6.4

On the other hand, e�cient solutions to exploit approximate computing at gate- and transistor-
level have been recently demonstrated. To operate at a lower level of abstraction, we will focus
our e�orts on approximation strategies suitable to design approximate adders, multipliers and
multiply-accumulate units for both Application Speci�c Integrated Circuits (ASICs) [50, 53, 83, 84,
86, 92, 93, 129, 217, 223, 224] and FPGA devices [186, 187, 229, 230, 241]. Such arithmetic operators
receive a great deal of attention since they are the basic computational elements extensively used
in DL models.

Typically, approximate computing is employed in arithmetic circuits at the architecture level by
splitting the operands to be processed into sub-words. Then, some of the least signi�cant bits are
processed through an inaccurate circuit, whereas the remaining most signi�cant bits are inputted
to a precise circuit. Some strategies exploit static approximation that in�exibly sets the achieved
accuracy at design time, while other solutions adopt dynamic approximation that allows tuning the
quality target at run-time, thus leveraging the speci�city of the data being processed and achieving
graceful quality degradation.
Representative ASIC designs of approximate adders based on Carry-Look-Ahead (CLA) and

Parallel-Pre�x Architectures (PPA) are proposed in [81, 82, 125, 162, 208]. On the contrary, the
adder topologies presented in [75, 131, 144] show how approximate logic can be exploited within
carry-skip adders.

Despite the promising results achieved with ASIC approximate adders, their low-level optimiza-
tions cannot be applied directly on FPGAs. For this reason, e�cient design approaches have been
recently proposed to design approximate adders also within FPGA devices [13, 186, 190].

It is worth noting that, regardless of the adopted approach, both ASIC and FPGA-based approx-
imate adders are designed taking into account that the propagation of the carry through a very
long chain, over many bit positions, is an event with very low probability. Consequently, the carry
propagation path can be broken in certain bit positions, thus reducing the computational delay, the
power consumption and the amount of utilized hardware resources, but maintaining the quality of
the �nal result still acceptable. On the basis of the target hardware implementation platform, we
can contribute by identifying the proper architecture and approximation logic to comply with the
desired speed performances and the available power budget.
In a similar way, several approximation techniques can be adopted in the design of multipliers.

Some of the most e�cient approaches approximate the partial product matrix compression step by

Perspectives on Design Methodologies for Heterogeneous HPC Platforms for Deep Learning 35

truncating some rows [257] or by involving inexact compressors [15, 22, 57, 68, 84, 92, 93, 145, 163,
188, 189, 223]. Others techniques use dynamic and static segmentation methods [72, 103, 172, 224]:
the former downsizes the multiplier by selecting only a segment of the inputs starting from the
leading one bit, whereas the latter processes only prede�ned portions of the multiplicands. Further
examples of e�cient approximate multipliers are those presented in [147] that take advantage of
the logarithmic number system (LNS) [161].
Besides the above described approximation strategies oriented to ASIC designs, we want to

exploit appropriate approaches to achieve high-performance designs of approximate multipliers
also on FPGAs [187, 229, 230, 241]. Among the various solutions already known in literature, we
will focus our attention on modular architectures that allow a n×n multiplier to be implemented
utilizing four n/2×n/2 smaller sub-multipliers and approximate adders either for the partial product
matrix compression step of each sub-multiplier or to sum the four computed sub-products, or both.
As demonstrated in [187] such a technique can provide bene�ts also in ASIC designs.

As it is well known, HPC workloads often also require division operations that are even more
complex than additions and multiplications. For this reason, e�cient approaches suitable to ap-
proximate divisions are particularly desirable [47, 48, 104, 109, 149, 201, 244, 255]. Among such
approximation strategies, two of the most representative are those based on approximate subtractors
[47, 48] and on the signal segmentation [104].
Taking into account that several combinations of approximate adders, multipliers and dividers

can be exploited for achieving the desired speed performances, power consumption, hardware
resources requirements and overall accuracy, our contribution will be mainly concentrated towards
the design of approximate computational modules for both ASIC and FPGA-based arithmetic
circuits, and consequently on making available fast and energy e�cient architectures that can serve
as the basis for supporting the typical HPC workloads.
De�nitely, we will exploit approximate computing at both algorithm and architecture levels,

with the objectives of reducing on the one hand the computational complexity of layers typically
employed within DL models, and, on the other hand, to optimize speed and power consumption
introducing a reasonable accuracy loss.

ACKNOWLEDGMENTS
This work has been (partially) supported by the Spoke 1 "FutureHPC & BigData” of the Italian
Research Center on High-Performance Computing, Big Data and Quantum Computing (ICSC)
funded by MUR Missione 4 - Next Generation EU (NGEU).

REFERENCES
[1] 2013. AMBA® AXI™ and ACE™ Protocol Speci�cation.
[2] 2018. Accellera IP-XACT working group: IP-XACT User Guide.
[3] 2018. IEEE Draft Recommended Practice for Encryption and Management of Electronic Design Intellectual Property

(IP) . (February 2018), 1–100.
[4] 2020. GAP8 Auto-tiler Manual. https://greenwaves-technologies.com/manuals/BUILD/AUTOTILER/html/index.html.
[5] Ahmad Abdelfattah, Hartwig Anzt, Erik G Boman, Erin Carson, Terry Cojean, Jack Dongarra, Alyson Fox, Mark

Gates, Nicholas J Higham, Xiaoye S Li, Jennifer Loe, Piotr Luszczek, Srikara Pranesh, Siva Rajamanickam, Tobias
Ribizel, Barry F Smith, Kasia Swirydowicz, Stephen Thomas, Stanimire Tomov, Yaohung M Tsai, and Ulrike Meier
Yang. 2021. A survey of numerical linear algebra methods utilizing mixed-precision arithmetic. The International
Journal of High Performance Computing Applications 35, 4 (2021), 344–369. https://doi.org/10.1177/10943420211003313
arXiv:https://doi.org/10.1177/10943420211003313

[6] Mohamed S Abdelfattah, Łukasz Dudziak, Thomas Chau, Royson Lee, Hyeji Kim, and Nicholas D Lane. 2020. Best of
Both Worlds: AutoML Codesign of a CNN and Its Hardware Accelerator. In Proceedings of the 57th ACM/EDAC/IEEE
Design Automation Conference (DAC ’20). IEEE, 6 pages.

https://greenwaves-technologies.com/manuals/BUILD/AUTOTILER/html/index.html
https://doi.org/10.1177/10943420211003313
https://arxiv.org/abs/https://doi.org/10.1177/10943420211003313

36 Fabrizio Ferrandi et al.

[7] Kamel Abdelouahab, Maxime Pelcat, Jocelyn Sérot, and François Berry. 2018. Accelerating CNN inference on FPGAs:
A Survey. CoRR abs/1806.01683 (2018). arXiv:1806.01683 http://arxiv.org/abs/1806.01683

[8] Ravichandra Addanki, Shaileshh Bojja Venkatakrishnan, Shreyan Gupta, Hongzi Mao, and Mohammad Alizadeh.
2019. Placeto: Learning Generalizable Device Placement Algorithms for Distributed Machine Learning. In Proceedings
of the 33rd International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY,
USA, Article 358, 11 pages.

[9] Nicolas Bohm Agostini, Serena Curzel, Ankur Limaye, Vinay Amatya, Marco Minutoli, Vito Giovanni Castellana,
Joseph Manzano, Antonino Tumeo, and Fabrizio Ferrandi. 2022. The SODA Approach: Leveraging High-Level
Synthesis for Hardware/Software Co-Design and Hardware Specialization. In Proceedings of the 59th ACM/IEEE
Design Automation Conference (DAC). 1359–1362.

[10] Emmanuel Agullo, Olivier Aumage, Mathieu Faverge, Nathalie Furmento, Florent Pruvost, Marc Sergent, and
Samuel Paul Thibault. 2017. Achieving High Performance on Supercomputers with a Sequential Task-based Pro-
gramming Model. IEEE Transactions on Parallel and Distributed Systems (2017), 1–1. https://doi.org/10.1109/TPDS.
2017.2766064

[11] Emmanuel Agullo, Alfredo Buttari, Abdou Guermouche, Julien Herrmann, and Antoine Jego. 2023. Task-Based
Parallel Programming for Scalable Matrix Product Algorithms. ACM Trans. Math. Softw. (feb 2023). https://doi.org/
10.1145/3583560 Just Accepted.

[12] Thomas D. Ahle and Francesco Silvestri. 2020. Similarity Search with Tensor Core Units. In Proc. 13th Int. Conf.
Similarity Search and Application (SISAP), Vol. 12440. 76–84.

[13] Waqar Ahmad, Berke Ayrancioglu, and Ilker Hamzaoglu. 2021. Low Error E�cient Approximate Adders for FPGAs.
IEEE Access 9 (2021), 117232–117243. https://doi.org/10.1109/ACCESS.2021.3107370

[14] Tutu Ajayi, Vidya A. Chhabria, Mateus Fogaça, Soheil Hashemi, Abdelrahman Hosny, Andrew B. Kahng, Minsoo Kim,
Jeongsup Lee, Uday Mallappa, Marina Neseem, Geraldo Pradipta, Sherief Reda, Mehdi Saligane, Sachin S. Sapatnekar,
Carl Sechen, Mohamed Shalan, William Swartz, Lutong Wang, Zhehong Wang, Mingyu Woo, and Bangqi Xu. 2019.
Toward an Open-Source Digital Flow: First Learnings from the OpenROAD Project. In Proceedings of the 56th Annual
Design Automation Conference (DAC). 1–4.

[15] Omid Akbari, Mehdi Kamal, Ali Afzali-Kusha, and Massoud Pedram. 2017. Dual-Quality 4:2 Compressors for Utilizing
in Dynamic Accuracy Con�gurable Multipliers. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 25, 4
(2017), 1352–1361. https://doi.org/10.1109/TVLSI.2016.2643003

[16] Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, and Massimo Torquati. 2017. Fast�ow: High-Level and E�cient
Streaming on Multicore. John Wiley & Sons, Ltd, Chapter 13, 261–280. https://doi.org/10.1002/9781119332015.ch13
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119332015.ch13

[17] Massimo Alioto. 2017. Energy-quality scalable adaptive VLSI circuits and systems beyond approximate computing.
In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017. 127–132. https://doi.org/10.23919/
DATE.2017.7926970

[18] Massimo Alioto, Vivek De, and Andrea Marongiu. 2018. Guest Editorial for the Special Issue on Energy-Quality
Scalable Circuits and Systems for Sensing and Computing: from Approximate, to Communication-Inspired and
Learning-Based. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 8 (08 2018), 1–1. https:
//doi.org/10.1109/JETCAS.2018.2865783

[19] G. Alonso. 2018. Research for practice: FPGAs in datacenters. Commun. ACM 61, 9 (2018), 48–49. https://doi.org/10.
1145/3209275

[20] AMD-Xilinx. 2021. Vitis HLS LLVM 2021.2. https://github.com/Xilinx/HLS
[21] Andrew Anderson, Aravind Vasudevan, Cormac Keane, and David Gregg. 2020. High-Performance Low-Memory

Lowering: GEMM-based Algorithms for DNN Convolution. In 2020 IEEE 32nd International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD). 99–106. https://doi.org/10.1109/SBAC-PAD49847.2020.
00024

[22] Mohammad Saeed Ansari, Honglan Jiang, Bruce F. Cockburn, and Jie Han. 2018. Low-Power Approximate Multipliers
Using Encoded Partial Products and Approximate Compressors. IEEE Journal on Emerging and Selected Topics in
Circuits and Systems 8, 3 (2018), 404–416. https://doi.org/10.1109/JETCAS.2018.2832204

[23] David F. Bacon, Rodric Rabbah, and Sunil Shukla. 2013. FPGA Programming for the Masses. Commun. ACM 56, 4
(April 2013), 56–63. https://doi.org/10.1145/2436256.2436271

[24] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Steven Benson, Jed Brown, Peter Brune, Kris Buschelman, Emil M.
Constantinescu, Lisandro Dalcin, Alp Dener, Victor Eijkhout, Jacob Faibussowitsch, William D. Gropp, Václav Hapla,
Tobin Isaac, Pierre Jolivet, Dmitry Karpeev, Dinesh Kaushik, Matthew G. Knepley, Fande Kong, Scott Kruger, Dave A.
May, Lois Curfman McInnes, Richard Tran Mills, Lawrence Mitchell, Todd Munson, Jose E. Roman, Karl Rupp, Patrick
Sanan, Jason Sarich, Barry F. Smith, Stefano Zampini, Hong Zhang, Hong Zhang, and Junchao Zhang. 2023. PETSc
Web page. https://petsc.org/. https://petsc.org/

https://arxiv.org/abs/1806.01683
http://arxiv.org/abs/1806.01683
https://doi.org/10.1109/TPDS.2017.2766064
https://doi.org/10.1109/TPDS.2017.2766064
https://doi.org/10.1145/3583560
https://doi.org/10.1145/3583560
https://doi.org/10.1109/ACCESS.2021.3107370
https://doi.org/10.1109/TVLSI.2016.2643003
https://doi.org/10.1002/9781119332015.ch13
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119332015.ch13
https://doi.org/10.23919/DATE.2017.7926970
https://doi.org/10.23919/DATE.2017.7926970
https://doi.org/10.1109/JETCAS.2018.2865783
https://doi.org/10.1109/JETCAS.2018.2865783
https://doi.org/10.1145/3209275
https://doi.org/10.1145/3209275
https://github.com/Xilinx/HLS
https://doi.org/10.1109/SBAC-PAD49847.2020.00024
https://doi.org/10.1109/SBAC-PAD49847.2020.00024
https://doi.org/10.1109/JETCAS.2018.2832204
https://doi.org/10.1145/2436256.2436271
https://petsc.org/
https://petsc.org/

Perspectives on Design Methodologies for Heterogeneous HPC Platforms for Deep Learning 37

[25] BDT. 2013. Floating-point DSP Energy E�ciency on Altera 28 nm FPGAs. Technical Report. Berkeley Design Technology
Inc. http://www.altera.com/literature/wp/wp-01192-bdti-altera-fp-dsp-energy-e�ciency.pdf An Independent
Evaluation.

