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EXECUTIVE SUMMARY 
 
This document aims at presenting the state-of-the-art approaches and gap analysis for HPC development 
tools. Flagship 3 is characterized by a large number of partners with diverse and heterogeneous 
competencies and a vast amount of HPC tools, ranging from hardware accelerators and runtime optimization 
tools to resource managers for Edge, Fog and Cloud and different application models. The ultimate goal of 
this document is to identify the most promising areas for future research and development in HPC 
development tools. By analyzing the current state-of-the-art approaches and identifying gaps, we hope to 
guide the Flagship 3 partners towards more effective collaboration and innovation in this field. An approach 
illustrating the state of the art of each single HPC tool and partner competence would quickly lead to an 
explosion of technical details. Hence, in this deliverable, we opt for a different approach and focus on a 
structured presentation of the different competencies and available HPC tools provided by each partner. This 
approach allows for a clear understanding of the capabilities of each partner and their respective HPC tools, 
which will aid in selecting the most suitable partner and tool for a specific project or task. Additionally, it 
provides a comprehensive overview of the overall HPC landscape within the partnership. 
 
In detail, this approach allows us to first learn about the different areas of expertise and HPC tools of the 
different partners participating in the flagship. Secondly, we organize the available tools and competencies 
into a structured Hybrid Cloud-HPC architecture to address the development of HPC applications. This 
architecture spans multiple technological stacks and target platforms. More precisely, this architecture is 
composed of six layers: the application layer, which provides the functionalities that an HPC application 
developer needs; the static optimization and transformation layer, which provides the capabilities to 
translate the high-level application model into code; the virtualization/containerization layer, which targets 
the execution platform for HPC applications such as Clouds, Edge, and novel HPC resources; the orchestration 
layer, to manage the lifecycle of applications deployed on the execution platform; the runtime management 
layer, with specific solutions for the different stages of the application lifecycle; and the hardware layer. The 
functionalities provided by each layer are detailed in Section 1, and Section 2 presents the tools illustrated in 
this document, classified within each layer of the proposed Hybrid Cloud-HPC architecture. The presented 
tools are twenty-seven; eight of them fall within the scope of the application layer, nine within the static 
optimization and transformation layer, five within the orchestration layer, and four within the runtime 
management layer. Finally, one tool falls within the scope of the hardware layer. The current state of the art 
for each tool is presented in Section 3. As with the HPC tools, the HPC applications we will deal with in this 
Flagship are characterized by very different goals, constraints, and performance metrics. Hence, the available 
tools require a detailed GAP analysis to identify their current limitations, both from a technological and 
integration perspective. Section 4 presents an in-depth GAP analysis for the adoption of each tool in the HPC 
context. Finally, in Section 5, the synergies between possible use cases for HPC applications and some of the 
proposed tools are briefly introduced.  
 
The HPC architecture defined in this deliverable will be fully exploited in the second deliverable, where we 
will outline a selection of candidate prototypes exploiting the HPC tools made available by the partners aimed 
at showcasing the activities of the partners in the Flagship. In the subsequent deliverables, the candidate 
prototypes will be extended, integrated, assessed to demonstrate the advances achieved with respect to the 
state of the art at the beginning of this project.  
 
To conclude, this deliverable aims at showcasing the competencies and tools of the partners towards the 
industrial partners of the Flagship and the Spoke, to allow us an easier deployment of such tools as well as 
their integration with their specific use cases and to address their specific HPC problems. The introduction of 
the synergies between possible use cases for HPC applications and proposed tools in Section 5 is crucial to 
enabling industrial partners to understand the potential benefits of these tools. The aim of this deliverable is 
to facilitate the deployment and integration of these tools with specific use cases and address their HPC 
problems. 
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1 Hybrid Cloud-High Performance Computing architecture  
 

 
 

Figure 1 High Performance Computing (HPC) Layers 

As the technical barriers to Cloud-based infrastructures lowered substantially with the advent of the *-as-a-
Service model, most High Performance Computing (HPC) facilities worldwide are instead still anchored to 
SSH-based and queue-based job submission mechanisms. Finding an effective way to improve accessibility 
to this class of computing resources is still an open problem in computer science. Indeed, the multiple layers 
of virtualization that characterize modern cloud architectures introduce significant processing overheads and 
make it impossible to apply adaptive fine-tuning techniques based upon the underlying hardware 
technologies, making them incompatible with performance critical HPC applications. On the other hand, HPC 
datacenters are not designed for general purpose applications. Only scalable and computationally 
demanding programs can effectively benefit from the massive amount of processing elements and the low-
latency network interconnections that characterize HPC facilities, justifying the high development cost of 
HPC-enabled applications. Moreover, some seemingly trivial applications are not supported in HPC 
environments, e.g., exposing a public web interface for data visualization in an air-gapped worker node. 

The latest cloud management platforms make it possible to take a hybrid cloud approach, called Hybrid 
Cloud-HPC, which blends on-premises infrastructure with public cloud services so that workloads can flow 
seamlessly across all available resources. This enables greater flexibility in deploying HPC systems and how 
quickly they can scale up, along with the opportunity to optimize total cost of ownership. Such Hybrid Cloud-
HPC architecture, depicted in Figure 1, can bring a certain number of benefits:                                

● Scalability: It is easy to serve increasing demands and requirements as it does not require a huge 
investment and effort. Scaling on-premises HPC can be more expensive and will require additional 
space to install. Besides, the investment in hardware will be a waste if the requirement is short-term. 
Instead, it is very convenient to scale cloud requirements on demand while keeping the on-premises 
resources unchanged. 



 

 

● Accessibility: Another major disadvantage of on-premises HPC is that users should be on-premises 
to access the resources. On the contrary, Hybrid Cloud-HPC allows users to connect to the running 
application and to the system to manage, monitor, launch, deploy and collect results through, for 
example, ad-hoc Internet REST interface or portals. 

● Efficiency: Moving into the Cloud will help you in many ways. For instance, it will save space, costs, 
and power consumption, and increase flexibility in the management of the resources, avoiding 
underutilization of them. 

● Better security: Cloud-based HPC is an IaaS model. Therefore, it should also offer security, by 
providing a physical separation between on-premises data and the Cloud, and different applications 
by separating spaces exploiting virtualization techniques. 

In next paragraphs, we explain and describe the functionalities of the various blocks and levels of a Hybrid 
Cloud-HPC architecture, from the high-level application description and modeling to the low-level hardware 
optimizations. 

1.1 Application layer 

This is the layer that provides the functionalities that the application developer needs, i.e., to build 
or push the application components into the stack and to define their functional or non-functional 
requirements in terms of needed resources. The application owner must also provide an application 
model, a description of the application components, their requirements in terms of resources and 
their expected behavior in case of application- or resource-related events. The most common high-
level formalism to represent an application and its requirements and components is a graph (usually 
a DAG, Directed Acyclic Graph). Edges and nodes are annotated with resource requirements, such as 
latency or bandwidth for edges representing communication channels, or computation cores, 
quantity of RAM, storage and so on for nodes. This type of formalism have been also adopted in HPC, 
to model applications so it is possible to abstract from the underlying network topology and  to allow 
the exploitation of Hybrid HPC resources: for example, it is possible to deploy two or more 
application’s components on the same many-cores shared memory machine, or on different 
machines or, furthermore, on different Clouds, on the basis of the requirements specified on the 
edges of the graph; in the former case, the components can  be implemented as threads and edges 
as shared-memory channels, while in the latter case the components are processes on different 
machines, and edges are network channels: the effective deploy scenario is chosen dynamically at 
the orchestration level, on the basis of the application requirements, to optimize costs and resource 
consumption. The most common implementation of such formalism are workflows. Orchestrating 
distributed workflows in the compute continuum is a complex task: as could be noted in the example 
above, execution locations can be heterogeneous, exposing different methods and protocols for 
authentication, communication, resource allocation and job execution. Plus, they can be 
independent of each other, meaning that direct communications and data transfers among them 
may not be allowed. Encoding workflow dependencies and execution environments’ topology in a 
single model allows for optimized execution strategies at different levels of the orchestration stack, 
from model optimization through consistency-preserving rewriting rules to overhead minimization 
through data-aware scheduling policies. 

It is possible to classify emulators/simulators tools at this level, as a method for fast prototyping and 
testing applications and to analyze their performance, resource consumption and adherence to 
functional and non-functional requirements in an environment with reduced costs and controlled 
behaviors. 

Finally, most HPC facilities worldwide are still anchored to SSH-based and queue-based job 
submission mechanisms: interfaces to simplify interactive sessions to launch and monitor running 
applications on a Hybrid Cloud-HPC cluster could be classified at this level. 

  



 

 

1.2 Static optimization and transformation layer 
 

This is the layer that provides the functionality to translate the high-level application model into code, 
by performing static transformations and optimizations to increase parallelism, to reduce the impact 
of communications and general overhead with the objective to increase performance of applications, 
or to reduce the quantity of needed resources, and consequently costs. Tools of this layer form a 
software development chain composed, since decades, mainly by high performance optimization 
compilers, which performs transformations and optimizations based on the high-level application 
description model specified at the application level described in Section 1.1. In the last decades, such 
compilers are supported by a set of tools dedicated to other critical optimizations: in Section 1.2.1 
the techniques to partition data between nodes are briefly introduced, in particular for data-
intensive applications, to increase parallelism and reduce the overhead connected to transferring 
data during execution; in Section 1.2.2 data streams processing, an approach to process data in real-
time by applying a pipeline of operators to them is introduced; in Section 1.2.3 techniques to 
compress data are introduced; in Section 1.2.4 graph transformations techniques to optimize the 
graph induced by the application model without changing the semantics of the application are 
introduced, they increase parallelism or reduce communication overhead.  

1.2.1 Partitioning of data for data parallelism applications 

Partitioning of data is a technique used in data parallelism applications to distribute large 
datasets across multiple processing nodes or machines. In data parallelism, large datasets 
are split into smaller, more manageable chunks and processed simultaneously on multiple 
processing units. This technique allows for faster processing and analysis of large datasets, 
making it an essential tool for many modern data-intensive applications. It is a critical 
component of data parallelism applications as it determines how the dataset will be divided 
and distributed across the processing nodes, balancing the load to increase parallelism and 
scalability. There are several methods of partitioning data, such as range partitioning, where 
data is partitioned based on specific ranges, hash partitioning, which involves hashing the 
data and round-robin partitioning, the simpler method where data is subdivided circularly 
between nodes, among others. Each method has its advantages and disadvantages and may 
be more suitable for specific use cases. The choice of partitioning method depends on several 
factors, including the nature of the data, the processing requirements, and the available 
processing resources. Additionally, partitioning of data allows for fault tolerance, as data can 
be replicated across multiple processing nodes, ensuring that data is not lost in the event of 
a failure. 

1.2.2 Data streams processing 

Data streams processing is a modern approach to data processing that involves the 
continuous and real-time analysis of data as it flows in from various sources. It has become 
increasingly popular in recent years due to the rise of big data and the need for organizations 
to process and analyze data in real-time. With the explosion of IoT devices, social media, and 
other digital technologies, there is an enormous amount of data being generated every 
second. Batch processing systems suffer from latency problems due to the need to collect 
input data into batches before it can be processed. Under several application scenarios such 
as fraud detection in financial transactions and healthcare analytics involving digital sensors 
and Internet of Things, continuous data streams must be processed under very short delays. 
This is because certain types of data streams such as stock values, credit card transactions, 
traffic conditions, time-sensitive patient data, and trending news rapidly depreciate if not 
processed instantly. Thus, the ability to handle and process continuous streams of data is 
becoming an essential part of building today’s data-driven organizations, enabling them to 



 

 

analyze this data quickly and efficiently in real-time, extracting valuable insights, allowing 
them to make more informed and timely decisions.  
This is achieved through the use of distributed and high-parallel frameworks, such as Apache 
Kafka [1], Apache Flink [2], and Apache Storm [3], which allow data to be processed in parallel 
across multiple nodes. These systems also provide fault tolerance, ensuring that data is not 
lost in the event of a failure.  Most Modern Data Stream Processing Systems try to combine 
batch and stream processing capabilities into a single or multiple parallel data processing 
pipelines. 

1.2.3 Compression of data 

Data compression is concerned with saving space in data representation. This saving impacts 
not only on data storage, but also on data transmission and data processing. Another rich 
dividend that spurs from data compression is energy saving because computing over 
compressed data uses fewer servers and hardware devices to store, transmit and access 
data. A drawback of compression comes with the CPU and memory overhead to compress 
and decompress the data, reducing their applicability in real-cases scenarios such as data 
streams applications. Thus, the effectiveness of applying data compression is determined by 
the achievable compression ratio of the selected compression algorithm and the time to 
compress the data. The future exascale systems are expected to exhibit a trend that the data 
movement among memory hierarchies and off-node data transfer will become relatively 
expensive in terms of time and energy, compared to the ever-increasing compute power. If 
the selected compression algorithm can produce a reasonable compression ratio, the benefit 
of applying data compression shall become more significant for the scientific applications 
running on those systems. When it comes to compression, scientists often face the dilemma 
of choosing lossless compression and lossy compression. The former preserves data fidelity 
but can be slow and produce a poor compression ratio, whereas the latter introduces a 
cumbersome validation process on the approximated data; lossy compressions often 
produce better compression ratios than the lossless counterpart, but the error rates are not 
easy to bound, and, in large scale simulations, unbounded error could introduce significant 
deviation from the actual values.  

1.2.4 Graph transformations 

HPC has become an essential tool for solving complex scientific and engineering problems 
that require massive amounts of computational power. As explained in Section 1.1, graphs 
are a common data structure used to represent applications topology, requirements, and 
components, usually implemented as workflows. HPC graph transformations are a set of 
techniques used to optimize graph-based algorithms for HPC systems by transforming the 
graph to reduce communication and increase parallelism. Processing graphs representing 
HPC applications can be challenging, as they require massive amounts of computational 
resources and can generate huge amounts of data. These techniques involve breaking down 
the graph into smaller subgraphs and applying a series of transformations to each subgraph. 
Such transformations can include reordering nodes, removing redundant edges, and 
collapsing nodes into clusters, usually performing what, as an instance, in data streams 
applications are called the fission or fusion of operators [4]. One of the primary benefits of 
these techniques is that they can significantly improve the performance of graph-based 
algorithms on HPC systems, improving their scalability and efficiency, allowing for faster and 
more accurate results, also reducing their memory and, consequently, energy footprint.  

A challenge associated with HPC graph transformations is the need to balance computation 
and communication. In some cases, optimizing the graph for parallelism can lead to increased 
communication overhead, which can negatively impact performance. To address this issue, 



 

 

HPC Graph Transformations must balance the need for parallelism, performing the fission of 
operators, with the need to minimize communication, performing the fusion of operators, 
preserving the semantics defined by the operators’ ordering and internal operations 
performed.  

1.3 Virtualization/containerization layer 
 
This is the layer that provides functionalities and tools to virtualize/containerize applications. In 
Cloud infrastructure, virtualization is important to isolate applications, optimize the utilization of 
hardware resources and provide operational flexibility. However, conventional virtualization comes 
at the cost of resource overhead, which could be unfeasible for performance critical HPC 
applications, violating their requirements. Lightweight virtualization could be an alternative, as it 
potentially reduces overhead and thus improves the utilization of datacenters, allowing for such 
applications to reach a more fine-grained level of parallelism. A lightweight virtualization method 
which starts to be employed in Edge/Cloud continuum is containerization: Linux Containers (LXC) [5] 
is a Linux kernel technology that is able to run a multitude of processes, each in their own isolated 
environment, sharing the kernel and all the operating system libraries, avoiding to emulate the 
underlying hardware, while maintaining the applications in isolated spaces; Docker [6] is a widely 
used tool that makes it easy to package an application and all of its dependencies into such 
containers.  

 
1.4 Orchestration layer 

 
This is the layer that provides functionalities and tools to orchestrate and manage resources and the 
lifecycle of applications deployed on a Hybrid Cloud-HPC, which is composed of a “continuum” of 
resources belonging to public or private clouds, edge clouds and HPC datacenters. This continuum 
enables the convergence of heterogeneous infrastructures, stretching all the way from cloud to edge 
devices. The role of orchestration is to manage all heterogeneous types of resources of the Hybrid 
Cloud-HPC environment, to allow their allocation to the applications running on it by performing an 
efficient matchmaking of available resources based on the application requirements, with the help 
of the workload analyzer called broker. The broker performs such matchmaking after submission of 
workloads by user and determines its possibility (whether workload can be provisioned on resources 
based on QoS requirements or not). Broker sends requests to resource schedulers for scheduling 
after successful provisioning of resources: tools which try to extend HPC scheduling techniques, such 
as distributed job scheduling, could be classified at this layer as part of resource orchestration. 
 
Traditional orchestration techniques, such as exact techniques as Mixed Integer Linear programming, 
are not suitable for HPC or Hybrid Cloud-HPC environments, since their reaction time is too high for 
real-time adaptation, introducing an intolerable overhead, in particular for fine grained high parallel 
applications and data streaming applications; efficient application orchestration techniques are 
needed to manage and coordinate the execution of applications across a diverse range of resources 
and environments. To this end, proactive and reactive processes are needed to support the 
application’s runtime and adapt its deployment according to the changes in the application workload 
and resource availability: in particular, approximated distributed techniques such as genetic 
algorithms, iterative research algorithms, are adapted to solve the problem in a reasonable amount 
of time and in a scalable way, also reducing the cost in resources needed to run such algorithms. 
 
In this layer are also classified tools to support application lifecycle management, i.e., instantiating 
and terminating an application, on-demand or in response to a request by an authorized third-party. 
Orchestrating such a platform in terms of resource allocation and service placement is critical for 
assuring efficient network resource utilization, Quality of Experience (QoE) and reliability. 
 



 

 

To do an efficient and real-time orchestration, there is the need to have a scalable, efficient and near 
real time resource provisioning service. Its purpose is to retrieve from the underlying runtime 
management level (in particular, from the IM) up to date information about resource availability, on-
demand from the broker, or at a certain interval of time. In a high dynamic environment such as 
Hybrid Cloud-HPC, such service is usually performed by distributed solutions based on peer-to-peer 
(P2P) computing such as Distributed Hash Table (DHT) based overlay networks. 

 
1.5 Runtime management layer 

 
This is the layer that provides functionalities to support at runtime the running applications: deleting 
of applications, migration, storage functionalities, virtualization (if applicable), vertical and horizontal 
real time scaling, monitoring, and networking management. The functionality of the IM 
(Infrastructure Manager) is to manage a (possible virtual) infrastructure allowing administrators to 
modify its configuration, by monitoring and managing the operation of workloads in a heterogeneous 
resource environment such as Hybrid Cloud-HPC. Thus, it provides monitoring services for the 
processes running on the cluster nodes, maintains a configuration database and runtime status and 
interacts closely with virtualization systems, but also can support different CPU architectures and has 
small footprints in terms of ram and disk. Monitoring information on the availability of resources is 
reported to the orchestration level to react to changes in Quality of Service (QoS)/QoE and solve 
violation of the Service Level Agreement (SLA) of the application, as described at high level by the 
application model using orchestration specification languages such as Topology and Orchestration 
Specification for Cloud Applications (TOSCA) [7], the OASIS Topology and Orchestration Specification 
for Cloud Applications, which focuses on complex dependency management, using workflow 
description languages to write the deployment and management plans. 

 
1.6 Hardware layer 

This is the layer that provides functionality to accelerate and optimize the execution of a single 
application component code, and it represents the lower level of the architecture. At this level, 
programmers make extensive use of hardware accelerators for specific function classes, such as FPGA 
(Field Programmable Gate Array) and GPUs (Graphical processing units). 

When looking at how hardware influences computing performance, there are general-purpose 
processors (GPPs) on one end of the spectrum and application-specific integrated circuits (ASICs) on 
the other. Processors are highly programmable but often inefficient in terms of power and 
performance. ASICs implement a dedicated and fixed function and provide the best power and 
performance characteristics, but any functional change requires a complete (and extremely 
expensive) re-spinning of the circuits. Fortunately, several architectures exist between these two 
extremes. Programmable logic devices (PLDs) are one such example, providing the best of both 
worlds. They are closer to the hardware and can be reprogrammed. The most prominent example of 
a PLD is a field programmable gate array (FPGA). It consists of look-up tables (LUTs), which are used 
to implement combinational logic; and flip-flops (FFs), which are used to implement sequential logic, 
plus other discrete components such as BRAMs (block RAMs), digital signal processing (DSP) slices, 
processor cores, and various communication cores (for example, Ethernet MAC and PCIe). An 
advantage of FPGA, although running at a clock frequency that is an order of magnitude lower than 
CPUs and GPUs (graphics processing units), is that, in some cases, they are able to outperform them. 
In several classes of applications, especially floating-point-based ones, GPU performance is either 
slightly better or very close to that of an FPGA. When it comes to power efficiency (performance per 
watt), however, both CPUs and GPUs significantly lag behind FPGAs. Various kinds of FPGA-based 
systems are available today. They range from heterogeneous systems targeted at high-performance 
computing that tightly couple FPGAs with conventional CPUs (for example, Convey Computers), to 
midrange commercial-off-the-shelf workstations that use PCIe-attached FPGAs, to low-end 



 

 

embedded systems that integrate embedded processors directly into the FPGA fabric or on the same 
chip.  

On the other hand, over the past few years, the GPU has evolved from a fixed-function special-
purpose processor into a full-fledged parallel programmable processor with additional fixed-function 
special-purpose functionality. One of the benefits of the GPU is its large fraction of resources devoted 
to computation. Allowing a different execution path for each element requires a substantial amount 
of control hardware. Instead, today's GPUs support arbitrary control flow per thread but impose a 
penalty for incoherent branching. GPU vendors have largely adopted this approach. Elements are 
grouped together into blocks, and blocks are processed in parallel. The GPU is designed for a 
particular class of applications with the following characteristics: 

● Computational requirements are large. Real-time rendering requires billions of pixels per 
second, and each pixel requires hundreds or more operations. GPUs must deliver an 
enormous amount of compute performance to satisfy the demand of complex real-time 
applications. 

● Parallelism is substantial. Fortunately, the graphics pipeline is well suited for parallelism. 
Operations on vertices and fragments are well matched to fine-grained closely coupled 
programmable parallel compute units, which in turn are applicable to many other 
computational domains. 

● Throughput is more important than latency. GPU implementations of the graphics pipeline 
prioritize throughput over latency. The human visual system operates on millisecond time 
scales, while operations within a modern processor take nanoseconds. This six-order-of-
magnitude gap means that the latency of any individual operation is unimportant. 
Consequently, the graphics pipeline is quite deep, perhaps hundreds to thousands of cycles, 
with thousands of primitives in flight at any given time. The pipeline is also feed-forward, 
removing the penalty of control hazards, further allowing optimal throughput of primitives 
through the pipeline. This emphasis on throughput is characteristic of applications in other 
areas as well. 

 
 



 

 

2 Tools to be adopted in the Hybrid Cloud-HPC architecture 
 
In this Section, the tools developed and/or maintained by the Flagship partners are briefly presented and 
discussed with respect to each layer of the proposed Hybrid Cloud-HPC architecture. The tool presentations 
are organized considering the different layers introduced in the description of the Hybrid Cloud-HPC 
architecture, i.e., Application level, Static Optimization and Transformation level, Orchestration level, 
Runtime Management level and Hardware level.  
All the presented tools have been developed by one or more partners of the Flagship. They build up the core 
set of HPC tools and competencies that can be leveraged during the forthcoming activities of the Flagship. 
Each component is described with respect to the reference scenario or problem it addresses. 
 

2.1 Application layer  
 

2.1.1 BDMaaS+  
   

BDMaaS+ [8] is a decision support tool for service providers who want to distribute an IT 
service on a global scale relying on private and public cloud platforms. To find an optimal IT 
service configuration, BDMaaS+ relies on a Simulator for IT Service in Federated Clouds 
(SISFC), a simulator that allows its users to reproduce the behavior of an IT service using 
realistic latency modeling between different data centers. Both SISFC and BDMaaS+ are 
available to the interested research community and practitioners on GitHub. The purpose of 
BDMaaS+ is to find a configuration for an IT service that allows minimizing resource rental 
costs (Virtual Machines on Cloud platforms) and at the same time providing an adequate 
level of performance that satisfies Service Level Agreements (SLAs) stipulated by the service 
providers with their customers. BDMaaS+ implements an optimization component that 
reenacts an IT service using a specific configuration for evaluating possible alternative service 
placement configurations over the Hybrid Cloud-HPC environment. This optimization 
component leverages a two-phase memetic algorithm that mimics -- leveraging the SISFC 
simulator -- possible service placements among those generated by the modeling stage 
considering not only the locations of VMs in the Hybrid Cloud-HPC but also the size/flavor of 
these VMs. 
 
2.1.2 WorldDynamics 

 
WorldDynamics.jl [9] aims to provide a modern framework to investigate integrated 
assessment models (IAM) of sustainable development, based on current software 
engineering and scientific machine learning techniques. WorldDynamics.jl is developed 
in Julia exploiting its libraries to allow scientists to easily use and adapt different world 
models, from Meadows et al.'s World3 [10] to recent proposals. By enabling an open, 
interdisciplinary, and consistent comparative approach to scientific model development, the 
main goal is to inform global policy makers on environmental and economic issues. 
In particular, each IAM can be seen as a set of subsystems. Each subsystem is described and 
implemented by a set of variables and a set of differential-algebraic equations which models 
their interactions; as of today, WorldDynamics.jl leverages the library ModelingToolkit.jl and 
its ability to compose and solve them. As such, the goal of each model is to understand the 
evolution of some major variables. WorldDynamics.jl emphasizes this modular structure of 
IAMs by facilitating the coding of the systems of equations corresponding to the different 
subsystems and their composition by automatically deriving the connections among them 
(that is, their shared variables). 
Moreover, WorldDyanmics.jl allows the execution of sensitivity tests as well as the 
implementation of new models by changing a single subsystem of equations or the whole 



 

 

IAM providing a brand new set of variables and equations. Those are possible thanks to 
WorldDynamics.jl’s modularity. 
 
2.1.3 Real Time Simulator for Digital Twin and Hardware-In-Loop in the Electrical 
Power Networks Scenario 
 
Real Time Simulators (RTSs) are gaining momentum in power network monitoring [11], [12].  
In fact, RTSs and virtual models of physical devices should be characterized and assessed as 
well to avoid unexpected sources to the overall uncertainty.  
In this scenario, UNIBO performed some research activities, including: 
● a calibrator for RTS systems has been designed and characterized; 
● an open-Source MATLAB-Based virtual phasor measurement unit (PMU) Library has been 

developed [13]. This PMU is compliant with the IEC/IEEE 60255-118-1 standard; 
● the described calibrator has been used to characterize a PMU developed inside an RTS 

[14]; 
● a Stand Alone Merging Unit (SAMU) based on real-time HIL technology has been 

developed along with its characterization procedure, thus allowing to assess its 
performance from a metrological perspective [15]. 

 
2.1.4 Interactive Computing Service 

 
The infrastructure put in place to provide the InterActive Computing (IAC) service is 
composed by two components:   

● the front-end side featured by a user interface that handles authentication as 
well as the near-immediate access to the computational resources. The amount 
of such dedicated resources can be chosen by the user after the login stage via 
an ad-hoc form. Different authentication methods can be implemented, such as 
password-based, multi-factor, token, and others;  

● the back-end side, where a Jupyterlab server is initialized via a batch job with 
near-immediate access (thanks to oversubscribe settings). This allows a user-
friendly experience thanks to both the “standard” Jupyterlab platform, and the 
custom plugins added.  

The deployment of the IAC framework involves both the front-end and the back-end part. 
Currently, the development environment is hosted on CINECA infrastructure, with the front-
end on the HPC ADAcloud [16] infrastructure and the back-end on GALILEO100 HPC cluster 
[17].   
In the figure below a sketch of this development IAC service is provided, focusing on both the 
front-end (yellow part) and back-end (light blue part) part.  



 

 

 

Figure 2 Interactive Computing Server sketch 

 
The development environment depicted allowed us to test new features as soon as they 
were added, in view of a future production platform.  
The browser-based access to the IAC service allows to achieve two different goals:  

● the user can access the HPC resources using a much more user-friendly approach 
with respect to the traditional HPC access tools (mostly ssh). Moreover, the web 
interface allows to monitor and display results during the execution of a job in 
an interactive fashion;  

● such an interactive approach overcomes the main limitation of the "traditional 
approach" for HPC resources, which is usually handled via batch job. A batch job, 
in fact, does not usually allow modifying the execution of the workflow during its 
execution, and results are managed only at the end of the run; vice versa, an 
interactive approach allows the user to build the workflow through a real-time 
interaction, widely enhancing flexibility for an optimal usage of the allocated 
resources.  