[26] Gianfranco Bilardi and Andrea Pietracaprina. 2011. Models of Computation, Theoretical. Springer US, Boston, MA,
1150–1158. https://doi.org/10.1007/978-0-387-09766-4_218

[27] Michaela Blott, Thomas B Preußer, Nicholas J Fraser, Giulio Gambardella, Kenneth O’brien, Yaman Umuroglu, et al.
2018. FINN-R: An end-to-end deep-learning framework for fast exploration of quantized neural networks. ACM
Transactions on Recon�gurable Technology and Systems 11, 3 (2018), 1–23.

[28] Nicolas Bohm Agostini, Serena Curzel, Vinay Amatya, Cheng Tan, Marco Minutoli, Vito Giovanni Castellana, Joseph
Manzano, David Kaeli, and Antonino Tumeo. 2022. An MLIR-based Compiler Flow for System-Level Design and
Hardware Acceleration. In IEEE/ACM International Conference On Computer Aided Design (ICCAD). 1–9.

[29] Nicolas Bohm Agostini, Serena Curzel, Je� Jun Zhang, Ankur Limaye, Cheng Tan, Vinay Amatya, Marco Minutoli,
Vito Giovanni Castellana, Joseph Manzano, David Brooks, Gu-Yeon Wei, and Antonino Tumeo. 2022. Bridging Python
to Silicon: The SODA Toolchain. IEEE Micro 42, 5 (2022), 78–88.

[30] J. Bosch, X. Tan, A. Filgueras, M. Vidal, M. Mateu, D. Jiménez-González, C. Álvarez, X. Martorell, E. Ayguade,
and J. Labarta. 2018. Application Acceleration on FPGAs with OmpSs@FPGA. In 2018 International Conference on
Field-Programmable Technology (FPT). 70–77. https://doi.org/10.1109/FPT.2018.00021

[31] F. Brosser, H. Y. Cheah, and S. A. Fahmy. 2013. Iterative �oating point computation using FPGADSP blocks. In 2013 23rd
International Conference on Field programmable Logic and Applications. 1–6. https://doi.org/10.1109/FPL.2013.6645531

[32] Alessio Burrello, Angelo Garofalo, Nazareno Bruschi, Giuseppe Tagliavini, Davide Rossi, and Francesco Conti. 2021.
DORY: Automatic end-to-end deployment of real-world DNNs on low-cost IoT MCUs. IEEE Trans Comput. (2021).

[33] Cadence. 2022. Stratus High-Level Synthesis. https://www.cadence.com/en_US/home/tools/digital-design-and-
signo�/synthesis/stratus-high-level-synthesis.html

[34] E. Calore. 2020. https://baltig.infn.it/EuroEXA/FER
[35] E. Calore and S.F. Schifano. 2020. Energy-e�ciency evaluation of FPGAs for �oating-point intensive workloads.

In Parallel Computing is Everywhere (Advances in Parallel Computing, Vol. 36). 555–564. https://doi.org/10.3233/
APC200085

[36] Enrico Calore and Sebastiano Fabio Schifano. 2021. Performance assessment of FPGAs as HPC accelerators using the
FPGA Empirical Roo�ine. In 2021 31st International Conference on Field-Programmable Logic and Applications (FPL).
83–90. https://doi.org/10.1109/FPL53798.2021.00022

[37] Enrico Calore and Sebastiano Fabio Schifano. 2022. FER: A Benchmark for the Roo�ine Analysis of FPGA Based HPC
Accelerators. IEEE Access 10 (2022), 94220–94234. https://doi.org/10.1109/ACCESS.2022.3203566

[38] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Tomasz S. Czajkowski, Stephen Dean
Brown, and Jason Helge Anderson. 2013. LegUp: An open-source high-level synthesis tool for FPGA-based proces-
sor/accelerator systems. ACM Trans. Embed. Comput. Syst. 13, 2 (2013), 24:1–24:27. https://doi.org/10.1145/2514740

[39] Shan Cao, Wei Deng, Zhenyi Bao, Chengbo Xue, Shugong Xu, and Shunqing Zhang. 2020. SimuNN: A Pre-RTL
Inference, Simulation and Evaluation Framework for Neural Networks. IEEE Journal on Emerging and Selected Topics
in Circuits and Systems 10, 2 (2020), 217–230. https://doi.org/10.1109/JETCAS.2020.2993854

[40] Gian Carlo Cardarilli, Luca Di Nunzio, Rocco Fazzolari, Daniele Giardino, Alberto Nannarelli, Marco Re, and Sergio
Spanò. 2021. A pseudo-softmax function for hardware-based high speed image classi�cation. Scienti�c Reports 11, 1
(28 Jul 2021), 15307. https://doi.org/10.1038/s41598-021-94691-7

[41] Valeria Cardellini, Salvatore Filippone, and Damian W. I. Rouson. 2014. Design Patterns for Sparse-Matrix Computa-
tions on Hybrid CPU/GPU Platforms. Sci. Program. 22, 1 (jan 2014), 1–19. https://doi.org/10.1155/2014/469753

[42] Rocío Carratalá-Sáez, Mathieu Faverge, Grégoire Pichon, Guillaume Sylvand, and Enrique S. Quintana-Ortí. 2020.
Tiled Algorithms for E�cient Task-Parallel H-Matrix Solvers. In 2020 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). 757–766. https://doi.org/10.1109/IPDPSW50202.2020.00131

[43] Erin Carson, Nicholas Knight, and James Demmel. 2013. Avoiding Communication in Nonsymmetric Lanczos-Based
Krylov Subspace Methods. SIAM Journal on Scienti�c Computing 35, 5 (2013), S42–S61. https://doi.org/10.1137/
120881191 arXiv:https://doi.org/10.1137/120881191

[44] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. 2014. Kokkos: Enabling manycore performance
portability through polymorphic memory access patterns. J. Parallel and Distrib. Comput. 74, 12 (2014), 3202–
3216. https://doi.org/10.1016/j.jpdc.2014.07.003 Domain-Speci�c Languages and High-Level Frameworks for High-
Performance Computing.

[45] Victor Casamayor Pujol, Andrea Morichetta, Ilir Murturi, Praveen Kumar Donta, and Schahram Dustdar. 2023.
Fundamental Research Challenges for Distributed Computing Continuum Systems. Information 14, 3 (2023).

[46] Kumar Chellapilla, Sidd Puri, and Patrice Simard. 2006. High-Performance Convolutional Neural Networks for
Document Processing. In Tenth International Workshop on Frontiers in Handwriting Recognition, Suvisoft. 99–106.

http://www.altera.com/literature/wp/wp-01192-bdti-altera-fp-dsp-energy-efficiency.pdf
https://doi.org/10.1007/978-0-387-09766-4_218
https://doi.org/10.1109/FPT.2018.00021
https://doi.org/10.1109/FPL.2013.6645531
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://baltig.infn.it/EuroEXA/FER
https://doi.org/10.3233/APC200085
https://doi.org/10.3233/APC200085
https://doi.org/10.1109/FPL53798.2021.00022
https://doi.org/10.1109/ACCESS.2022.3203566
https://doi.org/10.1145/2514740
https://doi.org/10.1109/JETCAS.2020.2993854
https://doi.org/10.1038/s41598-021-94691-7
https://doi.org/10.1155/2014/469753
https://doi.org/10.1109/IPDPSW50202.2020.00131
https://doi.org/10.1137/120881191
https://doi.org/10.1137/120881191
https://arxiv.org/abs/https://doi.org/10.1137/120881191
https://doi.org/10.1016/j.jpdc.2014.07.003

38 Fabrizio Ferrandi et al.

https://doi.org/10.1109/SBAC-PAD49847.2020.00024
[47] Linbin Chen, Jie Han, Weiqiang Liu, and Fabrizio Lombardi. 2015. Design of Approximate Unsigned Integer Non-

Restoring Divider for Inexact Computing. In Proceedings of the 25th Edition on Great Lakes Symposium on VLSI
(Pittsburgh, Pennsylvania, USA) (GLSVLSI ’15). Association for Computing Machinery, New York, NY, USA, 51–56.
https://doi.org/10.1145/2742060.2742063

[48] Linbin Chen, Jie Han, Weiqiang Liu, and Fabrizio Lombardi. 2016. On the Design of Approximate Restoring Dividers
for Error-Tolerant Applications. IEEE Trans. Comput. 65, 8 (2016), 2522–2533. https://doi.org/10.1109/TC.2015.2494005

[49] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan
Wang, Yuwei Hu, Luis Ceze, et al. 2018. TVM: An automated End-to-End optimizing compiler for deep learning. In
OSDI.

[50] Yuan-Ho Chen and Tsin-Yuan Chang. 2012. A High-Accuracy Adaptive Conditional-Probability Estimator for
Fixed-Width Booth Multipliers. IEEE Transactions on Circuits and Systems I: Regular Papers 59, 3 (2012), 594–603.
https://doi.org/10.1109/TCSI.2011.2167275

[51] Zhi Chen, Cody Hao Yu, Trevor Morris, Jorn Tuyls, Yi-Hsiang Lai, Jared Roesch, Elliott Delaye, Vin Sharma, and Yida
Wang. 2021. Bring Your Own Codegen to Deep Learning Compiler. arXiv preprint arXiv:2105.03215 (2021).

[52] Krishna Teja Chitty-Venkata and Arun K. Somani. 2023. Neural Architecture Search Survey: A Hardware Perspective.
Comput. Surveys 55, 4, Article 78 (nov 2023), 36 pages.

[53] Kyung-Ju Cho, Kwang-Chul Lee, Jin-Gyun Chung, and K.K. Parhi. 2004. Design of low-error �xed-width modi�ed
booth multiplier. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 12, 5 (2004), 522–531. https:
//doi.org/10.1109/TVLSI.2004.825853

[54] Minsik Cho and Daniel Brand. 2017. MEC: Memory-E�cient Convolution for Deep Neural Network. In Proceedings
of the 34th International Conference on Machine Learning - Volume 70 (Sydney, NSW, Australia) (ICML’17). JMLR.org,
815–824.

[55] Jiwon Choe, Amy Huang, Tali Moreshet, Maurice Herlihy, and R. Iris Bahar. 2019. Concurrent Data Structures
with Near-Data-Processing: An Architecture-Aware Implementation. In The 31st ACM Symposium on Parallelism in
Algorithms and Architectures (Phoenix, AZ, USA) (SPAA ’19). Association for Computing Machinery, New York, NY,
USA, 297–308. https://doi.org/10.1145/3323165.3323191

[56] Rezaul Chowdhury, Francesco Silvestri, and Flavio Vella. 2021. Algorithm Design for Tensor Units. In Euro-Par 2021:
Parallel Processing, Leonel Sousa, Nuno Roma, and Pedro Tomás (Eds.). Springer International Publishing, 353–367.