 
2.1.5 Jupyter Workflow 
 
Jupyter Workflow [18] (https://jupyter-workflow.di.unito.it) is an extension of the IPython 
kernel designed to support distributed literate workflows. The Jupyter Workflow kernel 
enables Jupyter Notebooks to describe complex workflows and execute them in a distributed 
fashion on Hybrid Cloud HPC infrastructures. In particular, code cells are regarded as the 
nodes of a distributed workflow graph. In contrast, cell metadata are used to express data 
and control dependencies, parallel execution patterns (e.g., Scatter/Gather), and target 
execution infrastructures (e.g., HPC facilities, Cloud VMs, Kubernetes). Relying on cell 
metadata to describe workflows has several significant advantages. First, it maintains a clear 
separation between host and coordination semantics, improving the readability and 
maintainability of complex applications. Second, it avoids technology lock-in: the same 
metadata format can be interpreted by different Jupyter kernels to support more languages 
(other than Python), specific execution architectures, or commercial software stacks. Finally, 



 

 

it smooths the learning curve of stand-alone workflow systems. Users familiar with Jupyter 
Notebooks do not have to learn a new framework to scale their experiments. 

 
2.1.6 StreamFlow 
 
The StreamFlow framework [19] (https://streamflow.di.unito.it/) is a container-native 
Workflow Management System (WMS) written in Python 3 and based on the Common 
Workflow Language (CWL) open standard [20]. It has been designed around two main 
principles. First, it allows the execution of tasks in multi-container environments to support 
the concurrent execution of multiple communicating tasks in a multi-agent ecosystem. 
Second, it relaxes the requirement of a single shared data space to allow for hybrid workflow 
executions on top of multi-cloud or Hybrid Cloud HPC infrastructures. StreamFlow 
declaratively describes cross-application workflows with data dependencies, complex 
execution environments composed of heterogeneous and independent infrastructures, and 
mapping steps onto execution locations. This hybrid workflow approach enables the 
deployment of different, potentially distributed workflow steps (e.g., MPI, TensorFlow) onto 
different modules (e.g., HPC facilities, Cloud VMs, Kubernetes). StreamFlow allows the 
seamless integration of new modules and deployment methods through self-contained 
plugins. The topology awareness emerging from these workflow models allows StreamFlow 
to implement locality-based scheduling strategies, automated data transfers, and fault 
tolerance. 
 
2.1.7 Parallel Multi-density Clustering 
 
Recently UNICAL proposed the City Hotspot Detector (CHD), a multi-density based approach 
to detect urban hotspots in a city [21]. In a nutshell, the algorithm behaves as follows. First, 
the neighborhood density for each point is computed. Second, on the basis of density 
variations, the points are partitioned into several density level sets, each one characterized 
by homogeneous density distributions. During this step, a moving average filtering is 
performed to smooth out strong density fluctuations (very frequent fluctuations between 
subsequent values, often occurring in the analysis of real-world urban data) and highlight 
main trends. Then, each density level set is analyzed by a specific density-based clustering 
algorithm, to detect clusters in the data partition. The final result of the algorithm consists in 
a set of spatial clusters, each one representing an urban hotspot. A preliminary experimental 
evaluation, carried out on state-of-art datasets, have shown good results in terms of 
clustering accuracy. 
 
2.1.8 aMLLibrary 
 
aMLLibrary (https://github.com/aMLLibrary/aMLLibrary) is a high-level Python package that 
allows training of multiple performance models, supporting feature selection and 
hyperparameters tuning. It is based on the scikit-learn toolkit (https://github.com/scikit-
learn/scikit-learn) and uses supervised ML techniques to generate regression models which 
can be used to predict applications performance. Overall, aMLLibrary implements an autoML 
solution, i.e., it performs training of multiple regression models and automatically selects the 
most accurate one based on the validation metric chosen. The execution of the library is 
controlled by a simple configuration text file (or equivalently, a Python dictionary), where the 
user can specify the dataset to be used, the training settings, the regression models to be 
tested and their ranges of hyperparameters, and the validation method. 
The library currently supports Decision Tree (DT), Non-Negative Least Squares (NNLS), 
Random Forest (RF), Ridge Linear Regression, Stepwise (a linear regression model which 
integrates the Draper-Smith feature selection technique, see [22], Support Vector Regression 



 

 

(SVR), and XGBoost ( [23]). Hyperparameter tuning of these models can be performed either 
via grid search by specifying the lists of values to be tested, or automatically via Bayesian 
Optimization (BO). If choosing BO, the HyperOpt library 
(https://github.com/aMLLibrary/hyperopt) is used, with which aMLLibrary is integrated. In 
this case, the user must provide the appropriate flag in the configuration file, as well as prior 
probability distributions on the hyperparameters to be optimized by BO. A combination of 
both tuning methodologies can also be used. The user can choose among several validation 
methods to compute the Mean Absolute Percentage Error (MAPE) of a model, which is 
computed as: 
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where y is the vector of true values and y' is the vector of predicted values by the ML model. 
The validation methods include classical ones such as train-test splitting and Cross-Validation 
(CV), and other methods often used in ICT settings to build custom test sets, such as 
interpolation and extrapolation. Here, interpolation means keeping some feature values 
within the feature space out of the training set, and placing them in the test set, to check the 
ability of the model to “fill in the blanks” of the feature space. On the contrary, extrapolation 
means keeping an entire area of the search space out of the training set, in order to test the 
predicting capabilities of the model in an unexplored part of the feature space. After the 
validation phase, the best model is chosen according to the smallest validation MAPE found, 
and it is saved to file in binary form. This way, it can be used for further inference and to 
estimate the performance of a given application component for design-time state space 
exploration, or for runtime resource management. 
Finally, the library has a prediction module that can be used to make interpolation and 
extrapolation with a trained regression model. 

 
 

2.2 Static optimization and transformation layer  
 
2.2.1 Sieve, Process, and Forward (SPF) 

 
Sieve, Process and Forward (SPF) is a Fog-as-a-Service platform developed in response to the 
particular needs and challenges posed by Smart City environments. SPF proposes a new 
information-centric service model based on Value of Information (VoI) methodologies and 
tools. Value-of-Information (VoI) is a subjective metric that enables ranking information 
objects to quantify the utility that can bring to their consumers. The SPF VoI-based model 
allows service providers to define self-adaptive and composable services, which can be 
deployed as multiple service components that run across the Compute Continuum, migrate 
to different computing platforms, and automatically scale computational and bandwidth 
requirements based on the current execution context by filtering the information objects to 
be processed and disseminated. SPF has two main components: Programmable IoT Gateways 
(PIG) and a Controller. PIGs provide data processing and information dissemination functions 
in response to user requests to the platform and can be implemented in the fog (i.e., on edge 
devices) or in the cloud. One instance of the PIG component must be deployed on each fog 
or cloud node capable of running an SPF service. The Controller component allows 
application developers to define and deploy service components on PIGs according to custom 
deployment policies. Furthermore, the controller handles user requests and forwards them 
to the relevant PIGs (i.e., those that have running instances of the corresponding Fog 
services) for processing. Finally, the Controller also implements sensor detection capabilities 
and can connect PIGs to new data sources. By controlling the service and the implementation 



 

 

of the application, the Controller ensures that the data processing on the PIGs takes place 
only when necessary, for example in the presence of user requests.  

 
2.2.2 ParSoDA: Parallel Library for Big Data Analysis 
 
ParSoDA (Parallel Social Data Analytics) [24]  is a Java programming library for simplifying the 
development of parallel data mining applications executed on HPC systems. To achieve this 
goal, ParSoDA provides a set of widely used functions for processing and analyzing data 
collected from semi-structured sources. ParSoDA defines a general parallel framework for a 
data analysis application that includes a number of steps (i.e., data acquisition, filtering, 
mapping, partitioning, reduction, analysis, and visualization), and provides a predefined (but 
extensible) set of functions for each data processing step. Thus, an application developed 
with ParSoDA is expressed by a concise code that specifies the functions invoked at each 
step. For each of these steps ParSoDA provides a predefined set of functions. Users are free 
to extend this set with their own functions. For example, for the data acquisition step, 
ParSoDA provides crawling functions for gathering data from some of the most popular social 
media (Twitter and Flickr), while for the data filtering step, ParSoDA provides functions for 
filtering geotagged items based on their position, time of publication, and contained 
keywords. ParSoDA was capable of supporting the execution of applications on top of both 
Apache Hadoop and Apache Spark. 
To enable further runtime support, a port of ParSoDA to Python is in progress. In such a way, 
it will be possible to easily extend ParSoDA to support other Python-based runtimes for HPC 
systems, such as COMPSs [25] by using its Python binding PyCOMPS [26]. PyCOMPSs is a 
framework, built on top of COMPSs, that facilitates the development of parallel 
computational workflows in Python. In this approach, users program their scripts in a 
sequential fashion and decorates the functions to be run as asynchronous parallel tasks. A 
runtime system is in charge of exploiting the inherent concurrency of the script, detecting 
the data dependencies between tasks and spawning them to the available resources. 
In the ParSoDA-PyCOMPSs version, the support for Distributed Data Set (DDS) will be added. 
DDS is a lightweight library that provides an interface where programmers can load data from 
basic Python data structures, generators, or files, distribute the data on available nodes, and 
run some most common big data operations on it. By using DDS, the number of code lines 
can be reduced, where performance improvement is not expected compared with regular 
PyCOMPSs applications. 
 
2.2.3 BLEST-ML (BLocksize ESTimation via Machine Learning) 
 
BLEST-ML (BLocksize ESTimation via Machine Learning) [27] addresses the problem of data 
partitioning by finding a suitable estimate of data block size, allowing an effective hybrid 
partitioning of a given dataset to be processed by a data-parallel algorithm in a target 
distributed environment. This can help programmers to make the most of all the computing 
and storage resources that are available in the environment, as they can efficiently obtain a 
suitable estimate for the block size, without the need for heavy tuning processes or domain 
knowledge. 
As a preliminary step, the methodology requires a careful analysis of the execution 
environment, generally characterized by a set of software features, such as the available 
frameworks and libraries, and infrastructure features, such as the number of nodes, cores 
per node, available memory, and disk space. BLEST-ML leverages a log of past executions to 
extract the patterns that link a specific execution to the best block size, by training a 
supervised machine learning model. However, in order to learn effective patterns, raw logs 
must be adequately processed to extract an appropriate set of training data. The log consists 
of a collection of executions, performed by both standard users and domain experts, in which 



 

 

a single execution is described by: (i) the characteristics of the dataset, (ii) the algorithm, (iii) 
the execution environment, (iv) the specific partitioning applied along rows and columns, (v) 
the overall execution time, and (vi) other measurements such as main memory/disk usage. 
The methodology also provides a mechanism for log creation and/or enrichment based on a 
grid search procedure. 
Given the dataset extracted from the execution log, a classification model is trained to learn 
the patterns that relate the execution features/parameters and the best partitioning. Thus, 
the output of this step is a classification model capable of estimating the optimal number of 
partitions in which to split the rows and the columns of a given dataset, based on its 
characteristics, the algorithm to be run, and the underlying execution environment. In order 
to support hybrid partitioning (i.e., both horizontal and vertical), which implies the prediction 
of a two-dimensional variable (block rows and columns), a multi-output classification model 
based on a cascade of two decision tree classifiers is used. In particular, as the two target 
variables are likely to be dependent on each other, BLEST-ML leverages a chained model to 
condition the prediction of the block columns on that of rows. 
 
2.2.4 Compression of peta-scale collections of textual and source-code files 
 
UNIPI has a long-time expertise in designing data compressors. In [28] UNIPI addressed the 
problem of HTML text-file compression via the so-called PPC paradigm: Permuting + Partition 
+ Compress, whose main algorithmic idea is to first permute the files in order to bring close 
to each other the most “similar” ones, then partition them into blocks (of a proper size), and 
eventually compress each block with a suitable compressor (whose compression window is 
at least larger than the block size). 
The PPC paradigm allows to compress collections of several billions of texts and source code 
files (written in markup and programming languages, thus not just HTML) to achieve effective 
compression ratios and efficient (de)compression speed in two different scenarios: Backup 
and RandomAccess. The former is concerned with the storage scenario in which only a 
streaming access to the whole compressed collection is supported; the latter is concerned 
with the case in which efficient access to individual files of the compressed collection is 
supported. Several new instantiations of the PPC paradigm are being investigated: from the 
simplest one, in which the permutation is the arbitrary one and the compressor is gzip (the 
one currently adopted in the Software Heritage archive ); to more sophisticated approaches 
in which the permutation is based on the clustering of SimHash or MinHash fingerprints 
thanks to algorithms which exploit geometric or graph considerations; and, finally, also the 
use of compressed indexes (à la FM-index or CSA) is being investigated in order to achieve 
entropy-bounds in space occupancy and still preserving the ability to decompress only the 
requested file, and not much more. 

 
2.2.5 MALAGA, MultidimensionAL Big DAta Analytics over Massive Graph DAta 

MALAGA (MultidimensionAL Big DAta Analytics over Massive Graph DAta) is a Hadoop-
compliant Java-based open source framework for supporting all the tasks of the 
multidimensional big data analytics procedure, which can be summarized as follows: 

● data connection/alimentation over the massive graph data source, even in multiple 
fashion; 

● ETL (Extraction, Transformation & Loading) over the massive graph data source, even 
in multiple fashion; 

● definition of the multidimensional data model over the graph data source, according 
to the underlying big data analytics goals; 



 

 

● data partitioning/distribution of the so-generated big multidimensional data 
structures over the target commodity Cloud; 

● definition of the multidimensional big data analytics tasks over the target big 
multidimensional data structures, from conventional ones (e.g., drill-down, roll-up, 
pivoting etc.) to advanced ones (e.g., user-defined aggregations, etc.); 

● definition of ad-hoc interactive dashboards over big multidimensional data analytics. 

It should be considered that, from a proper research perspective, implementing and realizing 
MALAGA encompasses several relevant research challenges. Indeed, while some research 
proposals have investigated the problem of supporting conventional OLAP operations over 
graph data (e.g., [29]), the problem is still an open research issue, particularly when 
considered as related to the emerging big graph data context. 

2.2.6 FastFlow/WindFlow: high-level and efficient streaming 
 
FastFlow is a parallel programming library (https://github.com/fastflow/fastflow), initially 
targeting multi/many-core architectures [30], leveraging the principles of structured parallel 
programming methodology. Recently, it has been extended to target distributed-memory 
platforms [31].  FastFlow aims to define a single programming model for shared- and 
distributed-memory systems leveraging a streaming data-flow programming approach and a 
reduced set of structured parallel components called Building Blocks (BBs). FastFlow's BBs 
provide the programmer with efficient and reusable implementations of essential parallel 
components that can be assembled following a LEGO-style model to build and orchestrate 
more complex parallel structures (including well-known algorithmic skeletons and parallel 
patterns). FastFlow's run-time currently targets MPI and TCP/IP backends [31]. Ongoing 
efforts aim to transparently extend its communication backend to target UCX, MQTT, and 
RabbitMQ. 
WindFlow [32] is a high-level data stream processing library written on top of FastFlow's BBs. 
It allows streaming applications featuring special-purpose operators (e.g., map, filters, 
window-based operators) to be quickly developed by the users and connected in arbitrary 
acyclic topologies to be executed on multicore architectures. Recently, WindFlow has been 
extended to support hybrid execution on CPU+GPU architectures, with a design compatible 
with traditional servers and System-on-Chip devices equipped with integrated GPUs. 
 
2.2.7 Clustering Algorithm 
 
A critical constraint of the clustering algorithm is that it can be challenging to define the 
number of clusters in specific problems from the input data. To overcome this, an algorithm 
which adjusts such value until it meets the user's desired quality criteria has been developed 
[33] [34]. The algorithm focuses only on clusters with low affinity to reduce the 
computational cost primarily associated with element displacement among clusters. The 
procedure may be terminated when the similarity of the elements within the clusters exhibits 
minimal or negligible change. Examination of the computational kernel of the algorithm 
reveals different models of parallelism that can be applied to the data structures managed 
therein. More precisely it is possible to find a parallelism at cluster level as well as at element 
level. For such a reason, it is possible to implement this kernel through a hybrid procedure 
that splits the original dataset into two subsets where the number of elements assigned to 
each computing unit can be set proportional to its performance ratio. 
 
2.2.8 High performance and Low Power Hyperspectral Image Analysis 
 



 

 

In general, for Hyperspectral Imaging (HSI) applications, a reasonable compromise between 
high performance and low energy consumption is achieved through the combined use of 
methodologies aimed at modifying the model through mathematical techniques employed 
to filter out unimportant parts of the model using data compression techniques (such as 
Principal Component Analysis) and through computational acceleration techniques based on 
different forms of parallel computing (for example, through specialized libraries such as 
PyTorch). From a hardware perspective, an interesting tool for assessing the actual usage of 
the techniques mentioned with reduced energy consumption is the Nvidia Jetson Nano 
board, which can be connected to various types of remote sensors for edge computing. A 
prototype with these characteristics is being consolidated at the operating unit of the 
University of Naples. It is also interesting to note how the adoption of distributed edge 
computing infrastructures can mitigate some weaknesses of the typical centralized approach 
of cloud computing, such as constraints on communication network bandwidth and difficulty 
in implementing real-time applications that use data collected from sites distant from 
computing infrastructures [35]. 
 
 
2.2.9 DivExplorer: Analyzing Machine Learning Model Behavior via Pattern 
Divergence 
 
DivExplorer [36], [37], is an automatic approach to explore datasets and find subgroups of 
data for which a model behaves in an anomalous manner. The notion of divergence is 
introduced to estimate the different classification behavior in data subgroups with respect 
to the overall behavior. Subgroups are characterized via patterns, defined as a set of attribute 
values.  
The proposed algorithm is based on the effective integration of performance and divergence 
into the exploration process, leveraging frequent pattern mining algorithms. This enables 
DivExplorer to efficiently explore all subgroups with adequate representation in the dataset. 
Moreover, the use of the Shapley value and its generalization to analyze the contribution of 
the attribute value to the divergence has been introduced. The former allows understanding 
locally the contribution of each attribute value to the divergence of a specific subgroup. The 
latter allows understanding globally how much each attribute value contributes to the 
divergence of the model. 

 
2.3 Orchestration layer 

 
2.3.1 BookedSlurm 
 
BookedSlurm is a collection of tools extending the traditional Slurm functionalities. The main 
component is a web calendar, accessed by users to check the current state of the Slurm 
cluster, showing which computational nodes are currently in use and which resources are 
reserved for other users in the future and allowing them to reserve resources. Web calendar 
reservations resemble the concept of urgent computing in a shared environment: users can 
book resources as soon as they are guaranteed to be free, jumping in front of the job queue 
before another job from the FIFO has been scheduled. In order to compensate for the time 
advantage given to users by this approach, the web calendar comes with a credit system: 
each reservation has a predetermined cost dependent on the resource type, number and the 
computation time duration. Users have to purchase credits as in a pay-per-use computing 
system. The second tool is a Slurm job submit plugin, which extends Slurm functionalities by 
synchronizing the resource state with the web calendar and mapping each job's billing value 
to the value of its corresponding credit on the web calendar. This tool allows us to keep the 



 

 

pay-per-use model while giving different costs to jobs executed by submitting to the default 
Slurm queue or reserving resources through the web calendar. The last tool is a wrapper to 
provide the interactions between the web calendar and Slurm, offering REST APIs to create 
and delete reservations. 
 
2.3.2 Orchestration of composite containerized applications in the Cloud continuum 
 
TORCH [38] is a framework for the deployment and orchestration of cloud resources and 
services in multi-cloud environments. TORCH leverages the TOSCA specification to build up 
a cloud service orchestrator capable of automating the execution of tasks and operations 
required for the provisioning of a multi-cloud application. TORCH aims to ease the 
deployment of cloud applications and to streamline the management of applications 
lifecycle. 
The basic strategy adopted by TORCH is to convert a TOSCA cloud application model into an 
equivalent BPMN [39] workflow and dataflow model, which a BPMN engine leverages to 
enforce the operations specified in the model. TORCH main features include: description and 
modeling of the application topology using standard languages (namely, TOSCA); capability 
to deploy application components over many cloud providers’ platforms, by means of 
pluggable “connectors”; integration with different container-based cluster technologies; 
fault-aware orchestration based on a set of business process models; management of 
deployments is done via a simple web tool. 
The INDIGO orchestrator [40] [41] is an open source tool for the deployment and 
management of composite containerized applications in the Cloud continuum. The tool 
allows users to set up and build virtualized computing infrastructures and applications with 
complex topologies (such as clusters of virtual machines or applications packaged as pipes 
Docker containers), by leveraging standardized interfaces based on REST APIs and adopting 
the TOSCA templating language. From the received TOSCA-compliant request, the 
Orchestrator implements a complex provisioning workflow aimed at fulfilling the request 
using information about the health status and capabilities of underlying virtualized 
computing infrastructure and their resource availability, QoS/SLA constraints, the status of 
the data files and storage resources needed by the service/application. The tool interfaces 
with several virtualized computing frameworks (e.g., Openstack, Apache Mesos [42], 
Kubernetes) as well as with some of the most relevant public Cloud providers (Amazon and 
Microsoft Azure). 
Assisted by very simple guidelines, application developers can easily set up, configure, deploy 
and run distributed applications over a continuum of Cloud and Edge resources. The strength 
of the tool is its capability of abstracting the complexity of orchestrating resources and 
services in heterogeneous computing environments. Such a level of abstraction is realized by 
means of lightweight containerization technologies (typically, Docker) and well-recognized 
standards for the representation of virtualized applications showing complex topologies (the 
TOSCA standard, indeed). 
The tool can remotely control the computing resources offered by an Edge machine, i.e., a 
computing node with limited capacity. The tool was successfully tested on COTS hardware. 
To enable such a remote control, the Mesos-Edge software [43] is preliminarily installed on 
Edge machines. The ability to orchestrate on the Edge both long-term tasks and short-lived 
jobs is supported by two tools: Marathon [44], a production-grade container orchestration 
framework that can launch applications and provide scaling and self-healing for 
containerized workloads, and Chronos [45], a fault-tolerant job scheduler. 

  



 

 

2.3.3 Liqo 
 
Liqo is an open-source project that enables dynamic and seamless Kubernetes multi-cluster 
topologies, supporting heterogeneous on-premises, cloud and edge infrastructures, 
becoming a fundamental ingredient for the upcoming computing continuum. It provides: 

● Peering: Automatic peer-to-peer establishment of resource and service 
consumption relationships between independent and heterogeneous clusters. No 
need to worry about complex VPN configurations and certification authorities: 
everything is transparently self-negotiated for you. 

● Offloading: Seamless workloads offloading to remote clusters, without requiring any 
modification to Kubernetes or the applications themselves. Multi-cluster is made 
native and transparent: collapse an entire remote cluster to a virtual node compliant 
with the standard Kubernetes approaches and tools. 

● Network Fabric: A transparent network fabric, enabling multi-cluster pod-to-pod 
and pod-to-service connectivity, regardless of the underlying configurations and CNI 
plugins. Natively access the services exported by remote clusters, and spread 
interconnected application components across multiple infrastructures, with all 
cross-cluster traffic flowing through secured network tunnels. 

● Storage Fabric: A native storage fabric, supporting the remote execution of stateful 
workloads according to the data gravity approach. Seamlessly extend standard (e.g., 
database) high availability deployment techniques to the multi-cluster scenarios, for 
increased guarantees. All without the complexity of managing multiple independent 
cluster and application replicas. 

Liqo is available at https://liqo.io. 

2.3.4 Energy efficient orchestration and resource management in the cloud 
continuum  
 
UNIPI has recently developed an energy-efficient resource management algorithm to 
manage the placement of VMs in a cloud environment considering the QoS requirements of 
the VMs while minimizing the energy footprint of the overall platform [46]. The proposed 
approach, in addition to managing the initial placement of VMs in one of the servers of the 
cloud platform based on the current resources available and the resources required by the 
VM, also includes a dynamic component that is responsible for monitoring the status of the 
overall cloud infrastructure and applying energy optimization via load redistribution. Such a 
dynamic component continuously monitors the status of each server, e.g., its load, the 
network traffic, RAM occupation, etc., and based on the current metrics perform energy 
optimizations by shutting down some of the servers in the infrastructure, whenever it is 
possible. To this aim, the proposed component manages the redistribution of VMs from an 
underutilized server to another server of the infrastructure to shut the server down. On the 
other hand, if the overall infrastructure is running out of available resources and it is near the 
overload threshold, some powered-off servers are powered on again to make some 
additional capacity available. The proposed solution has been demonstrated to be effective 
via performance evaluation based on realistic data from a cloud provider. 

 
2.3.5 Serverledge: QoS-Aware Function-as-a-Service in the Edge-Cloud Continuum 

 
As the Function-as-a-Service (FaaS) paradigm experiences a growing popularity within Cloud-
based services, there is increasing interest in moving serverless functions towards the Edge, 
to better support geo-distributed and pervasive applications. However, enjoying both the 
reduced latency of Edge and the scalability of FaaS requires new decentralized architectures 
and implementations to cope with typical Edge challenges (e.g., nodes with limited 



 

 

computational capacity). While first solutions have been proposed for Edge-based FaaS, 
including light function sandboxing techniques, there is still the lack of a platform with the 
ability to span both Edge and Cloud and adaptively exploit both [47].  
Serverledge [48], a FaaS framework designed for the Edge-to-Cloud continuum at the 
University of Rome Tor Vergata, aims to fill such a gap. Serverledge adopts a decentralized 
architecture, with nodes organized into edge zones and cloud regions based on their location. 
Every Serverledge node, being it at the edge or in the cloud, is able to schedule and execute 
invocation requests with minimal or no interaction with the rest of the system, keeping 
latency as low as possible. To cope with load peaks and extend Serverledge node’s local 
capacity, Serverledge also supports vertical (i.e., from edge to cloud) and horizontal (i.e., 
among Edge nodes) computation offloading, allowing nodes to forward invocation requests 
that cannot be served locally. Serverledge also accounts for differentiated Quality-of-Service 
(QoS) requirements, possibly specified in terms of response time, availability, energy 
consumption. 
Serverledge is implemented in Go, supports functions written in multiple programming 
languages (specifically, Python, JS, and any language through custom images), currently 
relying on simple-yet-popular Docker containers for isolated function execution.  
The experimental evaluation has shown that Serverledge outperforms Apache OpenWhisk 
[49] in an Edge-like scenario and has competitive performance with state-of-the-art 
frameworks optimized for the Edge [50] [51] [52], with the advantage of built-in support for 
vertical and horizontal offloading. 
Serverledge has been designed with flexibility in mind, aiming to contribute a flexible and 
easy-to-extend prototype to the research community, for future investigations on FaaS at 
the Edge. The code is available at https://github.com/grussorusso/serverledge. 

 
2.4 Runtime management layer  

 

2.4.1 MoveQUIC: a QUIC-based toolbox for the live migration of microservices at the 
network edge  

 
To support the live service migration of microservices at the edge a toolbox has been 
developed. The toolbox is based on three main components: CRIU to support container 
migration, an extended migration-enabled version of the QUIC protocol, an edge platform 
based on an extension of the ETSI Multi-access Edge Computing (MEC) standard. In the 
following, the characteristics of the three toolbox components are detailed. 
The first component, CRIU, is currently the most used tool to checkpoint and restore the 
status of containers. CRIU is used to checkpoint in-memory state (e.g., memory pages or 
variable values at application-level) as a collection of files on disk, and to restore the 
container from that checkpoint in a later moment. Within the scope of the toolbox CRIU is 
complemented with a file transfer mechanism, such as rsync, to copy the container state 
from the source to the destination server. The toolbox supports, through CRIU, four main 
migration techniques, which differ on the way the checkpoint is created and transferred:  
1) Cold migration: it (i) starts by stopping the execution of the container thus ensuring the 
application state is no longer modified; (ii) then performs a checkpoint of the state and 
transfers it from the source to the target node while the container execution is still frozen; 
and (iii) finally resumes the container execution at destination. The cold migration technique 
typically causes long container downtimes (i.e., the time interval during which the container 
is not running). As a matter of fact, the downtime in this case equals the overall time required 
to transfer the container state. 
2) Pre-copy migration: it starts with a first phase (i.e., pre-dump), wherein it checkpoints and 
transfers the container state while the container is still running. Then, in a second phase 
(dump phase), it stops the container and transfers only the modifications to the state that 



 