[57] Alessandro Cilardo, Davide De Caro, Nicola Petra, Francesco Caserta, Nicola Mazzocca, Ettore Napoli, and Antonio
Giuseppe Maria Strollo. 2014. High Speed Speculative Multipliers Based on Speculative Carry-Save Tree. IEEE
Transactions on Circuits and Systems I: Regular Papers 61, 12 (2014), 3426–3435. https://doi.org/10.1109/TCSI.2014.
2337231

[58] CIRCT Developers. 2020. CIRCT / Circuit IR Compilers and Tools. https://circt.llvm.org/
[59] Murray Cole. 1991. Algorithmic Skeletons: Structured Management of Parallel Computation. MIT Press, Cambridge,

MA, USA.
[60] Francesco Conti, Davide Rossi, Antonio Pullini, Igor Loi, and Luca Benini. 2016. PULP: A Ultra-Low Power Parallel

Accelerator for Energy-E�cient and Flexible Embedded Vision. Journal of Signal Processing Systems 84, 3 (2016),
339–354.

[61] Bruno Da Silva, An Braeken, Erik H D’Hollander, and Abdellah Touha�. 2013. Performance modeling for FPGAs:
extending the roo�ine model with high-level synthesis tools. International Journal of Recon�gurable Computing 2013
(2013). https://doi.org/10.1155/2013/428078

[62] Abdul Dakkak, Cheng Li, Jinjun Xiong, Isaac Gelado, and Wen-Mei Hwu. 2019. Accelerating Reduction and Scan
Using Tensor Core Units. In Proc. Int. Conf. Supercomputing (ICS). 46–57.

[63] Pasqua D’Ambra, Fabio Durastante, and Salvatore Filippone. 2021. AMG Preconditioners for Linear Solvers towards
Extreme Scale. SIAM Journal on Scienti�c Computing 43, 5 (2021), S679–S703. https://doi.org/10.1137/20M134914X
arXiv:https://doi.org/10.1137/20M134914X

[64] Marco Danelutto, Gabriele Mencagli, Massimo Torquati, Horacio González-Vélez, and Peter Kilpatrick. 2021. Algo-
rithmic Skeletons and Parallel Design Patterns in Mainstream Parallel Programming. Int. J. Parallel Program. 49, 2
(2021), 177–198. https://doi.org/10.1007/s10766-020-00684-w

[65] Shail Dave, Youngbin Kim, Sasikanth Avancha, Kyoungwoo Lee, and Aviral Shrivastava. 2019. Dmazerunner:
Executing perfectly nested loops on data�ow accelerators. ACM Transactions on Embedded Computing Systems (TECS)
18, 5s (2019), 1–27.

[66] Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Je�ries, Jian Li, Nick Kreeger, Ian Nappier, Meghna
Natraj, Shlomi Regev, et al. 2020. TensorFlow Lite Micro: Embedded Machine Learning on TinyML Systems. arXiv
preprint arXiv:2010.08678 (2020).

https://doi.org/10.1109/SBAC-PAD49847.2020.00024
https://doi.org/10.1145/2742060.2742063
https://doi.org/10.1109/TC.2015.2494005
https://doi.org/10.1109/TCSI.2011.2167275
https://doi.org/10.1109/TVLSI.2004.825853
https://doi.org/10.1109/TVLSI.2004.825853
https://doi.org/10.1145/3323165.3323191
https://doi.org/10.1109/TCSI.2014.2337231
https://doi.org/10.1109/TCSI.2014.2337231
https://circt.llvm.org/
https://doi.org/10.1155/2013/428078
https://doi.org/10.1137/20M134914X
https://arxiv.org/abs/https://doi.org/10.1137/20M134914X
https://doi.org/10.1007/s10766-020-00684-w

Perspectives on Design Methodologies for Heterogeneous HPC Platforms for Deep Learning 39

[67] Eddie C. Davis, Michelle Mills Strout, and Catherine Olschanowsky. 2018. Transforming Loop Chains via Macro
Data�ow Graphs. In Proceedings of the 2018 International Symposium on Code Generation and Optimization (Vienna,
Austria) (CGO 2018). Association for Computing Machinery, New York, NY, USA, 265–277. https://doi.org/10.1145/
3168832

[68] Davide De Caro, Nicola Petra, Antonio Giuseppe Maria Strollo, Fabio Tessitore, and Ettore Napoli. 2013. Fixed-Width
Multipliers and Multipliers-Accumulators With Min-Max Approximation Error. IEEE Transactions on Circuits and
Systems I: Regular Papers 60, 9 (2013), 2375–2388. https://doi.org/10.1109/TCSI.2013.2245252

[69] Florent de Dinechin et al. 2011. Designing Custom Arithmetic Data Paths with FloPoCo. IEEE Design & Test of
Computers 28, 4 (July 2011), 18–27.

[70] J. De Fine Licht, M. Besta, S. Meierhans, and T. Hoe�er. 2021. Transformations of High-Level Synthesis Codes
for High-Performance Computing. IEEE Transactions on Parallel and Distributed Systems 32, 5 (2021), 1014–1029.
https://doi.org/10.1109/TPDS.2020.3039409

[71] Jim Demmel. 2012. Communication avoiding algorithms. In 2012 SC Companion: High Performance Computing,
Networking Storage and Analysis. 1942–2000. https://doi.org/10.1109/SC.Companion.2012.351

[72] Gennaro Di Meo, Gerardo Saggese, Antonio G. M. Strollo, and Davide De Caro. 2023. Design of Generalized Enhanced
Static Segment Multiplier with Minimum Mean Square Error for Uniform and Nonuniform Input Distributions.
Electronics 12, 2 (2023). https://doi.org/10.3390/electronics12020446

[73] J. J. Dongarra, Jeremy Du Croz, Sven Hammarling, and I. S. Du�. 1990. A Set of Level 3 Basic Linear Algebra
Subprograms. ACM Trans. Math. Softw. 16, 1 (mar 1990), 1–17. https://doi.org/10.1145/77626.79170

[74] Jack J. Dongarra and DavidW.Walker. 1995. Software Libraries for Linear Algebra Computations onHigh Performance
Computers. SIAM Rev. 37, 2 (1995), 151–180. https://doi.org/10.1137/1037042 arXiv:https://doi.org/10.1137/1037042

[75] Kai Du, Peter Varman, and Kartik Mohanram. 2012. High performance reliable variable latency carry select addition.
In 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE). 1257–1262. https://doi.org/10.1109/
DATE.2012.6176685

[76] Javier Duarte, Song Han, Philip Harris, Sergo Jindariani, Edward Kreinar, Benjamin Kreis, J Ngadiuba, M Pierini, N
Tran, and ZWu. 2018. Fast inference of deep neural networks in FPGAs for particle physics. Journal of Instrumentation
13, 07 (2018), P07027.

[77] Pasqua D’Ambra, Fabio Durastante, and Salvatore Filippone. 2023. Parallel Sparse Computation Toolkit. Software
Impacts 15 (2023), 100463. https://doi.org/10.1016/j.simpa.2022.100463

[78] Ahmed Elgohary, Matthias Boehm, Peter J. Haas, Frederick R. Reiss, and Berthold Reinwald. 2016. Compressed Linear
Algebra for Large-Scale Machine Learning. Proc. VLDB Endow. 9, 12 (aug 2016), 960–971. https://doi.org/10.14778/
2994509.2994515

[79] Ted Ennis. 2019. Integrating optimized RTL Kernels into Accelerated Applications using Vitis Technology. https://www.
xilinx.com/developer/articles/Integrating-optimized-RTL-Kernels-into-Accelerated-Applications-using-Vitis.html

[80] F. A. Escobar, X. Chang, and C. Valderrama. 2016. Suitability Analysis of FPGAs for Heterogeneous Platforms in HPC.
IEEE Transactions on Parallel and Distributed Systems 27, 2 (2016), 600–612. https://doi.org/10.1109/TPDS.2015.2407896

[81] Darjn Esposito, Davide De Caro, Ettore Napoli, Nicola Petra, and Antonio Giuseppe Maria Strollo. 2015. Variable
Latency Speculative Han-Carlson Adder. IEEE Transactions on Circuits and Systems I: Regular Papers 62, 5 (2015),
1353–1361. https://doi.org/10.1109/TCSI.2015.2403036

[82] Darjn Esposito, Davide De Caro, and Antonio Giuseppe Maria Strollo. 2016. Variable Latency Speculative Parallel
Pre�x Adders for Unsigned and Signed Operands. IEEE Transactions on Circuits and Systems I: Regular Papers 63, 8
(2016), 1200–1209. https://doi.org/10.1109/TCSI.2016.2564699

[83] Darjn Esposito, Antonio G. M. Strollo, and Massimo Alioto. 2017. Low-power approximate MAC unit. In 2017 13th
Conference on Ph.D. Research in Microelectronics and Electronics (PRIME). 81–84. https://doi.org/10.1109/PRIME.2017.
7974112

[84] Darjn Esposito, Antonio Giuseppe Maria Strollo, Ettore Napoli, Davide De Caro, and Nicola Petra. 2018. Approximate
Multipliers Based on New Approximate Compressors. IEEE Transactions on Circuits and Systems I: Regular Papers 65,
12 (2018), 4169–4182. https://doi.org/10.1109/TCSI.2018.2839266

[85] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen Zheng, Chuan Wu, Guoping Long, Jun Yang,
Lixue Xia, Lansong Diao, Xiaoyong Liu, and Wei Lin. 2021. DAPPLE: A Pipelined Data Parallel Approach for Training
Large Models. In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’21). ACM, New York, NY, USA, 431–445. https://doi.org/10.1145/3437801.3441593

[86] Farzad Farshchi, Muhammad Saeed Abrishami, and Sied Mehdi Fakhraie. 2013. New approximate multiplier for low
power digital signal processing. In The 17th CSI International Symposium on Computer Architecture & Digital Systems
(CADS 2013). 25–30. https://doi.org/10.1109/CADS.2013.6714233

[87] F. Ferrandi, V. G. Castellana, S. Curzel, P. Fezzardi, M. Fiorito, M. Lattuada, M. Minutoli, C. Pilato, and A. Tumeo. 2021.
Bambu: an Open-Source Research Framework for the High-Level Synthesis of Complex Applications. In Proceedings

https://doi.org/10.1145/3168832
https://doi.org/10.1145/3168832
https://doi.org/10.1109/TCSI.2013.2245252
https://doi.org/10.1109/TPDS.2020.3039409
https://doi.org/10.1109/SC.Companion.2012.351
https://doi.org/10.3390/electronics12020446
https://doi.org/10.1145/77626.79170
https://doi.org/10.1137/1037042
https://arxiv.org/abs/https://doi.org/10.1137/1037042
https://doi.org/10.1109/DATE.2012.6176685
https://doi.org/10.1109/DATE.2012.6176685
https://doi.org/10.1016/j.simpa.2022.100463
https://doi.org/10.14778/2994509.2994515
https://doi.org/10.14778/2994509.2994515
https://www.xilinx.com/developer/articles/Integrating-optimized-RTL-Kernels-into-Accelerated-Applications-using-Vitis.html
https://www.xilinx.com/developer/articles/Integrating-optimized-RTL-Kernels-into-Accelerated-Applications-using-Vitis.html
https://doi.org/10.1109/TPDS.2015.2407896
https://doi.org/10.1109/TCSI.2015.2403036
https://doi.org/10.1109/TCSI.2016.2564699
https://doi.org/10.1109/PRIME.2017.7974112
https://doi.org/10.1109/PRIME.2017.7974112
https://doi.org/10.1109/TCSI.2018.2839266
https://doi.org/10.1145/3437801.3441593
https://doi.org/10.1109/CADS.2013.6714233

40 Fabrizio Ferrandi et al.

of the 58th ACM/IEEE Design Automation Conference (DAC). 1327–1330.
[88] Salvatore Filippone, Valeria Cardellini, Davide Barbieri, and Alessandro Fanfarillo. 2017. Sparse Matrix-Vector

Multiplication on GPGPUs. ACM Trans. Math. Softw. 43, 4, Article 30 (jan 2017), 49 pages. https://doi.org/10.1145/
3017994

[89] Eric Flamand, Davide Rossi, Francesco Conti, Igor Loi, Antonio Pullini, Florent Rotenberg, and Luca Benini. 2018.
GAP-8: A RISC-V SoC for AI at the Edge of the IoT. In 2018 IEEE 29th International Conference on Application-speci�c
Systems, Architectures and Processors (ASAP). IEEE, 1–4.

[90] Goran Flegar, Hartwig Anzt, Terry Cojean, and Enrique S. Quintana-Ortí. 2021. Adaptive Precision Block-Jacobi for
High Performance Preconditioning in the Ginkgo Linear Algebra Software. ACM Trans. Math. Softw. 47, 2, Article 14
(apr 2021), 28 pages. https://doi.org/10.1145/3441850

[91] J. Fowers, K. Ovtcharov, M. K. Papamichael, T. Massengill, M. Liu, D. Lo, S. Alkalay, M. Haselman, L. Adams, M.
Ghandi, S. Heil, P. Patel, A. Sapek, G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt, A. M. Caul�eld, E. S. Chung, and
D. Burger. 2019. Inside Project Brainwave’s Cloud-Scale, Real-Time AI Processor. IEEE Micro 39, 3 (2019), 20–28.
https://doi.org/10.1109/MM.2019.2910506

[92] Fabio Frustaci, Stefania Perri, Pasquale Corsonello, and Massimo Alioto. 2018. Energy-Quality Scalable Adders Based
on Nonzeroing Bit Truncation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems PP (12 2018), 1–5.
https://doi.org/10.1109/TVLSI.2018.2881326

[93] Fabio Frustaci, Stefania Perri, Pasquale Corsonello, and Massimo Alioto. 2020. Approximate MultipliersWith Dynamic
Truncation for Energy Reduction via Graceful Quality Degradation. IEEE Transactions on Circuits and Systems II:
Express Briefs PP (06 2020), 1–1. https://doi.org/10.1109/TCSII.2020.2999131

[94] Trevor Gale, Matei Zaharia, Cli� Young, and Erich Elsen. 2020. Sparse GPU Kernels for Deep Learning. In SC20:
International Conference for High Performance Computing, Networking, Storage and Analysis. 1–14. https://doi.org/10.
1109/SC41405.2020.00021

[95] Mark Gates, Asim YarKhan, Dalal Sukkari, Kadir Akbudak, Sebastien Cayrols, Daniel Bielich, Ahmad Abdelfattah,
Mohammed Al Farhan, and Jack Dongarra. 2022. Portable and E�cient Dense Linear Algebra in the Beginning of the
Exascale Era. In 2022 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC).
36–46. https://doi.org/10.1109/P3HPC56579.2022.00009

[96] Lukas Geiger and Plumerai Team. 2020. Larq: An Open-Source Library for Training Binarized Neural Networks.
Journal of Open Source Software 5, 45 (Jan. 2020), 1746.

[97] Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vighnesh Iyer, Pranav Prakash, Jerry Zhao, Daniel Grubb,
Harrison Liew, Howard Mao, Albert Ou, Colin Schmidt, Samuel Ste�, John Wright, Ion Stoica, Jonathan Ragan-Kelley,
Krste Asanovic, Borivoje Nikolic, and Yakun Sophia Shao. 2021. Gemmini: Enabling Systematic Deep-Learning
Architecture Evaluation via Full-Stack Integration. In 2021 58th ACM/IEEE Design Automation Conference (DAC).
769–774. https://doi.org/10.1109/DAC18074.2021.9586216

[98] Soumendu Ghosh, Arnab Raha, and Vijay Raghunathan. 2020. Approximate inference systems (AxIS): end-to-end
approximations for energy-e�cient inference at the edge. 7–12. https://doi.org/10.1145/3370748.3406575

[99] Horacio González-Vélez and Mario Leyton. 2010. A Survey of Algorithmic Skeleton Frameworks: High-Level
Structured Parallel Programming Enablers. Softw. Pract. Exper. 40, 12 (nov 2010), 1135–1160.

[100] R. L. Graham. 1966. Bounds for certain multiprocessing anomalies. The Bell System Technical Journal 45, 9 (1966),
1563–1581. https://doi.org/10.1002/j.1538-7305.1966.tb01709.x

[101] Jie Han and Michael Orshansky. 2013. Approximate computing: An emerging paradigm for energy-e�cient design.
Proceedings - 2013 18th IEEE European Test Symposium, ETS 2013, 1–6. https://doi.org/10.1109/ETS.2013.6569370

[102] Song Han, Huizi Mao, and William J. Dally. 2016. Deep Compression: Compressing Deep Neural Networks with
Pruning, Trained Quantization and Hu�man Coding. arXiv:1510.00149 [cs.CV]

[103] Soheil Hashemi, R. Iris Bahar, and Sherief Reda. 2015. DRUM: A Dynamic Range Unbiased Multiplier for approximate
applications. In 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 418–425. https:
//doi.org/10.1109/ICCAD.2015.7372600

[104] Soheil Hashemi, R. Iris Bahar, and Sherief Reda. 2016. A low-power dynamic divider for approximate applications. In
2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6. https://doi.org/10.1145/2897937.2897965

[105] Thomas Herault, Joseph Schuchart, Edward F. Valeev, and George Bosilca. 2022. Composition of Algorithmic Building
Blocks in Template Task Graphs. In 2022 IEEE/ACM Parallel Applications Workshop: Alternatives To MPI+X (PAW-ATM).
26–38. https://doi.org/10.1109/PAW-ATM56565.2022.00008

[106] Michael A. Heroux, Roscoe A. Bartlett, Vicki E. Howle, Robert J. Hoekstra, Jonathan J. Hu, Tamara G. Kolda, Richard B.
Lehoucq, Kevin R. Long, Roger P. Pawlowski, Eric T. Phipps, AndrewG. Salinger, Heidi K. Thornquist, Ray S. Tuminaro,
James M. Willenbring, Alan Williams, and Kendall S. Stanley. 2005. An Overview of the Trilinos Project. ACM Trans.
Math. Softw. 31, 3 (sep 2005), 397–423. https://doi.org/10.1145/1089014.1089021

https://doi.org/10.1145/3017994
https://doi.org/10.1145/3017994
https://doi.org/10.1145/3441850
https://doi.org/10.1109/MM.2019.2910506
https://doi.org/10.1109/TVLSI.2018.2881326
https://doi.org/10.1109/TCSII.2020.2999131
https://doi.org/10.1109/SC41405.2020.00021
https://doi.org/10.1109/SC41405.2020.00021
https://doi.org/10.1109/P3HPC56579.2022.00009
https://doi.org/10.1109/DAC18074.2021.9586216
https://doi.org/10.1145/3370748.3406575
https://doi.org/10.1002/j.1538-7305.1966.tb01709.x
https://doi.org/10.1109/ETS.2013.6569370
https://arxiv.org/abs/1510.00149
https://doi.org/10.1109/ICCAD.2015.7372600
https://doi.org/10.1109/ICCAD.2015.7372600
https://doi.org/10.1145/2897937.2897965
https://doi.org/10.1109/PAW-ATM56565.2022.00008
https://doi.org/10.1145/1089014.1089021

Perspectives on Design Methodologies for Heterogeneous HPC Platforms for Deep Learning 41

[107] Nicholas J. Higham and Theo Mary. 2022. Mixed precision algorithms in numerical linear algebra. Acta Numerica 31
(2022), 347–414. https://doi.org/10.1017/S0962492922000022

[108] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao Chen, HyoukJoong Lee, Jiquan
Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen. 2019. GPipe: E�cient Training of Giant Neural Networks Using
Pipeline Parallelism. In Proceedings of the 33rd International Conference on Neural Information Processing Systems
(NeurIPS ’19). Curran Associates Inc., Red Hook, NY, USA, 10 pages.

[109] Mohsen Imani, Ricardo Garcia, Andrew Huang, and Tajana Rosing. 2019. CADE: Con�gurable Approximate Divider
for Energy E�ciency. In 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE). 586–589. https:
//doi.org/10.23919/DATE.2019.8715112

[110] Ahmet Inci, Siri Garudanagiri Virupaksha, Aman Jain, Venkata Vivek Thallam, Ruizhou Ding, and Diana Marculescu.
2022. QADAM: Quantization-Aware DNN Accelerator Modeling for Pareto-Optimality. arXiv:2205.13045 [cs.AR]

[111] Ahmet Inci, Siri Garudanagiri Virupaksha, Aman Jain, Venkata Vivek Thallam, Ruizhou Ding, and Diana Mar-
culescu. 2022. QAPPA: Quantization-Aware Power, Performance, and Area Modeling of DNN Accelerators.
arXiv:2205.08648 [cs.AR]

[112] Intel. 2020. oneAPI Programming Model. https://www.oneapi.io.
[113] Intel. 2022. Intel® High Level Synthesis Compiler Reference Manual. https://www.intel.com/content/www/us/en/docs/

programmable/683349/21-4/pro-edition-reference-manual.html
[114] Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang Li, and Torsten Hoe�er. 2020. Data Movement Is All You Need:

A Case Study of Transformer Networks. arXiv preprint arXiv:2007.00072 (2020).
[115] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam, and

Dmitry Kalenichenko. 2018. Quantization and Training of Neural Networks for E�cient Integer-arithmetic-only
Inference. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. 2704–2713.

[116] Zhuoran Ji. 2019. HNMTP Conv: Optimize Convolution Algorithm for Single-Image Convolution Neural Network
Inference on Mobile GPUs. CoRR abs/1909.02765 (2019). arXiv:1909.02765 http://arxiv.org/abs/1909.02765

[117] Zhihao Jia, Sina Lin, Charles R. Qi, and Alex Aiken. 2018. Exploring Hidden Dimensions in Parallelizing Convolutional
Neural Networks. In Proceedings of the 35th International Conference on Machine Learning (ICML ’18, Vol. 80), Jennifer G.
Dy and Andreas Krause (Eds.). PMLR, 2279–2288.

[118] Zhihao Jia, Matei Zaharia, and Alex Aiken. 2019. Beyond Data and Model Parallelism for Deep Neural Networks. In
Proceedings of Machine Learning and Systems 1 (MLSys ’19, Vol. 1). 1–13. https://proceedings.mlsys.org/paper_�les/
paper/2019/�le/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf

[119] Honglan Jiang, Francisco Javier Hernandez Santiago, Hai Mo, Leibo Liu, and Jie Han. 2020. Approximate Arithmetic
Circuits: A Survey, Characterization, and Recent Applications. Proc. IEEE 108, 12 (2020), 2108–2135. https://doi.org/
10.1109/JPROC.2020.3006451

[120] Weiwen Jiang, Lei Yang, Edwin Hsing-Mean Sha, Qingfeng Zhuge, Shouzhen Gu, Sakyasingha Dasgupta, Yiyu Shi, and
Jingtong Hu. 2020. Hardware/software co-exploration of neural architectures. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 39, 12 (2020), 4805–4815.

[121] Qing Jin, Linjie Yang, and Zhenyu Liao. 2019. Towards E�cient Training for Neural Network Quantization. arXiv
preprint arXiv:1912.10207 abs/1912.10207 (2019), 17 pages.

[122] Tian Jin, Gheorghe-Teodor Bercea, Tung D. Le, Tong Chen, Gong Su, Haruki Imai, Yasushi Negishi, Anh Leu, Kevin
O’Brien, Kiyokuni Kawachiya, and Alexandre E. Eichenberger. 2020. Compiling ONNX Neural Network Models
Using MLIR. https://doi.org/10.48550/arXiv.2008.08272 arXiv:2008.08272 [cs]

[123] Zheming Jin, Hal Finkel, Kazutomo Yoshii, and Franck Cappello. 2018. Evaluation of a Floating-Point Intensive
Kernel on FPGA. In Euro-Par 2017: Parallel Processing Workshops. 664–675.

[124] Leonardo Rezende Juracy, Alexandre de Morais Amory, and Fernando Gehm Moraes. 2022. A Fast, Accurate, and
Comprehensive PPA Estimation of Convolutional Hardware Accelerators. IEEE Transactions on Circuits and Systems
I: Regular Papers 69, 12 (2022), 5171–5184. https://doi.org/10.1109/TCSI.2022.3204932

[125] Andrew B. Kahng and Seokhyeong Kang. 2012. Accuracy-con�gurable adder for approximate arithmetic designs. In
DAC Design Automation Conference 2012. 820–825. https://doi.org/10.1145/2228360.2228509

[126] Hongbo Kang, Phillip B. Gibbons, Guy E. Blelloch, Laxman Dhulipala, Yan Gu, and Charles McGu�ey. 2021. The
Processing-in-MemoryModel. In Proceedings of the 33rd ACMSymposium on Parallelism in Algorithms andArchitectures
(Virtual Event, USA) (SPAA ’21). Association for Computing Machinery, New York, NY, USA, 295–306. https:
//doi.org/10.1145/3409964.3461816

[127] Hongbo Kang, Yiwei Zhao, Guy E Blelloch, Laxman Dhulipala, Yan Gu, Charles McGu�ey, and Phillip B Gibbons.
2022. PIM-tree: A Skew-resistant Index for Processing-in-Memory. arXiv preprint arXiv:2211.10516 (2022).