 

occurred during the pre-dump phase. Finally, it restores container execution at destination. 
In this case, the downtime is typically shorter than the case of cold migration, as only 
modifications to the state are transferred. However, the data transferred during migration is 
larger as part of the state (i.e., that being modified) is copied more than once. 
3) Post-copy migration: it starts by suspending the execution of the container at the source 
node and creates a checkpoint containing a minimal part of the state, which includes CPU 
state and registers content. This checkpoint is copied at the destination, allowing container 
execution to resume there. Then, while the container is in execution at destination, the rest 
of the state (i.e., faulted pages), which is most of it, is transferred in the background. During 
this last phase, container execution may have degraded performance as a considerable part 
of the state is missing. However, downtime for post-copy migration is typically very short. 
4) Hybrid migration: it behaves as a combination of pre-copy and post-copy. The pre-dump 
phase is the same as for pre-copy migration. The container is then stopped, and the CPU state 
and registers are copied to the destination. Finally, the container resumes its execution at 
destination, and, while it is running, the remaining part of the state (i.e., faulted pages) that 
was modified during the pre-dump phase is copied to the destination. In general, hybrid 
migration presents the shortest downtime, but shares the same shortcomings with pre-copy 
and post-copy. 
The second component is an extended version of the QUIC protocol. QUIC is a connection-
oriented transport protocol, standardized by IETF, that is gaining momentum as a key 
element in the communication of microservice-based applications. QUIC runs over UDP but 
provides reliable communication through the implementation of mechanisms such as flow 
control, congestion control, and loss detection. QUIC outdoes TCP in several aspects. Firstly, 
TCP runs in kernel space, which means that pushing changes to TCP stacks typically requires 
operating system upgrades. On the other hand, QUIC is implemented in user space. Secondly, 
QUIC avoids the head-of-line blocking problem that afflicts TCP. Namely, streams within a 
QUIC connection can be handled independently from one another, so that loss of packets of 
a stream does not have an impact on packets of other streams. Thirdly, TCP is not secure by 
default and hence needs TLS to run over it as an additional protocol. QUIC, instead, is an 
encrypted-by-default protocol that already includes TLS 1.3 handshake in its connection 
establishment process. Finally, QUIC provides a client-side connection migration mechanism 
which allows the connection to be kept after the client changes its IP address (e.g., due to a 
wireless handover). The proposed toolbox includes an extended version of the QUIC protocol 
to support the seamless migration of the service connection also when the server’s IP address 
changes (e.g., which can occur upon a service migration) [53]. The extended protocol includes 
two strategies to support server-side connection migration in QUIC, which are called Explicit 
and Pool of Addresses. Both these strategies are based on the idea that server-side 
connection migration can be achieved by introducing minimal and non-breaking additions to 
both QUIC client and server, which are hence made aware of migration. The two strategies 
differ in the following respects. With the Explicit strategy, as the name says, QUIC server is 
explicitly informed at runtime of an imminent container migration and notifies QUIC client 
with the exact destination address (i.e., IP and/or port) right before migration starts. This 
explicit information speeds up connection migration, as the destination address is 
deterministically known. On the other hand, the Pool of Addresses strategy assumes that the 
container can be migrated within a predetermined set of server machines. During connection 
establishment, QUIC server notifies QUIC clients with the pool of possible destination 
addresses. With this strategy, QUIC does not deterministically know the next destination 
address, which should worsen overall performance. However, the Pool of Addresses strategy, 
unlike the Explicit one, allows to statically pre-define the pool of destination addresses, 
without the need for any interaction with the migration management at runtime. Both 
strategies have been integrated and tested in a real implementation of the protocol.  
Finally, the toolbox can optionally be complemented by an edge computing-platform based 
on the ETSI Multi-access Edge Computing (MEC) standard. The latter standardizes an open 



 

 

and multi-vendor edge-computing environment, to support the execution of services. An 
extension of the standard to support the migration of container-based MEC services is 
proposed in [54].  
 

2.4.2 Nethuns: a library for efficient, socket-independent network I/O  
 
Nethuns [55], a lightweight userspace library that offers a straightforward programming 
model for network I/O and can use several I/O accelerations frameworks, nicknamed 
engines, as a backend.  
The general API defines the socket abstractions as points of access to a hardware interface 
queue, and ring abstractions, that are circular queues of packet descriptors. Each socket can 
have at most one ring per direction (tx or rx). Each ring descriptor contains packet metadata 
(e.g., time of arrival for incoming frames) and an in-use flag that is set/reset using atomic 
release/acquire memory operations as appropriate. With sockets open for rx, each call to the 
nethuns receive function returns the packet identifier of the next packet in the input stream. 
If the socket is non-blocking and no packet is available, an invalid identifier is returned, and 
the application is expected to try again later. 
The function also returns a pointer to a packet header containing packet metadata and a 
pointer to a buffer with the full contents of the packet. The buffer must be later returned to 
the library, so that it can be reused to hold other incoming packets. Only one thread should 
call the receive function on each socket, but the received buffers can be released, in any 
order, by other threads. The memory necessary to hold the rings and the buffers for 
incoming/outgoing packets is managed by the library: users receive buffers from the library 
and return them when they are done with processing. 
To transmit packets, the application may call the nethuns send function with a pointer to the 
packet and its size. The function only guarantees that the packet is queued up for 
transmission, but it does not necessarily wake up the underlying engine to actually send the 
packet. The application must call the nethuns flush function to actually pass the pending 
packets to the engine, which may then issue a batch transmission operation, if available in 
the hardware. 
Applications built against the nethuns library must select an engine at compile time. This 
allows for compile time specialization of the most performance sensitive parts of the API, 
including the exact form of the nethuns rings and some access functions to packets and 
metadata that can be expanded inline. Porting the application to another system where a 
different engine is available requires only a recompilation. This design decision makes it hard 
to use two different engines at the same time in the same application, but it guarantees the 
best performance overall. 
The effectiveness of the approach has been shown by porting Open vSwitch (OvS) to nethuns 
in a single man-day of work and running it with the AF_XDP and the netmap engines. The 
performance of the nethuns/AF_XDP version has been found to be comparable to the native 
AF_XDP implementation in OvS, while the nethuns/netmap version (obtained with a simple 
compilation switch) has been found to scale better. The results have been selected among 
the “Best papers of CCR” for the year 2022 and presented at SIGCOMM 2022. A nethuns 
“source” has also been added to WindFlow (see Section 2.2.6), to experiment with Stream 
Packet Processing, with good results. 

 
2.4.3 CAPIO: cross-application programmable I/O  
 
CAPIO (https://github.com/alpha-unito/capio) is a middleware file system in user space that 
boosts the performance of existing scientific workflows that communicate through files 
without modifying the original code. This tool allows users to coordinate the I/O and inject 
streaming capabilities into a workflow. CAPIO comprises two layers: the CAPIO runtime and 



 

 

the CAPIO coordination language. The CAPIO runtime intercepts the I/O system call of the 
application. It optimizes the communication that otherwise would have leveraged the file 
system using the information expressed in the configuration file written with the 
coordination language. The CAPIO coordination language allows the user to write a 
configuration file enabling the CAPIO runtime to optimize the communication between 
applications transforming a batch execution into a streaming execution following the given 
streaming semantics and expressing in-situ and in-transit data transformations. 
 
2.4.4 INSANE: A Uniform API for QoS-aware Host Networking as a Service 
 
The Integrated aNd Selective Acceleration for the Network Edge (INSANE) middleware, is a 
general-purpose and lightweight userspace network stack that provides a uniform API to a 
wide range of network acceleration technologies, including XDP, DPDK, and RDMA, even 
available to the same supported application, with the goal of easing the development, 
deployment, and portability of latency-critical services in the cloud continuum. Following a 
microkernel-inspired architecture [56], INSANE consists of two main components: 
A client library, exposing a uniform API with a minimal set of communication primitives, yet 
expressive enough to let developers define high-level and domain-specific abstractions on 
top of them. Through a set of Quality of Service (QoS) parameters, applications can define 
differentiated network requirements for their data flows, such as latency-sensitiveness, 
reliability, and resource consumption. Unlike in Demikernel [57], in our solution, flows with 
different requirements can be mapped to different technologies. 
A runtime, working as a network stack as a service for applications and offering common 
services for high-performance networking, including memory management for zero-copy 
transfers, efficient packet processing, and different packet scheduling strategies. A plugin-
based architecture allows the specialization of such abstractions for each integrated network 
acceleration technology. In particular, the high-level QoS requirements specified by 
applications are used to dynamically map the flows to the most appropriate acceleration 
technology that is dynamically available at the deployment site. 

 
2.5 Hardware layer 

 
2.5.1 MLIR: multi-level intermediate representations for heterogeneous computing 
platform  

 
The multi-level intermediate language (MLIR) [58] is an extension of the LLVM toolchain 
recently introduced to make compiler-level code optimizations more flexible. MLIR 
introduces a set of domain-specific middle-end representations (called “dialects”) geared 
toward domain-specific optimizations, allowing different levels of abstraction to co-exist 
during program translation. 
Adopting MLIR enables to build reusable and extensible compiler infrastructures for specific 
application domains. Overall, this approach can address software fragmentation by 
connecting multiple software tools together, significantly reducing the cost of building 
domain-specific compilers. 
In this project, a standard MLIR-based workflow will be extended to introduce new dialects 
for domain-specific HPC applications (e.g., sparse linear algebra [59], training and 
deployment of deep neural networks [60]) with the aim to target heterogeneous 
architectures such as the RISC-V accelerators proposed by Flagship 2. The project activities 
will deliver a prototype consisting of an MLIR-based tool supporting a RISC-V core with 
instruction set architecture (ISA) extensions designed to improve the performance of the HPC 
workloads mentioned above. The proposed tool will perform a progressive lowering of the 



 

 

high-level abstractions down to the target architecture, with the aim of exploiting the ISA 
extensions without modifying the original code. 

  



 

 

3 State of the Art of the tools for the Hybrid Cloud-HPC architecture 
 
While the previous Section introduced the HPC tools developed by each partner, this Section provides an 
overview of the advancements made by each tool, highlighting their unique features and contributions to 
the field of high-performance computing, positioning each tool with respect to its current state of the art. 
This will pave the way for the GAP analysis presented in the next Section. 
 

3.1 Application layer 
  

3.1.1 BDMaaS+ 
The management of complex IT services installed on federated and hybrid cloud 
environments is important to distribute the workload of such services on the underlying IT 
architecture. Hybrid Cloud-HPC refers to computing scenarios with a mix of public and private 
heterogeneous computing resources usually deployed in distant locations. The Hybrid Cloud-
HPC can bring many benefits to service providers that want to optimize their IT architecture, 
by moving some components to different Cloud data centers to gain access to more powerful 
resources or to reduce the operational costs for service provisioning. However, the high 
sophistication of modern IT services and the complexity of Hybrid Cloud- HPC environments 
make it extremely difficult, at the business level, to evaluate the impact of changes to an IT 
service architecture before deploying them. The performance assessment of possible 
alternative deployments calls for service management tools that provide what-if scenario 
analysis functions capable of exploring multiple IT service configurations, evaluating their 
performance through a comprehensive business-level behavioral analysis, with the purpose 
of identifying the most convenient one. 
3.1.2 WorldDynamics 
 
In the early 1970s, Jay Forrester, a notable and pioneer researcher in several fields, designed 
the first system dynamics model intended to analyze the complex interactions between high-
level subsystems of the world, to understand the evolution of a major variable in each 
subsystem (in particular, the population, the capital investment, the natural resources, the 
fraction of capital devoted to agriculture, and the pollution level variables). His model, called 
World2, was published in the 1971 book "World Dynamics" [61] and subsequently evolved 
into the World3 model, described in the well-known 1972 book "The Limits to Growth" by 
Meadows et al. [10]. Since then, several similar models were developed, such as the quite 
popular DICE model from the Nobel Prize laureate William Nordhaus, and categorized as 
Integrated Assessment Models (IAMs), which can be roughly divided into two general classes: 
policy optimization and policy evaluation models. DICE is a policy optimization model in 
which, intuitively, a set of parameters (that is, a policy) which maximizes a specific objective 
variable (or function) are chosen. On the other hand, the WorldX models (which recently 
evolved in the Earth4All model [62]) can be considered as policy evaluation models, in which 
a policy is decided (that is, a set of parameter values) and the behaviour of some major 
variables (or functions) is analyzed. Benefiting from Julia's ecosystem for scientific computing 
and referring to this classification, WorldDynamics.jl [9]  (which has already been applied to 
the reproduction of several historical models) will be mostly developed to support the 
construction of policy evaluation IAMs. 
 

  



 

 

3.1.3 Real Time Simulator for Digital Twin and Hardware-In-Loop in the Electrical 
Power Networks Scenario 
The normal and correct operation of the power network is achievable and can be maintained 
only with proper monitoring infrastructure. The kind of infrastructure is related to: (i) the 
economic availability of the system operator (SO); (ii) the portion of the considered network; 
(iii) the quantities to be measured and the desired target accuracy. Target uncertainty must 
be fixed during the design and development stage of a DMS thus allowing to define the 
minimum requirements that the monitoring devices must have. This is a critical choice 
because the final cost of the single measurement unit will significantly differ (even several 
orders of magnitude) depending on it. In recent years, the above studies have been 
supported by new tools for network monitoring: real-time simulators (RTS). Such tools allow 
SOs and researchers to simulate and run portions or complete networks with the aim of 
better understanding them and predicting their behavior. To work properly and to avoid 
incoherent and wrong results, RTSs need models for the assets and elements of the grid, 
which consider nominal and off-nominal operations, and accurate as well as realistic 
generation and load profiles. RTS systems enable different types of simulations, and the most 
promising techniques are hardware-in-the-loop (HIL) and the digital twin (DT). The former 
technique consists of exploiting the analog/digital input/outputs of the RTS to include real 
devices inside the simulation. This way, the information from the physical world can be 
included in the virtual environment. As for the DT, instead, it enhances the previous concept, 
upgrading it to the level at which the information obtained in the virtual world is used to 
improve the physical one, and vice versa. This means that there is a real-time interaction and 
mutual information exchange between the virtual and physical worlds. It is of paramount 
importance noting that RTS systems must also be characterized and reliable enough 
according to the target uncertainty. On the contrary, the risk is to include in the 
measurement system or in the DT environment an element in which characteristics are far 
worse than those of the other devices. 
3.1.4 Interactive Computing Service 

 
The common approach to access HPC resources is via the job batch scheduler, even if 
different ones can be put in place to allow more user-friendly and interactive actions. The 
focus is on the deployment of a framework, named “InterActive Computing” (IAC), which is 
accessible via a web browser interface, and allows interactive sessions on an HPC cluster. It 
is based on the “Gaia” [63] platform developed by “E4 Computer Engineering” company, and 
it is aimed to provide near-instantaneous access to HPC computational resources. The 
implementation is realized as an ad hoc software stack relying on Jupyterlab [64] as the main 
component. Additional custom features with respect to the standard Jupyterlab 
implementation are put in place in order to improve the workflow management approach 
for a more user-friendly experience. The IAC framework represents a very flexible solution 
for a wide range of scientific areas which demands a responsive resource allocation, a non-
static workflow and/or an on-the-fly data visualization tool. Even if the IAC approach is 
natively suitable for Artificial Intelligence, machine learning and deep learning applications, 
it can be extended to a broad spectrum of HPC fields such as Data Analysis, Quantum 
Computing emulations, and many more, since several tools suitable for such fields are 
already distributed in a form that can be easily integrated within such IAC framework. The 
platform can also act as development infrastructure for some of the use cases proposed and 
developed in the context of the National Center for HPC, Big Data and Quantum Computing, 
resulting in a clear opportunity to have a multidisciplinary cooperation.  