[128] B. W. Kernighan and S. Lin. 1970. An e�cient heuristic procedure for partitioning graphs. The Bell System Technical
Journal 49, 2 (1970), 291–307. https://doi.org/10.1002/j.1538-7305.1970.tb01770.x

https://doi.org/10.1017/S0962492922000022
https://doi.org/10.23919/DATE.2019.8715112
https://doi.org/10.23919/DATE.2019.8715112
https://arxiv.org/abs/2205.13045
https://arxiv.org/abs/2205.08648
https://www.oneapi.io
https://www.intel.com/content/www/us/en/docs/programmable/683349/21-4/pro-edition-reference-manual.html
https://www.intel.com/content/www/us/en/docs/programmable/683349/21-4/pro-edition-reference-manual.html
https://arxiv.org/abs/1909.02765
http://arxiv.org/abs/1909.02765
https://proceedings.mlsys.org/paper_files/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://doi.org/10.1109/JPROC.2020.3006451
https://doi.org/10.1109/JPROC.2020.3006451
https://doi.org/10.48550/arXiv.2008.08272
https://arxiv.org/abs/2008.08272
https://doi.org/10.1109/TCSI.2022.3204932
https://doi.org/10.1145/2228360.2228509
https://doi.org/10.1145/3409964.3461816
https://doi.org/10.1145/3409964.3461816
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x

42 Fabrizio Ferrandi et al.

[129] Min Soo Kim, Alberto A. Del Barrio, HyunJin Kim, and Nader Bagherzadeh. 2022. The E�ects of Approximate
Multiplication on Convolutional Neural Networks. IEEE Transactions on Emerging Topics in Computing 10, 2 (2022),
904–916. https://doi.org/10.1109/TETC.2021.3050989

[130] Sunwoo Kim, Jooho Wang, Youngho Seo, Sanghun Lee, Yeji Park, Sungkyung Park, and Chester Sungchung Park.
2020. Transaction-level Model Simulator for Communication-Limited Accelerators. arXiv:2007.14897 [cs.AR]

[131] Yongtae Kim, Yong Zhang, and Peng Li. 2013. An energy e�cient approximate adder with carry skip for error
resilient neuromorphic VLSI systems. In 2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
130–137. https://doi.org/10.1109/ICCAD.2013.6691108

[132] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E. Hinton. 2012. ImageNet Classi�cation with Deep Convolutional
Neural Networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume
1 (NIPS’12). Curran Associates Inc., 1097–1105.

[133] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E. Hinton. 2017. ImageNet Classi�cation with Deep Convolutional
Neural Networks. Commun. ACM 60, 6 (may 2017), 84–90. https://doi.org/10.1145/3065386

[134] Hyoukjun Kwon, Prasanth Chatarasi, Vivek Sarkar, Tushar Krishna, Michael Pellauer, and Angshuman Parashar. 2020.
MAESTRO: A Data-Centric Approach to Understand Reuse, Performance, and Hardware Cost of DNN Mappings.
IEEE Micro 40, 3 (2020), 20–29.

[135] Hyoukjun Kwon, Prasanth Chatarasi, Vivek Sarkar, Tushar Krishna, Michael Pellauer, and Angshuman Parashar. 2020.
MAESTRO: A Data-Centric Approach to Understand Reuse, Performance, and Hardware Cost of DNN Mappings.
IEEE Micro 40, 3 (2020), 20–29. https://doi.org/10.1109/MM.2020.2985963

[136] Paolo Sylos Labini, Massimo Bernaschi, Werner Nutt, Francesco Silvestri, and Flavio Vella. 2022. Blocking Sparse
Matrices to Leverage Dense-Speci�cMultiplication. In 2022 IEEE/ACMWorkshop on Irregular Applications: Architectures
and Algorithms (IA3). 19–24. https://doi.org/10.1109/IA356718.2022.00009

[137] Corey Lammie, Wei Xiang, Bernabé Linares-Barranco, and Mostafa Rahimi Azghadi. 2022. MemTorch: An Open-
source Simulation Framework for Memristive Deep Learning Systems. Neurocomputing (2022). https://doi.org/10.
1016/j.neucom.2022.02.043

[138] J. Lant, J. Navaridas, M. Luján, and J. Goodacre. 2020. Toward FPGA-Based HPC: Advancing Interconnect Technologies.
IEEE Micro 40, 1 (2020), 25–34. https://doi.org/10.1109/MM.2019.2950655

[139] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar, River Riddle, Tatiana
Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Domain
Speci�c Computation. In IEEE/ACM International Symposium on Code Generation and Optimization (CGO). 2–14.

[140] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar, River Riddle, Tatiana
Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Domain
Speci�c Computation. In 2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO). 2–14.
https://doi.org/10.1109/CGO51591.2021.9370308

[141] Marco Lattuada and Fabrizio Ferrandi. 2015. Code Transformations Based on Speculative SDC Scheduling. In
IEEE/ACM International Conference on Computer-Aided Design (Austin, TX, USA) (ICCAD ’15). 71–77.

[142] Eugene L. Lawler, Jan Karel Lenstra, Alexander H.G. Rinnooy Kan, and David B. Shmoys. 1993. Chapter 9 Sequencing
and scheduling: Algorithms and complexity. In Logistics of Production and Inventory. Handbooks in Operations
Research and Management Science, Vol. 4. Elsevier, 445–522. https://doi.org/10.1016/S0927-0507(05)80189-6

[143] Baolin Li, Siddharth Samsi, Vijay Gadepally, and Devesh Tiwari. 2023. Green Carbon Footprint for Model Inference
Serving via Exploiting Mixed-Quality Models and GPU Partitioning. CoRR abs/2304.09781 (2023). https://doi.org/10.
48550/arXiv.2304.09781

[144] Li Li and Hai Zhou. 2014. On error modeling and analysis of approximate adders. In 2014 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). 511–518. https://doi.org/10.1109/ICCAD.2014.7001399

[145] Chia-Hao Lin and Ing-Chao Lin. 2013. High accuracy approximate multiplier with error correction. In 2013 IEEE 31st
International Conference on Computer Design (ICCD). 33–38. https://doi.org/10.1109/ICCD.2013.6657022

[146] Wei-Fen Lin, Der-Yu Tsai, Luba Tang, Cheng-Tao Hsieh, Cheng-Yi Chou, Ping-Hao Chang, and Luis Hsu. 2019. ONNC:
A Compilation Framework Connecting ONNX to Proprietary Deep Learning Accelerators. In 2019 IEEE International
Conference on Arti�cial Intelligence Circuits and Systems (AICAS). 214–218. https://doi.org/10.1109/AICAS.2019.
8771510

[147] Weiqiang Liu, Jiahua Xu, Danye Wang, Chenghua Wang, Paolo Montuschi, and Fabrizio Lombardi. 2018. Design and
Evaluation of Approximate Logarithmic Multipliers for Low Power Error-Tolerant Applications. IEEE Transactions
on Circuits and Systems I: Regular Papers 65, 9 (2018), 2856–2868. https://doi.org/10.1109/TCSI.2018.2792902

[148] Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu. 2017. Concurrent Data Structures for Near-Memory
Computing. In Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures (Washington,
DC, USA) (SPAA ’17). Association for Computing Machinery, New York, NY, USA, 235–245. https://doi.org/10.1145/
3087556.3087582

https://doi.org/10.1109/TETC.2021.3050989
https://arxiv.org/abs/2007.14897
https://doi.org/10.1109/ICCAD.2013.6691108
https://doi.org/10.1145/3065386
https://doi.org/10.1109/MM.2020.2985963
https://doi.org/10.1109/IA356718.2022.00009
https://doi.org/10.1016/j.neucom.2022.02.043
https://doi.org/10.1016/j.neucom.2022.02.043
https://doi.org/10.1109/MM.2019.2950655
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1016/S0927-0507(05)80189-6
https://doi.org/10.48550/arXiv.2304.09781
https://doi.org/10.48550/arXiv.2304.09781
https://doi.org/10.1109/ICCAD.2014.7001399
https://doi.org/10.1109/ICCD.2013.6657022
https://doi.org/10.1109/AICAS.2019.8771510
https://doi.org/10.1109/AICAS.2019.8771510
https://doi.org/10.1109/TCSI.2018.2792902
https://doi.org/10.1145/3087556.3087582
https://doi.org/10.1145/3087556.3087582

Perspectives on Design Methodologies for Heterogeneous HPC Platforms for Deep Learning 43

[149] Joshua Yung Lih Low and Ching Chuen Jong. 2013. Non-iterative high speed division computation based on
Mitchell logarithmic method. In 2013 IEEE International Symposium on Circuits and Systems (ISCAS). 2219–2222.
https://doi.org/10.1109/ISCAS.2013.6572317

[150] Tianjian Lu, Yi-Fan Chen, Blake Hechtman, Tao Wang, and John Anderson. 2021. Large-Scale Discrete Fourier
Transform on TPUs. IEEE Access 9 (2021), 93422–93432. https://doi.org/10.1109/ACCESS.2021.3092312

[151] P. Sundararajan A. Coppola D. Pellerin W. Najjar R. Bruce M. Babst O. Pritchard P. Palazzari G. Kuzmanov M. Wirthlin,
D. Poznanovic. 2008. OpenFPGA CoreLib core library interoperability e�ort. Parallel Comput. 34 (2008), 231–244.

[152] Michael Mathieu, Mikael Hena�, and Yann LeCun. 2014. Fast Training of Convolutional Networks through FFTs.
arXiv:1312.5851 [cs.CV]

[153] Ruben Mayer and Hans-Arno Jacobsen. 2021. Scalable Deep Learning on Distributed Infrastructures: Challenges,
Techniques, and Tools. ACM Comput. Surv. 53, 1 (2021), 37 pages. https://doi.org/10.1145/3363554

[154] Ruben Mayer, Christian Mayer, and Larissa Laich. 2017. The Tensor�ow Partitioning and Scheduling Problem: It’s
the Critical Path!. In Proceedings of the 1st Workshop on Distributed Infrastructures for Deep Learning (DIDL ’17). ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3154842.3154843

[155] Maryam MehriDehnavi, Yousef El-Kurdi, James Demmel, and Dennis Giannacopoulos. 2013. Communication-
Avoiding Krylov Techniques on Graphic Processing Units. IEEE Transactions on Magnetics 49, 5 (2013), 1749–1752.
https://doi.org/10.1109/TMAG.2013.2244861

[156] M. Meyer, T. Kenter, and C. Plessl. 2020. Evaluating FPGA Accelerator Performance with a Parameterized OpenCL
Adaptation of Selected Benchmarks of the HPCChallenge Benchmark Suite. In 2020 IEEE/ACM International Workshop
on Heterogeneous High-performance Recon�gurable Computing (H2RC). 10–18. https://doi.org/10.1109/H2RC51942.
2020.00007

[157] Microchip. 2020. Smart High-Level Synthesis Tool Suite. https://www.microchip.com/en-us/products/fpgas-and-
plds/fpga-and-soc-design-tools/smarthls-compiler.

[158] M. Minutoli et al. 2015. Inter-procedural resource sharing in High Level Synthesis through function proxies. In
International Conference on Field Programmable Logic and Applications, FPL (London, United Kingdom). 1–8.

[159] Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V. Le, and Je� Dean. 2018. A Hierarchical Model
for Device Placement. In Proceedings of Machine Learning and Systems (MLSys ’18). 3 pages. https://mlsys.org/
Conferences/doc/2018/150.pdf

[160] Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou, Naveen Kumar, Mohammad
Norouzi, Samy Bengio, and Je� Dean. 2017. Device Placement Optimization with Reinforcement Learning. In
Proceedings of the 34th International Conference on Machine Learning - Volume 70 (ICML ’17). JMLR.org, 2430–2439.

[161] John N. Mitchell. 1962. Computer Multiplication and Division Using Binary Logarithms. IRE Transactions on Electronic
Computers EC-11, 4 (1962), 512–517. https://doi.org/10.1109/TEC.1962.5219391

[162] Debabrata Mohapatra, Vinay K. Chippa, Anand Raghunathan, and Kaushik Roy. 2011. Design of voltage-scalable
meta-functions for approximate computing. In 2011 Design, Automation & Test in Europe. 1–6. https://doi.org/10.
1109/DATE.2011.5763154

[163] Amir Momeni, Jie Han, Paolo Montuschi, and Fabrizio Lombardi. 2015. Design and Analysis of Approximate
Compressors for Multiplication. IEEE Trans. Comput. 64, 4 (2015), 984–994. https://doi.org/10.1109/TC.2014.2308214

[164] Thierry Moreau, Tianqi Chen, Luis Vega, Jared Roesch, Eddie Yan, Lianmin Zheng, Josh Fromm, Ziheng Jiang, Luis
Ceze, Carlos Guestrin, et al. 2019. A hardware–software blueprint for �exible deep learning specialization. Micro
(2019).

[165] "msr �ddle". 2020. PipeDream: Pipeline Parallelism for DNN Training. https://github.com/msr-�ddle/pipedream
[166] Servesh Muralidharan, Kenneth O’Brien, and Christian Lalanne. 2015. A Semi-Automated Tool Flow for Roo�ine

Anaylsis of OpenCL Kernels on Accelerators. In First International Workshop on Heterogeneous High-performance
Recon�gurable Computing.

[167] Riley Murray, James Demmel, Michael W. Mahoney, N. Benjamin Erichson, Maksim Melnichenko, Osman Asif
Malik, Laura Grigori, Piotr Luszczek, Michał Dereziński, Miles E. Lopes, Tianyu Liang, Hengrui Luo, and Jack
Dongarra. 2023. Randomized Numerical Linear Algebra : A Perspective on the Field With an Eye to Software.
arXiv:2302.11474 [math.NA]

[168] Francisco Muñoz-Martínez, José L. Abellán, Manuel E. Acacio, and Tushar Krishna. 2020. STONNE: A Detailed
Architectural Simulator for Flexible Neural Network Accelerators. arXiv:2006.07137 [eess.SP]

[169] S. W. Nabi and W. Vanderbauwhede. 2018. MP-STREAM: A Memory Performance Benchmark for Design Space
Exploration on Heterogeneous HPC Devices. In 2018 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). 194–197. https://doi.org/10.1109/IPDPSW.2018.00036

[170] Kohei Nagasu, Kentaro Sano, Fumiya Kono, and Naohito Nakasato. 2017. FPGA-based tsunami simulation: Perfor-
mance comparison with GPUs, and roo�ine model for scalability analysis. J. Parallel and Distrib. Comput. 106 (2017),
153–169. https://doi.org/10.1016/j.jpdc.2016.12.015

https://doi.org/10.1109/ISCAS.2013.6572317
https://doi.org/10.1109/ACCESS.2021.3092312
https://arxiv.org/abs/1312.5851
https://doi.org/10.1145/3363554
https://doi.org/10.1145/3154842.3154843
https://doi.org/10.1109/TMAG.2013.2244861
https://doi.org/10.1109/H2RC51942.2020.00007
https://doi.org/10.1109/H2RC51942.2020.00007
https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-and-soc-design-tools/smarthls-compiler
https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-and-soc-design-tools/smarthls-compiler
https://mlsys.org/Conferences/doc/2018/150.pdf
https://mlsys.org/Conferences/doc/2018/150.pdf
https://doi.org/10.1109/TEC.1962.5219391
https://doi.org/10.1109/DATE.2011.5763154
https://doi.org/10.1109/DATE.2011.5763154
https://doi.org/10.1109/TC.2014.2308214
https://github.com/msr-fiddle/pipedream
https://arxiv.org/abs/2302.11474
https://arxiv.org/abs/2006.07137
https://doi.org/10.1109/IPDPSW.2018.00036
https://doi.org/10.1016/j.jpdc.2016.12.015

44 Fabrizio Ferrandi et al.

[171] R. Nane, V. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K.
Bertels. 2016. A Survey and Evaluation of FPGA High-Level Synthesis Tools. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 35, 10 (Oct 2016), 1591–1604. https://doi.org/10.1109/TCAD.2015.2513673

[172] Srinivasan Narayanamoorthy, Hadi Asghari Moghaddam, Zhenhong Liu, Taejoon Park, and Nam Sung Kim. 2015.
Energy-E�cient Approximate Multiplication for Digital Signal Processing and Classi�cation Applications. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 23, 6 (2015), 1180–1184. https://doi.org/10.1109/TVLSI.
2014.2333366

[173] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R. Devanur, Gregory R. Ganger,
Phillip B. Gibbons, and Matei Zaharia. 2019. PipeDream: Generalized Pipeline Parallelism for DNN Training. In
Proceedings of the 27th ACM Symposium on Operating Systems Principles (SOSP ’19). ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3341301.3359646

[174] Tan Nguyen, Colin MacLean, Marco Siracusa, Douglas Doer�er, Nicholas J. Wright, and Samuel Williams. 2021.
FPGA-based HPC accelerators: An evaluation on performance and energy e�ciency. Concurrency and Computation:
Practice and Experience n/a, n/a (2021), e6570. https://doi.org/10.1002/cpe.6570

[175] T. Nguyen, S. Williams, M. Siracusa, C. MacLean, D. Doer�er, and N. J. Wright. 2020. The Performance and Energy
E�ciency Potential of FPGAs in Scienti�c Computing. In 2020 IEEE/ACM Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems (PMBS). 8–19. https://doi.org/10.1109/PMBS51919.2020.00007

[176] Mostafa W. Numan, Braden J. Phillips, Gavin S. Puddy, and Katrina Falkner. 2020. Towards Automatic High-Level
Code Deployment on Recon�gurable Platforms: A Survey of High-Level Synthesis Tools and Toolchains. IEEE Access
8 (2020), 174692–174722.

[177] Eriko Nurvitadhi, Asit Mishra, and Debbie Marr. 2015. A sparse matrix vector multiply accelerator for support vector
machine. In 2015 International Conference on Compilers, Architecture and Synthesis for Embedded Systems (CASES).
109–116. https://doi.org/10.1109/CASES.2015.7324551

[178] NVIDIA. 2022. NVIDIA Deep Learning Accelerator. http://nvdla.org/.
[179] "Alibaba Group PAI". 2020. DAPPLE. https://github.com/AlibabaPAI/DAPPLE
[180] Aditya Paliwal, Felix Gimeno, Vinod Nair, Yujia Li, Miles Lubin, Pushmeet Kohli, and Oriol Vinyals. 2020. Reinforced

Genetic Algorithm Learning for Optimizing Computation Graphs. In Proceedings of the 8th International Conference
on Learning Representations (ICLR ’20). 24 pages.

[181] Christos H. Papadimitriou and Mihalis Yannakakis. 1990. Towards an Architecture-Independent Analysis of Parallel
Algorithms. SIAM J. Comput. 19, 2 (1990), 322–328. https://doi.org/10.1137/0219021

[182] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen, Victor A Ying, Anurag Mukkara, Rang-
harajan Venkatesan, Brucek Khailany, Stephen W Keckler, and Joel Emer. 2019. Timeloop: A systematic approach to
dnn accelerator evaluation. In 2019 IEEE international symposium on performance analysis of systems and software
(ISPASS). IEEE, 304–315.

[183] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen, Victor A. Ying, Anurag Mukkara, Rang-
harajan Venkatesan, Brucek Khailany, Stephen W. Keckler, and Joel Emer. 2019. Timeloop: A Systematic Approach to
DNN Accelerator Evaluation. In 2019 IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS). 304–315. https://doi.org/10.1109/ISPASS.2019.00042

[184] Yu Pei, George Bosilca, and Jack Dongarra. 2022. Sequential Task Flow Runtime Model Improvements and Limitations.
In 2022 IEEE/ACM International Workshop on Runtime and Operating Systems for Supercomputers (ROSS). 1–8. https:
//doi.org/10.1109/ROSS56639.2022.00009

[185] Xiaochen Peng, Shanshi Huang, Yandong Luo, Xiaoyu Sun, and Shimeng Yu. 2019. DNN+NeuroSim: An End-to-End
Benchmarking Framework for Compute-in-Memory Accelerators with Versatile Device Technologies. In 2019 IEEE
International Electron Devices Meeting (IEDM). 32.5.1–32.5.4. https://doi.org/10.1109/IEDM19573.2019.8993491

[186] Stefania Perri, Fanny Spagnolo, Fabio Frustaci, and Pasquale Corsonello. 2020. E�cient Approximate Adders for
FPGA-Based Data-Paths. Electronics 9, 9 (2020). https://doi.org/10.3390/electronics9091529

[187] Stefania Perri, Fanny Spagnolo, Fabio Frustaci, and Pasquale Corsonello. 2022. Designing Energy-E�cient Approxi-
mate Multipliers. Journal of Low Power Electronics and Applications 12, 4 (2022). https://doi.org/10.3390/jlpea12040049

[188] Nicola Petra, Davide De Caro, Valeria Garofalo, Ettore Napoli, and Antonio G. M. Strollo. 2010. Truncated Binary
Multipliers With Variable Correction and Minimum Mean Square Error. IEEE Transactions on Circuits and Systems I:
Regular Papers 57, 6 (2010), 1312–1325. https://doi.org/10.1109/TCSI.2009.2033536

[189] Nicola Petra, Davide De Caro, Valeria Garofalo, Ettore Napoli, and Antonio Giuseppe Maria Strollo. 2011. Design of
Fixed-Width Multipliers With Linear Compensation Function. IEEE Transactions on Circuits and Systems I: Regular
Papers 58, 5 (2011), 947–960. https://doi.org/10.1109/TCSI.2010.2090572

[190] Bharath Srinivas Prabakaran, Semeen Rehman, Muhammad Abdullah Hanif, Salim Ullah, Ghazal Mazaheri, Akash
Kumar, and Muhammad Sha�que. 2018. DeMAS: An e�cient design methodology for building approximate adders
for FPGA-based systems. In 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE). 917–920.

https://doi.org/10.1109/TCAD.2015.2513673
https://doi.org/10.1109/TVLSI.2014.2333366
https://doi.org/10.1109/TVLSI.2014.2333366
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1002/cpe.6570
https://doi.org/10.1109/PMBS51919.2020.00007
https://doi.org/10.1109/CASES.2015.7324551
http://nvdla.org/
https://github.com/AlibabaPAI/DAPPLE
https://doi.org/10.1137/0219021
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ROSS56639.2022.00009
https://doi.org/10.1109/ROSS56639.2022.00009
https://doi.org/10.1109/IEDM19573.2019.8993491
https://doi.org/10.3390/electronics9091529
https://doi.org/10.3390/jlpea12040049
https://doi.org/10.1109/TCSI.2009.2033536
https://doi.org/10.1109/TCSI.2010.2090572

Perspectives on Design Methodologies for Heterogeneous HPC Platforms for Deep Learning 45

https://doi.org/10.23919/DATE.2018.8342140
[191] Christos Psarras, Henrik Barthels, and Paolo Bientinesi. 2022. The Linear Algebra Mapping Problem. Current

State of Linear Algebra Languages and Libraries. ACM Trans. Math. Softw. 48, 3, Article 26 (sep 2022), 30 pages.
https://doi.org/10.1145/3549935

[192] Andrew Putnam, Adrian M. Caul�eld, Eric S. Chung, Derek Chiou, Kypros Constantinides, John Demme, Hadi
Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil,
Amir Hormati, Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong,
Phillip Yi Xiao, and Doug Burger. 2015. A Recon�gurable Fabric for Accelerating Large-Scale Datacenter Services.
IEEE Micro 35, 3 (2015), 10–22. https://doi.org/10.1109/MM.2015.42

[193] Gregorio Quintana-Ortí, Enrique S. Quintana-Ortí, Robert A. Van De Geijn, Field G. Van Zee, and Ernie Chan. 2009.
Programming Matrix Algorithms-by-Blocks for Thread-Level Parallelism. ACM Trans. Math. Softw. 36, 3, Article 14
(jul 2009), 26 pages. https://doi.org/10.1145/1527286.1527288

[194] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe.
2013. Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing
pipelines. Acm Sigplan Notices 48, 6 (2013), 519–530.

[195] Daniel Reiser, Marc Reichenbach, Tommaso Rizzi, Andrea Baroni, Markus Fritscher, Christian Wenger, Cristian Zam-
belli, and Davide Bertozzi. 2023. Technology-Aware Drift Resilience Analysis of RRAMCrossbar Array Con�gurations.
In 2023 IEEE NEWCAS. in press.