 
3.1.5 Jupyter Workflow 

 



 

 

Scientific workflows and HPC communities are converging on the same objectives to provide 
effective workflow management in a combined HPC and distributed environment [65]. 
Jupyter is an ideal tool for both communities. Given their widespread diffusion, Jupyter 
Notebooks [66] have already been investigated to bridge the gap between non-IT 
practitioners and HPC infrastructures to make interactive workflows mainstream in HPC 
centers. As an example, the National Energy Research Scientific Computing Center (NERSC) 
adopts Jupyter as an interface to the CORI supercomputer [67], and the PANGEO platform 
component for HPC is based on the integration between Jupyter and Dask [68]. The reason 
for their success is their capability to support step-by-step execution and interactive tuning 
of software pipelines, boosting the productivity of scientists. A second reason is their 
portability, which is a prerequisite for reproducibility. However, the lack of support for 
complex workflows and the challenging integration with hybrid Cloud-HPC architectures 
undoubtedly hampered their adoption in production workloads. 
 
3.1.6 StreamFlow 
 
When considering data-intensive scientific workflows, all data management aspects become 
crucial. For example, in situ data processing strategies can prevent all the overheads related 
to data transfers and even optimize disk I/O when either in-memory processing or burst 
buffers are available. Conversely, distributed executions become mandatory when dealing 
with federated data access or strict privacy policies. Therefore, a modern Workflow 
Management System (WMS) should be capable of orchestrating hybrid workflows, i.e., 
coordinating tasks running on different execution environments [69]. Many grid-native 
WMSs (e.g., Askalon [70], Pegasus [71], Taverna [72], Triana [73], and Galaxy [74]) support 
distributed workflows. However, each WMS adopts its technological stack for the 
communication layer, often relying on low-level external libraries that must be installed and 
pre-configured on each node involved in the workflow execution (e.g., GAP [75], GLARE [76], 
HTCondor [77]). A modern WMS should also automatically orchestrate the execution 
environment’s life cycle, providing support for complex container-based deployments to 
guarantee portability and reproducibility and potentially scaling the available resources 
according to the workflow needs. Along this line, WMSs and orchestration technologies can 
benefit from each other. For example, several workflow frameworks have been built natively 
on top of Kubernetes (e.g., Pachyderm [78], Argo (https://argoproj.github.io/)), and the 
learning cloud vendors are currently focusing on offering hybrid solutions to combine multi-
cloud and on-premises infrastructures (e.g., GoogleCloudComposer 
(https://cloud.google.com/composer/), based on Apache Airflow (https://airflow.apache.org/)). 
Despite offering great flexibility in interacting with Kubernetes resources, these products are 
tightly coupled with such technology and do not allow task offloading on different 
environments, such as HPC sites. 
 
3.1.7 Parallel Multi-density Clustering 
 
In the field of urban data analysis, the detection of city (or urban) hotspots is becoming a 
more and more popular task. Given the availability of geo-referenced data, urban hotspots 
can be considered as dense regions in spatial data, serving as a valuable organization 
technique for framing detailed knowledge of a metropolitan area. They provide high-level 
summaries for spatial datasets, which are valuable knowledge to support planner, scientist, 
and policymaker’s decisions. Among several spatial analysis approaches, classic density-
based clustering algorithms have been shown to be very suitable to detect urban hotspots in 
a city [79]. In particular, urban hotspots are detected in the form of density-based regions, 
i.e., areas in which urban events (i.e., pollution peaks, viral infections, traffic spikes, crimes) 
occur with a higher density than in the remainder of the dataset. Such algorithms also satisfy 



 

 

several properties that are usually required for spatial clustering algorithms. However, due 
to the adoption of global parameters, they fail to identify multi-density hotspots (i.e., 
characterized by varied densities), unless the clusters (or hotspots) are clearly separated by 
sparse regions. This is a crucial issue when analyzing urban data, because the density of 
population, traffic, or events in cities can vary widely from one area to another area. In 
particular, metropolitan cities are extremely dissimilar urban regions in terms of density. For 
such a reason, multi-density clustering approaches show higher effectiveness to discover city 
hotspots. Moreover, the growing volumes of data collected in urban environments require 
high-performance computing solutions, to guarantee efficient, scalable and elastic task 
executions. 
 
3.1.8 aMLLibrary 

 
Machine Learning (ML) has been widely applied to predict the performance of several kinds 
of Information and Communications Technology (ICT) systems. A first example is video 
streaming network platforms, which attempt to infer the actual quality of service starting 
from measurements of some Quality of Delivery (QoD) metrics [80]. Other domains in which 
ML models are commonly leveraged for performance prediction include cloud systems, 
Artificial Intelligence (AI) models, communicating networks, and Functions as a Service (FaaS) 
systems. For instance, [81] examines the performance of several ML models in carrying out 
predictions of execution times of Apache Spark jobs with different types of workloads. Their 
results outperform models used by Spark creators. [82] proposes a ML-based prediction 
platform for Spark SQL queries and ML applications, which exploits features related to each 
stage of the Spark application, as well as previous knowledge of the application profile. [83] 
employs several ML models alongside anomaly detection to properly configure a cloud-based 
Internet of Things (IoT) device manager while respecting Quality of Service (QoS) constraints. 
[84] explores performance prediction of training times of GPU-deployed neural networks 
starting from software-hardware specifications, by using ML techniques and feature 
selection methods. Similarly, [85]  compares some popular ML techniques applied to a 
workload prediction analysis on HTTP servers, showing that these techniques all achieve 
good predicting capabilities. The underlying algorithm exploits the predicting capabilities of 
ML models by integrating them with Bayesian Optimization (BO) methods. The Schedulix 
framework [86] uses linear regression to estimate execution latencies of serverless 
applications in a public cloud FaaS setting. Finally, [87] proposes the PrePass-Flow technique 
for the context of hybrid Software-Defined Networking (DSN) architectures, where failure of 
legacy network nodes is communicated with a delay. In particular, their framework uses ML 
models such as logistic regression and Support Vector Machine (SVM) to predict such failures 
before their occurrence. 

 
3.2 Static optimization and transformation layer  

 
3.2.1 Sieve, Process, and Forward (SPF) 
 
Service and resource management across the Compute Continuum is a compelling task that 
requires novel methodologies and tools capable of orchestrating the processing of the deluge 
of data generated by IoT sensors by exploring adaptive and lossy methodologies. In this 
regard, information-centric concepts can provide substantial advantages in defining service 
composition and orchestration. Specifically, the definition of information-centric and 
composable services, which could be dynamically migrated, e.g., from fog to the cloud in case 
more processing power is required, could well suit the task. Composable services allow the 
definition of fine-grained service components that can be arranged together based on the 



 

 

kind of information they consume and produce. This is different from solutions such as Web 
Services Description Language (WSDL) and Business Process Execution Language (BPEL) 
which instead consider the service API and location. 

 
3.2.2 ParSoDA: Parallel Library for Big Data Analysis 
 
Big data analysis aims at extracting useful knowledge from very large amounts of data 
gathered from different, and often heterogeneous, sources. In most cases, the amount of 
data to be analyzed is so big that high-performance computers, such as many and multi-core 
systems, Clouds, and multi-clusters, paired with parallel and distributed algorithms, are used 
by data analysts to reduce response time to a reasonable value. Several developers and 
researchers are working on the design and implementation of tools and algorithms for 
extracting useful information from big data. In such cases, the use of parallel and distributed 
data analysis techniques, frameworks and programming models (e.g., MapReduce) is 
essential to cope with the size and complexity of data to analyze. However, it is hard for many 
users to use such solutions for tackling big data issues, mainly due to the programming skills 
needed for implementing the appropriate data analysis methods on top of complex 
distributed systems and runtimes. Several research projects consider not only the data 
analysis task, but also procedures including other data processing tasks needed for building 
data analysis applications. In particular, these projects aim at helping scientists to implement 
all the steps that compose data mining applications without the need to implement common 
operations from scratch. Some existing work focused on designing and optimizing data 
preparation [88], data extraction and analysis [89] [90], data analytics [91], but most of them 
do not support Clouds and/or multiple distributed runtimes at the same time.   
Differently from such systems, ParSoDA [24] was specifically designed to implement parallel 
scalable data analysis applications, mainly focusing on data gathered from social media. To 
this end, it provides scalability mechanisms based on two of the most popular parallel 
processing frameworks (Hadoop and Spark), which are fundamental to provide efficient and 
scalable services as the amount of data to be managed grows. 

 
3.2.3 BLEST-ML (BLocksize ESTimation via Machine Learning) 
 
Data partitioning refers to splitting a dataset into small and fixed-size units, called blocks or 
chunks, to enable efficient data-parallel processing and storing in distributed-memory-based 
systems. Several issues related to data partitioning must be addressed to reduce execution 
times and ensure the good scalability of applications. For example, when a dataset is mapped 
on a set of nodes of a parallel/distributed computing system, two very critical problems are 
highlighted: (i) the choice of the destination node for a given block (i.e., the node where that 
block will be stored); and (ii) the selection of an appropriate block size. The first problem has 
been widely addressed through the proposal of several scheduling algorithms aimed at 
minimizing the movement of data at run-time. The second problem instead, less studied in 
the literature, requires taking a decision before the application is running as it strongly 
depends on the features of the input dataset, the algorithm, and the execution environment.  
The block size can heavily affect the trade-off between single-node efficiency and parallelism 
in data-intensive applications. Specifically, a larger size reduces parallelism (fewer blocks) but 
makes tasks larger. Although this can lead to an overhead reduction, it must be ensured that 
the block size does not exceed the memory available on the individual nodes, to avoid 
memory saturation. On the other hand, a smaller size leads to finer exploitation of 
parallelism, while introducing a larger overhead due to communication, synchronization, and 
task management, which can negatively impact performance. Typically, block size estimation 
is not an easy task for programmers. In fact, they usually proceed by following a trial-and-
error approach, only supported by simple heuristics and domain knowledge. As a result, this 



 

 

tuning process is often time-consuming and resource-intensive, especially when large 
datasets and complex hardware infrastructures are used. 
To address this issue, BLEST-ML (BLocksize ESTimation via Machine Learning) [27] is 
proposed. BLEST-ML is a novel methodology that leverages a machine learning-based 
approach to determine a suitable estimate of data block size for hybrid partitioning, thus 
optimizing the execution of data-parallel applications on large scale high-performance 
infrastructures, by requiring minimal resources and domain knowledge. 

 
3.2.4 Compression of peta-scale collections of textual and source-code files 
 
Compressing large collections of files is a very well-known problem that was addressed in the 
past with various techniques, most of them spurring from a different but related problem, 
known as near-duplicate document detection. This arises mainly in the context of Web 
crawling, because duplicate and near-duplicate web pages induce significant drawbacks in 
the performance of Web search engines given their impact on index-space usage and on 
possibly returning repeated results. Thus, with the explosive increase in the size of the Web, 
search-engine designers started already in the '90s to investigate strategies for detecting 
these (near) duplicate pages. It was soon clear that a naive algorithm comparing all pairs to 
documents was prohibitively expensive, so Manber [92] and Heintze [93] were among the 
first to propose algorithms for detecting near-duplicate documents with a reduced number 
of comparisons based on the concept of “fingerprinting”. After these results, the literature 
flourished on theoretically grounded approaches to fingerprinting methods, with two 
pioneering and ground-breaking results by Broder et alii [94] and Charikar [95].  
Broder proposed to estimate the similarity of two documents by properly comparing a subset 
of the fingerprints computed from every sub-sequence of adjacent tokens, called “shingles”, 
within the input documents. The obtained subset was called MinHash of the document. 
Charikhar proposed another approach, nowadays called SimHash, that estimates the 
similarity of two documents by randomly projecting each token of a document into a binary 
array, and adding the projections of all its tokens. Comparing these two fingerprinting 
approaches it can be noticed that SimHash has been designed to take into account only the 
frequency of tokens; conversely, MinHash has been designed to consider the tokens order 
(via shingling) but not their frequency. Nevertheless, both of them can be adapted to offer 
all these features. For both algorithms, there can be false positives (non-near-duplicate 
document pairs returned as near-duplicates) as well as false negatives (near-duplicate 
document pairs not returned as near-duplicates). A number of papers (see e.g., [96], [97], 
[98]) have compared these two fingerprinting methods over collections of several billions of 
Web pages and declared SimHash as a robust practical approach. The literature offers other 
approaches to compute the set of fingerprints, the most notable one is Winnowing [99], 
which were proved to achieve better mathematical guarantees than SimHash. 
Coming back to the problem of compressing large collections of HTML-files, the A3lab of 
UNIPI has a long-time expertise in designing data compressors, with tens of papers 
concerning this topic and the related one of compressed indexes. In [28]  they addressed the 
problem at hand via the so-called PPC paradigm: Permuting + Partition + Compress, whose 
main algorithmic idea is to first permute the files in order to bring close to each other the 
most “similar” ones; then partition them into blocks (of a proper size); and eventually 
compress each block with a suitable compressor (whose compression window is at least 
larger than the block size).   
 
3.2.5 MALAGA, MultidimensionAL Big DAta Analytics over Massive Graph DAta 
 
Massive graph data arise in a plethora of big data application settings, ranging from 
bioinformatics to smart cities, from social network analysis to intelligent transportation 



 

 

systems, and so forth. In this so-delineated scenario, supporting big data analytics over 
massive graph data is an emerging research challenge in the big data research context, with 
also surprising presence of inspiring platforms and technologies coming from the industry. 
Looking at active literature, there exist several research proposals that focus the attention 
on the issue of supporting big data analytics over massive graph data (e.g., [100], [101]). For 
instance, [102] proposes GraphH, a system to support high-performance big graph analytics 
in small clusters. [103]  studies the problem of capturing and querying provenance from high-
performance graph data processing systems and proposes a batch-processing tool called 
Ariadne. [104] introduces I-HASTREAM, a density-based hierarchical clustering algorithm 
over time-variant big data streams for big graph analytics purposes.  
Multidimensional big data analytics ( [105], [106], [107]) positions itself as a state-of-the-art 
big data analytics paradigm where the main innovation consists in embedding fortunate 
multidimensional metaphors [108] into the target big data analytics process. Basically, this 
paradigm pursues the idea of modelling both the target big dataset and the big data process 
itself in terms of dimensions (of analysis) and measures (of interest), according to the 
underlying big data analytics goals. This contributes to magnify the expressive power and to 
achieve a relevant gain into the discovery of actionable-knowledge insights. 
 
3.2.6 FastFlow/WindFlow: high-level and efficient streaming 
 
Parallel programming in the whole HPC continuum scenario still relies on low-level 
programming frameworks and a massive number of machine-dependent optimizations. In 
most scientific workflows running on supercomputers, the de facto standard parallel 
programming model is MPI used with OpenMP or CUDA to accelerate local-node kernels. 
Such a mix of low-level and quite different programming models still makes parallel 
programming a niche for expert programmers.    
In the field of Big Data Analytics, Data Stream Processing has played an essential role as an 
enabling computing paradigm to process unbounded data streams. The first systems of this 
kind were Data Stream Management Systems (DSMSs) [109] proposed as extensions of 
traditional DBMSs, where streams were considered as special classes of relations and 
applications were developed as queries expressed through SQL-like formalisms. More 
recently, DSMSs have evolved into scale-out general Stream Processing Engines (e.g., Apache 
Storm, Flink, Spark Streaming, Samza, S4), which provide higher-level programming 
interfaces and fault-tolerant runtime systems to distribute streaming applications on Cloud 
infrastructures.  
As the boundaries between HPC and Big Data Analytics continue to blur, data streaming 
capabilities will represent the key features of any parallel programming model.   
 