[196] Jared Roesch, Steven Lyubomirsky, Logan Weber, Josh Pollock, Marisa Kirisame, Tianqi Chen, and Zachary Tatlock.
2018. Relay: A New IR for Machine Learning Frameworks. In Proceedings of the 2nd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages (MAPL 2018). Association for Computing Machinery,
New York, NY, USA, 58–68. https://doi.org/10.1145/3211346.3211348

[197] B. Ronak and S. A. Fahmy. 2016. Mapping for Maximum Performance on FPGA DSP Blocks. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 35, 4 (April 2016), 573–585. https://doi.org/10.1109/TCAD.
2015.2474363

[198] Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret Catron, Summer Deng, Roman Dzhabarov, Nick Gibson, James
Hegeman, Meghan Lele, Roman Levenstein, Jack Montgomery, Bert Maher, Satish Nadathur, Jakob Olesen, Jongsoo
Park, Artem Rakhov, Misha Smelyanskiy, and Man Wang. 2019. Glow: Graph Lowering Compiler Techniques for
Neural Networks. arXiv:1805.00907 [cs] (April 2019). arXiv:1805.00907 [cs]

[199] Enrico Russo, Maurizio Palesi, Salvatore Monteleone, Davide Patti, Giuseppe Ascia, and Vincenzo Catania. 2021.
LAMBDA: An Open Framework for Deep Neural Network Accelerators Simulation. In 2021 IEEE International
Conference on Pervasive Computing and Communications Workshops and other A�liated Events (PerCom Workshops).
161–166. https://doi.org/10.1109/PerComWorkshops51409.2021.9431078

[200] Gabriele Russo Russo, Valeria Cardellini, and Francesco Lo Presti. 2023. Hierarchical Auto-Scaling Policies for Data
Stream Processing on Heterogeneous Resources. ACM Trans. Auton. Adapt. Syst. (2023). https://doi.org/10.1145/
3597435

[201] Hassaan Saadat, Haris Javaid, and Sri Parameswaran. 2019. Approximate Integer and Floating-Point Dividers with
Near-Zero Error Bias. 1–6. https://doi.org/10.1145/3316781.3317773

[202] Ananda Samajdar, Jan Moritz Joseph, Yuhao Zhu, Paul Whatmough, Matthew Mattina, and Tushar Krishna. 2020. A
systematicmethodology for characterizing scalability of DNN accelerators using SCALE-sim. In 2020 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE, 58–68.

[203] Ananda Samajdar, Yuhao Zhu, Paul Whatmough, Matthew Mattina, and Tushar Krishna. 2018. SCALE-Sim: Systolic
CNN Accelerator Simulator. arXiv preprint arXiv:1811.02883 (2018).

[204] Aseem Sayal, Shirin Fathima, SS Nibhanupudi, and Jaydeep Kulkarni. 2020. COMPAC: Compressed Time-Domain,
Pooling-Aware Convolution CNN Engine With Reduced Data Movement for Energy-E�cient AI Computing. IEEE
Journal of Solid-State Circuits PP (12 2020), 1–1. https://doi.org/10.1109/JSSC.2020.3041502

[205] Martin D. Schatz, Robert A. van de Geijn, and Jack Poulson. 2016. Parallel Matrix Multiplication: A Systematic
Journey. SIAM J. Sci. Comput. 38, 6 (jan 2016), C748–C781. https://doi.org/10.1137/140993478

[206] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, and Yann LeCun. 2014. OverFeat: Integrated
Recognition, Localization and Detection using Convolutional Networks. arXiv:1312.6229 [cs.CV]

[207] Seyed Hossein Hashemi Shadmehri, Ali BanaGozar, Mehdi Kamal, Sander Stuijk, Ali Afzali-Kusha, Massoud Pedram,
and Henk Corporaal. 2022. SySCIM: SystemC-AMS Simulation of Memristive Computation In-Memory. In 2022
Design, Automation and Test in Europe Conference and Exhibition (DATE). 1467–1472. https://doi.org/10.23919/
DATE54114.2022.9774749

[208] Muhammad Sha�que,Waqas Ahmad, Rehan Ha�z, and Jörg Henkel. 2015. A low latency generic accuracy con�gurable
adder. In 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6. https://doi.org/10.1145/2744769.
2744778

https://doi.org/10.23919/DATE.2018.8342140
https://doi.org/10.1145/3549935
https://doi.org/10.1109/MM.2015.42
https://doi.org/10.1145/1527286.1527288
https://doi.org/10.1145/3211346.3211348
https://doi.org/10.1109/TCAD.2015.2474363
https://doi.org/10.1109/TCAD.2015.2474363
https://arxiv.org/abs/1805.00907
https://doi.org/10.1109/PerComWorkshops51409.2021.9431078
https://doi.org/10.1145/3597435
https://doi.org/10.1145/3597435
https://doi.org/10.1145/3316781.3317773
https://doi.org/10.1109/JSSC.2020.3041502
https://doi.org/10.1137/140993478
https://arxiv.org/abs/1312.6229
https://doi.org/10.23919/DATE54114.2022.9774749
https://doi.org/10.23919/DATE54114.2022.9774749
https://doi.org/10.1145/2744769.2744778
https://doi.org/10.1145/2744769.2744778

46 Fabrizio Ferrandi et al.

[209] Yakun Sophia Shao, Brandon Reagen, Gu-YeonWei, and David Brooks. 2014. Aladdin: A pre-RTL, power-performance
accelerator simulator enabling large design space exploration of customized architectures. In 2014 ACM/IEEE 41st
International Symposium on Computer Architecture (ISCA). 97–108. https://doi.org/10.1109/ISCA.2014.6853196

[210] A. Shawahna, S. M. Sait, and A. El-Maleh. 2019. FPGA-Based Accelerators of Deep Learning Networks for Learning
and Classi�cation: A Review. IEEE Access 7 (2019), 7823–7859. https://doi.org/10.1109/ACCESS.2018.2890150

[211] Doochul Shin and Sandeep K. Gupta. 2010. Approximate Logic Synthesis for Error Tolerant Applications. In
Proceedings of the Conference on Design, Automation and Test in Europe (Dresden, Germany) (DATE ’10). European
Design and Automation Association, Leuven, BEL, 957–960.

[212] David B. Shmoys and Éva Tardos. 1993. An Approximation Algorithm for the Generalized Assignment Problem.
Mathematical Programming 62, 1 (1993), 461–474. https://doi.org/10.1007/BF01585178

[213] Siemens. 2022. Catapult C++/Systemc Synthesis. https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/
hls/c-cplus/

[214] Marco Siracusa, Emanuele Delsozzo, Marco Rabozzi, Lorenzo Di Tucci, Samuel Williams, Donatella Sciuto, and
Marco Domenico Santambrogio. 2021. A Comprehensive Methodology to Optimize FPGA Designs via the Roo�ine
Model. IEEE Trans. Comput. (2021), 1–1. https://doi.org/10.1109/TC.2021.3111761

[215] M. Siracusa, M. Rabozzi, E. Del Sozzo, L. Di Tucci, S. Williams, and M. D. Santambrogio. 2020. A CAD-based
methodology to optimize HLS code via the Roo�ine model. In 2020 IEEE/ACM International Conference On Computer
Aided Design (ICCAD). 1–9. https://doi.org/10.1145/3400302.3415730

[216] Martin Skutella and Gerhard J. Woeginger. 1999. A PTAS for Minimizing the Weighted Sum of Job Completion Times
on Parallel Machines. In Proceedings of the 31 Annual ACM Symposium on Theory of Computing (STOC ’99). ACM,
New York, NY, USA, 400–407. https://doi.org/10.1145/301250.301356

[217] Min-An Song, Lan-Da Van, and Sy-Yen Kuo. 2007. Adaptive Low-Error Fixed-Width Booth Multipliers. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sciences E90-A (06 2007). https://doi.org/
10.1093/ietfec/e90-a.6.1180

[218] A. Sorna, X. Cheng, E. D’Azevedo, K. Won, and S. Tomov. 2018. Optimizing the Fast Fourier Transform Using Mixed
Precision on Tensor Core Hardware. In Proc. 25th Int. Conf. on High Performance Computing Workshops (HiPCW). 3–7.

[219] Fanny Spagnolo, Stefania Perri, and Pasquale Corsonello. 2022. Aggressive Approximation of the SoftMax Function
for Power-E�cient Hardware Implementations. IEEE Transactions on Circuits and Systems II: Express Briefs 69, 3
(2022), 1652–1656. https://doi.org/10.1109/TCSII.2021.3120495

[220] Fanny Spagnolo, Stefania Perri, and Pasquale Corsonello. 2022. Approximate Down-Sampling Strategy for Power-
Constrained Intelligent Systems. IEEE Access 10 (2022), 7073–7081. https://doi.org/10.1109/ACCESS.2022.3142292

[221] ST Microelectronics. 2017. X-CUBE-AI. https://www.st.com/en/embedded-software/x-cube-ai.html
[222] Leon Stok. 1994. Data path synthesis. Integration 18, 1 (1994), 1–71.
[223] Antonio Giuseppe Maria Strollo, Ettore Napoli, Davide De Caro, Nicola Petra, and Gennaro Di Meo. 2020. Comparison

and Extension of Approximate 4-2 Compressors for Low-Power Approximate Multipliers. IEEE Transactions on
Circuits and Systems I: Regular Papers 67, 9 (2020), 3021–3034. https://doi.org/10.1109/TCSI.2020.2988353

[224] Antonio Giuseppe Maria Strollo, Ettore Napoli, Davide De Caro, Nicola Petra, Gerardo Saggese, and Gennaro Di Meo.
2022. Approximate Multipliers Using Static Segmentation: Error Analysis and Improvements. IEEE Transactions on
Circuits and Systems I: Regular Papers 69, 6 (2022), 2449–2462. https://doi.org/10.1109/TCSI.2022.3152921

[225] Christodoulos Stylianou and Michele Weiland. 2023. Optimizing Sparse Linear Algebra Through Automatic Format
Selection and Machine Learning. arXiv:2303.05098 [cs.LG]

[226] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov, Dumitru Erhan,
Vincent Vanhoucke, and Andrew Rabinovich. 2014. Going Deeper with Convolutions. CoRR abs/1409.4842 (2014).
arXiv:1409.4842 http://arxiv.org/abs/1409.4842

[227] T. Tang and Y. Xie. 2018. MLPAT: A power area timing modeling framework for machine learning accelerators. In
EEE International Workshop on Domain Speci�c System Architecture (DOSSA).

[228] Frederick Tung and Greg Mori. 2018. CLIP-Q: Deep Network Compression Learning by In-parallel Pruning-
Quantization. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 7873–7882.

[229] Salim Ullah, Semeen Rehman, Muhammad Sha�que, and Akash Kumar. 2022. High-Performance Accurate and
Approximate Multipliers for FPGA-Based Hardware Accelerators. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 41, 2 (2022), 211–224. https://doi.org/10.1109/TCAD.2021.3056337

[230] Salim Ullah, Hendrik Schmidl, Siva Satyendra Sahoo, Semeen Rehman, and Akash Kumar. 2021. Area-Optimized
Accurate and Approximate Softcore Signed Multiplier Architectures. IEEE Trans. Comput. 70, 3 (2021), 384–392.
https://doi.org/10.1109/TC.2020.2988404

[231] Mike Urbach and Morten B Petersen. 2022. HLS from PyTorch to System Verilog with MLIR and CIRCT. 2nd
Workshop on Languages, Tools, and Techniques for Accelerator Design (LATTE).

https://doi.org/10.1109/ISCA.2014.6853196
https://doi.org/10.1109/ACCESS.2018.2890150
https://doi.org/10.1007/BF01585178
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/hls/c-cplus/
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/hls/c-cplus/
https://doi.org/10.1109/TC.2021.3111761
https://doi.org/10.1145/3400302.3415730
https://doi.org/10.1145/301250.301356
https://doi.org/10.1093/ietfec/e90-a.6.1180
https://doi.org/10.1093/ietfec/e90-a.6.1180
https://doi.org/10.1109/TCSII.2021.3120495
https://doi.org/10.1109/ACCESS.2022.3142292
https://www.st.com/en/embedded-software/x-cube-ai.html
https://doi.org/10.1109/TCSI.2020.2988353
https://doi.org/10.1109/TCSI.2022.3152921
https://arxiv.org/abs/2303.05098
https://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
https://doi.org/10.1109/TCAD.2021.3056337
https://doi.org/10.1109/TC.2020.2988404

Perspectives on Design Methodologies for Heterogeneous HPC Platforms for Deep Learning 47

[232] Josse Van Delm, Maarten Vandersteegen, Alessio Burrello, Giuseppe Maria Sarda, Francesco Conti, Daniele
Jahier Pagliari, Luca Benini, and Marian Verhelst. 2023. HTVM: E�cient Neural Network Deployment On Heteroge-
neous TinyML Platforms. In Proceedings of the 2023 Conference & Exhibition on Design, Automation & Test in Europe.
Antwerp.

[233] Ben van Werkhoven, Willem Jan Palenstijn, and Alessio Sclocco. 2020. Lessons Learned in a Decade of Research
Software Engineering GPU Applications. In Computational Science – ICCS 2020. Springer, Cham, 399–412.