3.2.7 Clustering Algorithm 
 
Clustering algorithms are efficient tools for discovering correlations or affinities within large 
datasets and are the basis of several Artificial Intelligence processes based on data generated 
by sensor networks. Recently, such algorithms have found an active application area closely 
correlated to the Edge Computing paradigm. The final aim is to transfer intelligence and 
decision-making ability near the edge of the sensor networks, thus avoiding the stringent 
requests for low-latency and large-bandwidth networks typical of the Cloud Computing 
model. The present tool is based on a new hybrid version of a clustering algorithm for the 
NVIDIA Jetson Nano board by integrating two different parallel strategies. The algorithm is 
aimed to improve the relationship between performance and energy consumption. First 
results confirm the possibility of creating intelligent sensor networks where decisions are 
taken at the data collection points [33]. 

 



 

 

3.2.8 High performance and Low Power Hyperspectral Image Analysis 
   

Hyperspectral Imaging is a powerful technique allowing the acquisition of detailed spectral 
information of a scene. It collects data across a wide range of wavelengths in the 
electromagnetic spectrum. This data creates a "spectral signature" for each pixel in an image, 
used to identify and classify different materials and substances within the scene. One of the 
significant advantages of Hyperspectral Imaging is its ability to detect and identify invisible 
materials to the human eye or traditional imaging systems. This characteristic makes it an 
ideal tool for various applications, including mineral and oil exploration, environmental 
monitoring, and military surveillance. However, Hyperspectral Imaging can be 
computationally costly, as it involves collecting and processing large amounts of data across 
a wide range of wavelengths. This operation often requires high-performance computing 
resources, such as large amounts of memory, high-speed storage, and parallel processing 
capabilities. Furthermore, it should be considered that the issue of energy consumption in 
computing infrastructures has become increasingly stringent. This is true both for large data 
centers as well as for low-power devices characteristic of the edge computing model. The 
achievement of a compromise between high performance and low power consumption is 
therefore of fundamental importance for the entire HPC community [110]. 
 
3.2.9 DivExplorer: Analyzing Machine Learning Model Behavior via Pattern 
Divergence 
 
Machine learning models and automated decision-making procedures are becoming more 
and more pervasive. The evaluation of their behavior generally focuses on overall 
performance, estimated over all the data. However, the overall estimation provides no 
indication if differences in the model behavior exist across subsets of data.  
Models may perform differently on different data subgroups. The identification of these 
critical data subgroups plays an important role in many applications, for example, model 
validation and testing, model comparison, error analysis, or evaluation of model fairness. 
Typically, domain expert help is required to identify relevant (or sensitive) subgroups.  
Several existing approaches that explore differences in subgroup performance [111], [112] 
require users to specify the attributes or attribute values of interest. This requires human 
expertise and hinders the identification of unexpected and previously unknown critical 
subgroups. Only recently, automatic subgroup detection techniques have been proposed to 
automatically identify subgroups with peculiar behavior. Works as [113] adopt clustering 
techniques. However, the identified clusters are not directly interpretable, limiting the 
actionable understanding. Approaches as [114], [115] leverage instead the notion of pattern 
as a conjunction of attribute-value pairs to slice the dataset. This allows a direct 
understanding of the conditions associated with a peculiar behavior. However, existing 
solutions adopt heuristics to prune the search [114] or are optimized only to derive 
subgroups with lower performance than the average, not allowing for a complete 
understanding of the model behavior. 

  



 

 

3.3 Orchestration layer 
 

3.3.1 BookedSlurm 
 
Accessing HPC resources in a shared environment is usually done through a job scheduler. 
Jobs are submitted to a queue and scheduled when the requested resources are available, 
considering a more comprehensive range of parameters such as job priority, age and size, 
and the possibility of backfilling without impacting the general FIFO queue. The Simple Linux 
Utility for Resource Management (Slurm) [116] is a job scheduler which allows users to 
allocate resources for a defined time, providing a framework to start and monitor jobs and 
maintaining a queue of pending jobs to be scheduled. Slurm can also collect accounting 
information for the scheduled jobs, keeping a history of used resources and execution time. 
Every trackable resource can be suitably weighted for custom needs. After each job 
execution, a related “billing” value is calculated by adding up the weighted uses previously 
defined, giving an estimated total cost of the job, which has no direct use or implications 
apart from accounting and statistics. 
 
3.3.2 Orchestration of composite containerized applications in the Cloud continuum  
 
Cloud resource orchestration denotes various processes and services to select, describe, 
configure, deploy, monitor and control cloud resources across different cloud solutions in an 
automated way. The overall goal of cloud orchestration is to guarantee successful hosting 
and seamless delivery of applications by meeting the Quality of Service (QoS) goals of both 
cloud application owners and cloud resource providers. Many cloud industry players have 
developed cloud management platforms to automate the provisioning of cloud services (e.g. 
Amazon CloudFormation (https://aws.amazon.com/cloudformation/), Flexera Cloud 
Management Platform (https://www.flexera.com/products/agility/cloud-management-
platform.html), RedHat CloudForms (https://access.redhat.com/products/red-hat-
cloudforms), IBM Cloud Orchestrator (https://www.ibm.com/us-
en/marketplace/deployment-automation)). The most advanced platforms also offer life-
cycle management of cloud applications. These commercial products are neither open to the 
community nor portable across third-party providers. Cloud applications natively designed 
and built to run on a Cloud platform are basically locked in that platform, i.e., the effort to 
port the application to a different cloud platform is often not worthwhile. Simply put, by 
cloud application portability it is usually meant the capability of a cloud application to be 
easily and seamlessly ported across different and heterogeneous cloud platforms. In order 
for a cloud application to be classified as portable, the operations related to the management 
of its life cycle (which range from the very first deployment to the final disposal) should not 
depend on the specific cloud platform(s) that may be supporting it. TOSCA [7] is a standard 
designed by OASIS to enable the portability of cloud applications and the related IT services 
in a way that is vendor-agnostic. In the TOSCA specification, the structure of a cloud 
application is described as a service template, which is composed of a topology template and 
the types needed to build such a template. TOSCA defines a few normative workflows 
(deploy, undeploy, configure, start, scaling, and auto-healing) to operate a topology and 
specifies how they are declaratively generated. In the literature, as well as in the commercial 
setting, quite a number of proposals have appeared that have embraced the TOSCA 
specification to offer platforms supporting the design, deployment and management of 
portable cloud applications.  
Cloudify [117] is a TOSCA-compliant open-source orchestration framework that provides 
services to model applications and automate their entire life-cycle through a set of built-in 
workflows. In Cloudify, cloud application templates are referred to as blueprints, which are 
YAML documents written in Cloudify’s Domain Specific Language (DSL). Despite being aligned 



 

 

with the modeling standard, Cloudify’s DSL does not directly reference the TOSCA standard 
types. MiCADO (Microservices-based Cloud Application-level Dynamic Orchestrator) [118] is 
an open-source multi-cloud orchestration and auto-scaling framework for Docker containers, 
orchestrated by Kubernetes (or alternatively by Docker Swarm). MiCADO supports multi-
cloud and cross-cloud deployments on various public and private cloud infrastructures. It 
provides interoperability and portability by means of a TOSCA-based Application Description 
Template (ADT). INDIGO-DataCloud (INtegrating Distributed data Infrastructures for Global 
ExplOitation) [119] is an open-source data and computing platform targeted at scientific 
communities, and provisioned over Cloud and Grid-based infrastructures as well as over HTC 
and HPC clusters. INDIGO provides automatic distribution of applications and/or services 
over a hybrid and heterogeneous set of IaaS infrastructure. It supports multi-cloud and cross-
cloud deployments, as well as interoperability by leveraging open standards (OCCI, CDMI). It 
also promotes portability by adopting an extension of TOSCA for describing applications and 
services. 
 
3.3.3 Liqo 
 
Despite the emergence of common interfaces for applications orchestration being key 
towards a real edge to cloud continuum [120], [121], industry-standard approaches handle 
each infrastructure as a multitude of (connected) isolated silos instead of a unique virtual 
space. This leads to a sub-optimal fragmented view of the overall available resources, 
preventing the seamless deployment of fully distributed applications. Indeed, edge data 
centers cannot depend on a single centralized control plane, for resiliency (i.e., preventing 
failure propagation in case of network partitioning) and performance reasons, as 
orchestration platforms typically suffer if nodes are geographically spread over high-latency 
WANs [122], [123], [124]. Besides the edge landscape, resource fragmentation also affects 
larger data centers, with many companies increasingly witnessing the cluster sprawl 
phenomenon [125], [126]. This trend finds its roots in scalability concerns, in the hybrid-cloud 
(i.e., the combination of on premise and public cloud) and multi-cloud approaches [127], 
which aim for high availability, geographical distribution and cost-effectiveness, while 
granting access to the breadth of capabilities offered by competing cloud providers. 
Additionally, non-technical requirements such as law regulations, mergers and acquisitions, 
physical isolation policies and separation of concerns contribute to the proliferation of 
clusters. Fragmentation also hinders the potential dynamism in the workload placement 
[128], [129], [130], forcing each application to be assigned upfront to a specific infrastructure. 
No resource compensation is ever possible, hence preventing jobs from transparently 
moving from an overloaded cluster, e.g., due to unexpected spikes of requests, to another 
one, underused and potentially offering better performance. At the same time, the 
deployment of complex applications composed of multiple microservices, each one with 
specific requirements (e.g., low latency, high computational power, access to specialized 
hardware), as well as the enforcement of proper geographical distribution and high-
availability policies, requires the interaction with different infrastructures. However, this 
prevents relying on the single point of control abstraction, which would allow the 
deployment of arbitrarily complex applications across the entire resource continuum, no 
matter how many nodes and clusters it is composed of. 

 
3.3.4 Energy efficient orchestration and resource management in the cloud 
continuum  

 
Virtual machine (VM) orchestration and platform resource management in cloud systems is 
a well-investigated subject, as it is a crucial task to ensure the quality of service (QoS) 
required by the services and applications running on the VMs on cloud platforms.  



 

 

The placement of VMs can be compared to a multi-dimensional variable-sized bin-packing 
problem, in which the CPU, memory, disk, and network bandwidth of the host are part of the 
constraints including the requirements of the VMs. As demonstrated in the literature, the 
problem is NP-hard, consequently, a wide range of near-optimal solutions have been 
proposed.  
Among the objectives of the proposed solutions, recent energy-efficient approaches have 
been introduced to reduce the energy footprint of cloud infrastructures, still orchestrating 
VMs and allocating resources to enforce application QoS requirements. 

 
3.3.5 Serverledge: QoS-Aware Function-as-a-Service in the Edge-Cloud Continuum  

 
Existing open-source FaaS frameworks (e.g., OpenFaaS and OpenWhisk) are not well suited 
for Edge environments for a number of reasons: they use centralized schedulers or gateway 
components, which introduce latency in geo-distributed settings; they rely on memory-
demanding function sandboxes, usually based on software containers; and they support only 
overly simple and best-effort scheduling policies, which do not account for the complexity of 
Edge infrastructures. Therefore, researchers started investigating solutions to better support 
FaaS at the Edge and novel frameworks have been recently presented that better suit Edge 
environments. They often exploit lightweight function sandboxing mechanisms instead of 
OS-level virtualization (e.g., Faasm [50] and Sledge [51]). However, these solutions either 
work within single Edge nodes or scale over multiple nodes without considering geographical 
distribution.  
Serverledge is a decentralized FaaS platform designed from scratch for Edge-Cloud 
computing environments. Its architecture consists of one or more nodes that can be 
deployed in Cloud data centers and/or at the edge of the network and spread across multiple 
zones, and a global registry. The core idea underpinning the design of Serverledge is that 
there are no single or privileged entry points for function invocation. Indeed, users can send 
invocation requests to any Serverledge node, thus not requiring reaching a centralized 
gateway, possibly distant, for scheduling.  
Because of the limited resource capacity of Edge nodes, it is likely that a single node or 
multiple nodes located in the same zone cannot sustain the incoming load. Therefore, 
Serverledge supports vertical (i.e., from Edge to Cloud) and horizontal (i.e., among Edge 
nodes) computation offloading. 
Serverledge also supports the definition of QoS-aware scheduling and offloading policies that 
take into account user-specified QoS requirements (e.g., maximum response time) for the 
function invocation request. 

 
 

3.4 Runtime management layer  
 
3.4.1 MoveQUIC: a QUIC-based toolbox for the live migration of microservices at the 
network edge  
 
Edge computing is strongly emerging as an extension of cloud computing towards the 
network edge. With edge computing, microservices can run in a pervasive infrastructure of 
geo-distributed micro data centers that are located close to (or co-located with) access 
networks [131]. Providing edge-hosted microservices has a great potential but, at the same 
time, reveals some issues. First, mobile end users at the edge may roam across different 
network access points. When this occurs, microservices accessed by the user may have to 
migrate among edge servers in different micro data centers to maintain proximity to the 
client. Second, to balance the load during high-load periods or to reduce the number of active 



 

 

hosts during low-load periods, microservices could be moved across edge data centers, thus 
enabling more dynamic power-saving mechanisms [132]. In scenarios such as those 
presented above, several actions may need to be taken to guarantee service continuity. On 
the one hand, the state of the microservice should be maintained across edge servers. On 
the other hand, service communication should be maintained as much as possible 
transparently to the end-user and to the application [133]. 

 
3.4.2 Nethuns: a library for efficient, socket-independent network I/O  

 
Programmability plays a central role in the datacenter network path. Hardware solutions based on P4 
[134] are popular, but traditional commodity servers are still effective, thanks to their flexibility [135], 
[136], [137], [138] [139]. However, the standard networking stack shipped with popular Operating 
Systems such as Linux is unable to attain top class performance, especially when high packet-rates are 
needed. The software approach, therefore, requires the adoption of accelerated network I/O 
frameworks such as DPDK, netmap and AF_XDP. Each one of these frameworks is characterized by its 
own programming model and incompatible API. Programmers must typically target only one of these 
frameworks, hindering portability. 