[234] Wim Vanderbauwhede and Khaled Benkrid. 2013. High-performance computing using FPGAs. Vol. 3. Springer.
https://doi.org/10.1007/978-1-4614-1791-0

[235] Tim Vanevenhoven. 2011. High-Level Implementation of Bit- and Cycle-Accurate Floating-Point DSP Algorithms with
Xilinx FPGAs. Technical Report. Xilinx. White Paper: 7 Series FPGAs.

[236] Nicolas Vasilache, Je� Johnson, Michael Mathieu, Soumith Chintala, Serkan Piantino, and Yann LeCun. 2015. Fast
Convolutional Nets With fb�t: A GPU Performance Evaluation. arXiv:1412.7580 [cs.LG]

[237] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary DeVito, William S. Moses,
Sven Verdoolaege, Andrew Adams, and Albert Cohen. 2018. Tensor Comprehensions: Framework-Agnostic High-
Performance Machine Learning Abstractions. arXiv:1802.04730 [cs] (June 2018). arXiv:1802.04730 [cs]

[238] M. Véstias and H. Neto. 2014. Trends of CPU, GPU and FPGA for high-performance computing. In 2014 24th
International Conference on Field Programmable Logic and Applications (FPL). 1–6. https://doi.org/10.1109/FPL.2014.
6927483

[239] Je�rey Scott Vitter. 2001. External Memory Algorithms and Data Structures: Dealing with Massive Data. ACM
Comput. Surv. 33, 2 (jun 2001), 209–271.

[240] Z. Wang, H. Huang, J. Zhang, and G. Alonso. 2020. Shuhai: Benchmarking High Bandwidth Memory On FPGAs. In
2020 IEEE 28th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). 111–119.
https://doi.org/10.1109/FCCM48280.2020.00024

[241] Haroon Waris, Chenghua Wang, Weiqiang Liu, and Fabrizio Lombardi. 2021. AxBMs: Approximate Radix-8 Booth
Multipliers for High-Performance FPGA-Based Accelerators. IEEE Transactions on Circuits and Systems II: Express
Briefs 68, 5 (2021), 1566–1570. https://doi.org/10.1109/TCSII.2021.3065333

[242] Shmuel Winograd. 1980. Arithmetic Complexity of Computations. Society for Industrial and Applied Mathematics.
https://doi.org/10.1137/1.9781611970364 arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611970364

[243] Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng, Gloria Chang,
Fiona Aga Behram, Jinshi Huang, Charles Bai, Michael Gschwind, Anurag Gupta, Myle Ott, Anastasia Melnikov,
Salvatore Candido, David Brooks, Geeta Chauhan, Benjamin Lee, Hsien-Hsin S. Lee, Bugra Akyildiz, Maximilian
Balandat, Joe Spisak, Ravi Jain, Mike Rabbat, and KimM. Hazelwood. 2022. Sustainable AI: Environmental Implications,
Challenges and Opportunities. In Proceedings of Machine Learning and Systems 2022, MLSys 2022.

[244] Lei Wu and Ching Chuen Jong. 2015. A curve �tting approach for non-iterative divider design with accuracy
and performance trade-o�. In 2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS). 1–4.
https://doi.org/10.1109/NEWCAS.2015.7182097

[245] Yannan Nellie Wu, Joel S. Emer, and Vivienne Sze. 2019. Accelergy: An Architecture-Level Energy Estimation
Methodology for Accelerator Designs. In 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
1–8. https://doi.org/10.1109/ICCAD45719.2019.8942149

[246] Lixue Xia, Boxun Li, Tianqi Tang, Peng Gu, Xiling Yin, Wenqin Huangfu, Pai-Yu Chen, Shimeng Yu, Yu Cao, Yu Wang,
Yuan Xie, and Huazhong Yang. 2016. MNSIM: Simulation platform for memristor-based neuromorphic computing
system. In 2016 Design, Automation and Test in Europe Conference and Exhibition (DATE). 469–474.

[247] Xilinx Inc. 2022. Vitis High-Level Synthesis User Guide. https://www.xilinx.com/support/documentation/sw_manuals/
xilinx2022_2/ug1399-vitis-hls.pdf

[248] Xilinx Inc. 2022. Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator. UG994 (v2022.2).
https://www.xilinx.com/support/documents/sw_manuals/xilinx2022_1/ug994-vivado-ip-subsystems.pdf

[249] Xuan Yang, Mingyu Gao, Qiaoyi Liu, Je� Setter, Jing Pu, Ankita Nayak, Steven Bell, Kaidi Cao, Heonjae Ha, Priyanka
Raina, et al. 2020. Interstellar: Using Halide’s Scheduling Language to Analyze DNN Accelerators. In Proceedings of
the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems.
369–383.

[250] Xuan Yang, Mingyu Gao, Qiaoyi Liu, Je� Setter, Jing Pu, Ankita Nayak, Steven Bell, Kaidi Cao, Heonjae Ha, Priyanka
Raina, Christos Kozyrakis, and Mark Horowitz. 2020. Interstellar: Using Halide’s Scheduling Language to Analyze
DNNAccelerators. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20). Association for Computing Machinery, New
York, NY, USA, 369–383. https://doi.org/10.1145/3373376.3378514

[251] R. Yasudo, J. Coutinho, A. Varbanescu, W. Luk, H. Amano, and T. Becker. 2018. Performance Estimation for Exascale
Recon�gurable Data�ow Platforms. In 2018 International Conference on Field-Programmable Technology (FPT). 314–317.

https://doi.org/10.1007/978-1-4614-1791-0
https://arxiv.org/abs/1412.7580
https://arxiv.org/abs/1802.04730
https://doi.org/10.1109/FPL.2014.6927483
https://doi.org/10.1109/FPL.2014.6927483
https://doi.org/10.1109/FCCM48280.2020.00024
https://doi.org/10.1109/TCSII.2021.3065333
https://doi.org/10.1137/1.9781611970364
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611970364
https://doi.org/10.1109/NEWCAS.2015.7182097
https://doi.org/10.1109/ICCAD45719.2019.8942149
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2022_2/ug1399-vitis-hls.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2022_2/ug1399-vitis-hls.pdf
https://www.xilinx.com/support/documents/sw_manuals/xilinx2022_1/ug994-vivado-ip-subsystems.pdf
https://doi.org/10.1145/3373376.3378514

48 Fabrizio Ferrandi et al.

https://doi.org/10.1109/FPT.2018.00062
[252] Hanchen Ye, Cong Hao, Jianyi Cheng, Hyunmin Jeong, Jack Huang, Stephen Neuendor�er, and Deming Chen. 2022.

ScaleHLS: A New Scalable High-Level Synthesis Framework on Multi-Level Intermediate Representation. In 2022
IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 741–755.

[253] Hanchen Ye, HyeGang Jun, Hyunmin Jeong, Stephen Neuendor�er, and Deming Chen. 2022. ScaleHLS: A Scalable
High-Level Synthesis Framework with Multi-Level Transformations and Optimizations. In Proceedings of the 59th
ACM/IEEE Design Automation Conference (DAC). 1355–1358.

[254] Matthew D. Zeiler and Rob Fergus. 2014. Visualizing and Understanding Convolutional Networks. In Computer
Vision – ECCV 2014, David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (Eds.). Springer International
Publishing, Cham, 818–833.

[255] Reza Zendegani, Mehdi Kamal, Arash Fayyazi, Ali Afzali-Kusha, Saeed Safari, and Massoud Pedram. 2016. SEERAD:
A high speed yet energy-e�cient rounding-based approximate divider. In 2016 Design, Automation & Test in Europe
Conference & Exhibition (DATE). 1481–1484.

[256] Alberto Zeni, Kenneth O’Brien, Michaela Blott, and Marco D. Santambrogio. 2021. Optimized Implementation of the
HPCG Benchmark on Recon�gurable Hardware. In Euro-Par 2021: Parallel Processing, Leonel Sousa, Nuno Roma, and
Pedro Tomás (Eds.). 616–630. https://doi.org/10.1007/978-3-030-85665-6_38

[257] Georgios Zervakis, Kostas Tsoumanis, Sotirios Xydis, Dimitrios Soudris, and Kiamal Pekmestzi. 2016. Design-E�cient
Approximate Multiplication Circuits Through Partial Product Perforation. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 24, 10 (2016), 3105–3117. https://doi.org/10.1109/TVLSI.2016.2535398

[258] Jiyuan Zhang, Franz Franchetti, and Tze Meng Low. 2018. High Performance Zero-Memory Overhead Direct
Convolutions. CoRR abs/1809.10170 (2018). arXiv:1809.10170 http://arxiv.org/abs/1809.10170

[259] Xiaofan Zhang, Hanchen Ye, and Deming Chen. 2021. Being-ahead: Benchmarking and Exploring Accelerators for
Hardware-E�cient AI Deployment. arXiv:2104.02251 [cs.AR]

[260] Yang Zhao, Chaojian Li, Yue Wang, Pengfei Xu, Yongan Zhang, and Yingyan Lin. 2021. DNN-Chip Predictor:
An Analytical Performance Predictor for DNN Accelerators with Various Data�ows and Hardware Architectures.
arXiv:2002.11270 [cs.LG]

[261] Yanqi Zhou, Sudip Roy, AmirAli Abdolrashidi, Daniel Lin-Kit Wong, Peter C. Ma, Qiumin Xu, Ming Zhong, Hanxiao
Liu, Anna Goldie, Azalia Mirhoseini, and James Laudon. 2019. GDP: Generalized Device Placement for Data�ow
Graphs. CoRR abs/1910.01578 (2019), 11 pages. http://arxiv.org/abs/1910.01578

[262] Danyang Zhu, Siyuan Lu,MeiqiWang, Jun Lin, and ZhongfengWang. 2020. E�cient Precision-Adjustable Architecture
for Softmax Function in Deep Learning. IEEE Transactions on Circuits and Systems II: Express Briefs 67 (2020), 3382–
3386.

[263] H. R. Zohouri, N. Maruyama, A. Smith, M. Matsuda, and S. Matsuoka. 2016. Evaluating and Optimizing OpenCL
Kernels for High Performance Computing with FPGAs. In SC ’16: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 409–420. https://doi.org/10.1109/SC.2016.34

[264] Hamid Reza Zohouri and Satoshi Matsuoka. 2019. The memory controller wall: Benchmarking the intel FPGA
SDK for OpenCL memory interface. In 2019 IEEE/ACM International Workshop on Heterogeneous High-performance
Recon�gurable Computing (H2RC). IEEE, 11–18. https://doi.org/10.1109/H2RC49586.2019.00007

[265] Vasileios Zois, Divya Gupta, Vassilis J. Tsotras, Walid A. Najjar, and Jean-Francois Roy. 2018. Massively Parallel
Skyline Computation for Processing-in-Memory Architectures. In Proceedings of the 27th International Conference on
Parallel Architectures and Compilation Techniques (Limassol, Cyprus) (PACT ’18). ACM, New York, NY, USA, Article 1,
12 pages. https://doi.org/10.1145/3243176.3243187

https://doi.org/10.1109/FPT.2018.00062
https://doi.org/10.1007/978-3-030-85665-6_38
https://doi.org/10.1109/TVLSI.2016.2535398
https://arxiv.org/abs/1809.10170
http://arxiv.org/abs/1809.10170
https://arxiv.org/abs/2104.02251
https://arxiv.org/abs/2002.11270
http://arxiv.org/abs/1910.01578
https://doi.org/10.1109/SC.2016.34
https://doi.org/10.1109/H2RC49586.2019.00007
https://doi.org/10.1145/3243176.3243187

	CN_HPC_FL2_D5.pdf
	Abstract
	1 Introduction
	2 HLS Design-based methodologies
	2.1 Vitis High-Level Synthesis
	2.2 The Bambu open-source High-level Synthesis
	2.3 Other HLS tools
	2.4 hls4ml and FINN
	2.5 MLIR-based approaches
	2.6 IP block integration

	3 Deep Learning Compilers
	3.1 Memory hierarchy management in DNN Accelerators
	3.2 Deep Learning Compilers for MCUs
	3.3 Deep Learning Compilers for High-Performance

	4 Hardware/Software Codesign Tools: Application Partitioning and Mapping
	5 Modeling, Simulation, Profiling and Exploration
	5.1 Modeling, Simulation, and Exploration Frameworks
	5.2 Simulation tools for emerging memories-based DNN accelerator
	5.3 Cycle-Accurate Simulators
	5.4 Modeling and Profiling FPGAs for custom accelerators

	6 Computational Models for HPC Applications
	6.1 Theoretical Models of Computations
	6.2 Linear Algebra, Tensors, Machine Learning/Deep Learning
	6.3 Parallel Patterns
	6.4 Approximate Computing

	Acknowledgments
	References