3.4.3 CAPIO: cross-application programmable I/O  
 

In the exascale era, the gap between the computation speed and the speed of the I/O 
operations is increasing. Much has been done to try to reduce this gap, from building APIs 
that provide collective I/O (MPI I/O) operations to new ad-hoc file systems [140]. Much has 
also been done to reduce the workload of data format expression (e.g., HDF5). Previous 
studies show that these works are not used extensively by the community. Potential reasons 
may be that these tools are not easy to master and that many scientific workflows are 
composed of legacy code that nobody wants to touch. As shown in [141], [142], [143], most 
applications use the POSIX file API to communicate with each other. 
CAPIO aims to reduce the I/O time and reduce the burden on the programmer by providing 
a file system in user space that can boost scientific workflow composed by the application 
that communicates through files without modifying the original code. This file system in user 
space is also programmable, which means that the user can use this tool also to create a new 
scientific workflow using files for communications (UNIX philosophy) and, in a second 
moment, provide the semantics that expresses the type of communication. 
 
3.4.4 INSANE: A Uniform API for QoS-aware Host Networking as a Service 

 
The ability to process and analyze data under stringent time constraints is quickly becoming 
a key requirement of modern data-driven applications, leading to a growing demand for 
systems that can achieve ms-scale latencies while maintaining high levels of reliability, 
scalability, and efficiency [57], [144]. To avoid becoming a bottleneck, widely popular 
systems, ranging from key-value stores to state-machine replication engines, have been 
carefully re-designed to leverage kernel-bypassing I/O techniques and modern hardware that 
implements common operating system services, such as host networking, in more efficient 
way. An even more radical approach to reduce service latencies is emerging under the 
paradigm of edge cloud computing, which combines such acceleration techniques with the 
idea of moving components on small-scale datacenter-like environments physically close to 
datasources, in support of latency-critical services (e.g., Multi-access Edge Computing 
platforms, or MEC, for 5G operators). 
Although kernel-bypassing techniques coupled with modern hardware have proved effective 
to achieve time-sensitive data processing, two critical concerns still prevent their wide-scale 
adoption. On the one hand, existing techniques for datapath acceleration require the use of 
custom and usually low-level interfaces that make application development difficult and 



 

 

time-consuming, requiring advanced system expertise: not only applications must be re-
architected and carefully optimized to fully leverage the performance benefits of 
acceleration technologies [145], but developers must also deal with the continuous release 
of updated device features and the concurrent deployment of different generations of 
hardware [56]. On the other hand, there are several possible techniques for host networking 
accelerations, which offload typical kernel tasks to user space or even hardware: the Linux 
eXpress Data Path (XDP), the Data Plane Development Kit (DPDK), or Remote Direct Memory 
Access (RDMA). Each of these options defines its own programming abstractions, network 
access interface, and memory management: hence, application portability is very hard to 
provide, and accelerated services can be deployed only onto a single and highly 
homogeneous environment, whereas real-world platforms are usually quite the opposite, in 
particular in the so-called cloud continuum [144]. For instance, RDMA is only intermittently 
supported by major public clouds. Even more importantly, the increasingly popular cloud 
edge computing platforms are highly heterogeneous in terms of software and hardware 
resource availability, making such lack of portability even more troubling right where latency-
aware applications are most needed. 

  



 

 

3.5 Hardware layer 
 

3.5.1 MLIR: multi-level intermediate representations for heterogeneous computing 
platform  
 
Modern HPC systems include a wide range of hardware architectures, such as CPUs, GPUs, 
FPGAs, and application-specific accelerators. Nowadays, programming these systems is one 
of the most complex tasks for software engineers, and compilation toolchains play a crucial 
role in providing techniques and methodologies to optimize code and achieve optimal 
workload mapping keeping the level of abstraction as high as possible [146]. 
In the last thirty years, three leading players have dominated the compiler market for HPC 
systems: GNU Project, Intel Corporation, and Portland Group (later acquired by NVdia). The 
compilers provided by Intel (e.g., icc and ifort) are optimized to exploit the features of x86 
microprocessors to their fullest extent, resulting in higher performance compared to other 
alternatives for this target but inappropriate for heterogeneous platforms. In addition, all the 
compilers used in HPC systems provide support for the OpenMP and MPI programming 
models, typically coupled to manage a shared-memory multi-core computing environment 
within each node (OpenMP) and distributed message-based computation (MPI) across 
nodes. 
Most recently, the LLVM compiler [147] infrastructure has been increasingly adopted in the 
HPC domain. LLVM has become an integral part of the software-development ecosystem for 
optimizing compilers, dynamic-language execution engines, source-code analysis and 
transformation tools, debuggers, and linkers. NVIDIA has adopted LLVM for developing its 
CUDA framework; following this trend, many other companies have contributed to LLVM 
development, pushing their work into its open-source codebase. The spread of LLVM has 
fostered the emergence of programming paradigms that enable practices and optimizations 
that are application-domain specific. 
Designed as a state-of-the-art compiler toolchain, LLVM is a modular framework including 
three macro blocks: a front-end, a middle-end, and a back-end. The LLVM front-end (called 
clang) includes a set of software tools that recognize legal programs written in high-level 
programming languages (e.g., C, C++, and Fortran) and produce an intermediate 
representation (IR) for the following stages. IRs are fundamental in modem compilers since 
they convey information through the compilation process, enabling a wide spectrum of 
optimizations. LLVM IR is the intermediate representation adopted in the LLVM middle-end 
to facilitate architecture-agnostic optimization passes. Each middle-end pass transforms a 
program representation into an equivalent one optimized for a target metric (e.g., speed, 
size, or safety), and the design of LLVM IR simplifies this specific goal. Finally, the LLVM back-
end includes a set of architecture-specific optimizations and produces binary code for the 
target machine. Nowadays, LLVM is the reference toolchain for compiler construction in both 
academia and industry. 

  



 

 

4 GAP analysis of the proposed tools compared to HPC 
 
In this Section, a basic GAP analysis for each tool is presented, with the aim to identify in which directions 
they should be improved, in order to foster the adoption of such tools for HPC applications. Overall, the goal 
of this Section is to identify areas of improvement for HPC tools through a GAP analysis. The aim of 
understanding the gaps in the current tools, is at focusing the future activities of the Flagship partners 
towards improving them and ultimately increasing the integration of different HPC tools and their adoption 
for HPC applications. 
 

4.1 Application layer 
 
4.1.1 BDMaaS+ 
Compared to the related efforts that mainly focus on single aspects of IT service optimization 
such as load-balancing-related objectives, Service Level Agreement (SLA) compliance, and 
cost minimization, BDMaaS+ adopts a comprehensive approach that takes into account all 
these different aspects from a business-driven perspective. Specifically, BDMaaS+ leverages 
a comprehensive service cost model that, beyond virtual resource acquisition, also considers 
Service Level Objective (SLO) violations and risk-related aspects. Differently from existing 
efforts that address the IT service problems by proposing mathematical models which 
require huge modeling simplification. BDMaaS+ adopts a simulative approach to reenact IT 
services under different configurations to accurately capture the peculiar behavior of real-
life IT services, and it adopts an innovative optimization solution based on a memetic 
algorithm for enabling robust and resilient exploration of large and complex search space, 
thus realizing an effective what-if scenario analysis tool.  However, BDMaaS+ adopts a pure 
Infrastructure as a Service (IaaS) perspective that mainly focuses on VMs. To take advantage 
of modern orchestration solutions such as Kubernetes, it would be interesting to extend the 
BDMaaS+ model to support state-of-the-art containerized applications. Therefore, BDMaaS+ 
could be used to analyze the impact of container-based HPC applications and to find the best 
placement of computing-intensive workflows in a federation of Kubernetes clusters.  
4.1.2 WorldDynamics 

 
WorldDynamics.jl will allow a designer to focus on a specific subsystem without necessarily 
knowing how another person is developing a different subsystem (interestingly, this seems 
to be how the well-known World3 model was described and, most likely, developed). 
Moreover, this approach will easily allow the substitution of one system of equations 
(representing one subsystem) with another system of equations (still representing the same 
subsystem), if it correctly interacts with the other subsystems (intuitively, respecting the 
required input/output variable interface). 
As an open-source package, WorldDynamics.jl will also try to democratize access to distinct 
models as well as to promote transparency among them. Even if most of the current models 
are freely available for reproduction, they are usually implemented using proprietary 
software, which prevents us from precisely verifying their internal operation and, hence, how 
the models are simulated exactly. By using Julia and its notable packages, WorldDynamics.jl 
will provide a flexible framework that allows the usage of several solvers and integration with 
different methods with a reduced effort. Its current features already include the 
implementation of the entire Club of Rome series of models with the possibility of easily 
replicating all the plots of their major variables that appeared in the literature and changing 
parameter values and systems of equations in order to evaluate different policies. In 
conclusion, WorldDynamics.jl will allow model construction in a simplified way while 
enabling the application of modern scientific computing techniques over new and classical 
models. 



 

 

 
4.1.3 Real Time Simulator for Digital Twin and Hardware-In-Loop in the Electrical 
Power Networks Scenario 
 
The added value of the work consists of the specific analysis of the contribution to the 
uncertainty of the RTS system and, in particular, of its virtual elements, which are typically 
neglected or not depending on when the simulations are performed. Furthermore, the 
characterization procedure for a calibrator, aimed at assessing the performance of the RTS 
and its virtual elements, has been described in detail. 
Moreover, the features of a stand-alone merging unit (SAMU) can be implemented and 
tested in a hardware-in-the-loop (HIL) environment, allowing us to simulate a complete 
digital substation inside the laboratory. What is presented in the following allows us to 
exploit existing technologies of a laboratory environment for the development of new 
equipment with additional functionalities. 
 
4.1.4 Interactive Computing Service 
 
The IAC framework is currently developed with a Hybrid Cloud HPC structure. This approach 
can be generalized to a broader range of architectural design, with any kind of host (e.g., bare 
metal nodes, purely VM-based environment, and so on) behind the scenes. For the purpose 
of CN-HPC the plan is to port such a framework on the Leonardo supercomputer, with further 
enhancements by evaluating the chance of high availability and load balancing services. 
Moreover, both in the backend and frontend side, additional improvements will be 
implemented. On the back-end side, the next step will be to avoid the intermediate 
dedicated Slurm controller, using the production scheduler of the cluster: this will largely 
simplify the design as well as authentication procedures and accounting. On the front-end 
side, the interface can be expanded by adding several features beyond the current status. 
The plan is to add additional tools to the front-end launchers, such as a web-based Virtual 
Network Computing (VNC) interface. Another feature that will be implemented, which 
clearly shows the potential of this kind of implementation, is the possibility to monitor in 
real-time the usage of resources while the computation is running; this is a particularly useful 
feature when GPUs are employed (a common case for AI applications), so that an on-the-fly 
visualization of the GPU occupancy can give a rough picture of possible bottlenecks in the 
workflow. To address the need to access an S3 bucket, some tests will be performed with 
dedicated tools that provide a quick interface to an existing object-storage system. In order 
to put in production the IAC platform, a new host will be configured by applying all the 
needed security measures and by integrating it properly with the already existing HPC 
production environment.  
 
4.1.5 Jupyter Workflow 

 
Jupyter Workflow demonstrates a novel methodology able to unleash Jupyter Notebook's 
superior productivity and portability features in the HPC area, explicitly targeting Cloud 
resources and their workload managers, HPC platforms with their system software, and their 
coupled exploitation usage. In this view, Jupyter Workflow is the first representative of a new 
class of interfaces for modern HPC applications. Jupyter Workflow has been successfully 
tested on several application pipelines from diverse scientific domains (e.g., molecular 
dynamics simulation, deep learning, bioinformatics, geoscience) and running on different 
combinations of Cloud and HPC facilities. However, enriching the expressive power of the 
literate workflow model with new control-flow constructs (e.g., conditional and iterative 
executions) and optimization rules (e.g., efficient reduce-by-key semantics or streaming 



 

 

communications between workflow steps) is a crucial improvement to model and 
orchestrate a broader class of HPC workflows. 
4.1.6 StreamFlow 

 
The heterogeneity and complexity of modern applications force monolithic approaches to 
give way to modular architectures and patterns for designing and developing software, of 
which workflow models are first-class representatives. In the same way, heterogeneity in 
contemporary hardware resources (e.g., highly parallel hardware accelerators, low energy-
consuming FPGAs, or application-specific quantum solvers) fosters modular approaches in 
designing execution environments for such applications. Hybrid workflows represent an 
essential methodological step in this direction. An explicit representation of the entire 
environment generalizes the concepts of portability and reproducibility from the application 
plane to the entire execution process. The separation of concerns brought by hybrid 
workflows promotes cooperation between domain experts, who write the application logic, 
and computer scientists, who find the best execution environment for each workflow step 
according to specific requirements (e.g., in terms of cost, time-to-solution or energy 
consumption). At the same time, both of them are free from the burdens of managing 
applications deployment and life-cycle and writing explicit data transfer logic, enhancing 
productivity. Finally, a loose mapping relation between steps and locations allows for 
automatic cross-stack executions of independent steps, providing a trivial way to offload 
tasks in urgent computing scenarios. Being tied to the CWL standard, StreamFlow’s 
expressive power is not yet ready to easily design all the typical HPC workflows. Indeed, 
execution patterns like iterations, co-scheduling, and even co-location of multiple workflow 
steps are first-class citizens in HPC workflows, but they are not yet supported in CWL. A 
community effort to extend CWL with these workflow constructs is currently ongoing.  
 
4.1.7 Parallel Multi-density Clustering 
 
The CHD algorithm shows encouraging clustering accuracy on state-of-art datasets. However, 
it exhibits some limitations from the computational viewpoint when it is applied to a large 
volume of data. In fact, the neighborhood density computation and the multiple density-
based clustering executions are very high time-consuming steps. Also, during some 
preliminary tests, it has been noticed that its sequential implementation is not feasible to 
analyze significant real-world datasets, whose high complexity and large volumes require 
more scalable solutions. For such a reason, research studies must be focused on the design, 
implementation, and evaluation of a parallel solution of CHD, whose execution on HPC and 
large-scale computing infrastructures could give several benefits in terms of both execution 
time, speed-up and scale-up. 
Currently, a sequential implementation of CHD is available in Python. In order to implement 
a parallel solution of CHD, the computational granularity of each step should be analyzed, 
identify the bottlenecks and re-design the steps whose execution can be parallelized. Finally, 
the experimental evaluation must be performed on a HPC system, to assess the 
computational scalability of the proposed solution.  

 
4.1.8 aMLLibrary 
 
aMLLibrary has several perks which are specifically tailored for the building of performance 
models. It includes plugins for several common data pre-processing techniques, such as data 
normalization and one-hot encoding for discrete features, as well as other convenient tools 
such as row selection and data validity checks. It also supports automatic feature 
engineering, in the form of computation of logarithms, inverse values, and feature 
products/polynomial expansion up to a given degree. These tools can be useful to unearth 



 

 

potentially relevant information hidden in the input features, such as quadratic 
dependencies and interaction terms. Feature selection techniques are also supported, 
including forward Sequential Feature Selection (SFS) [148] and importance weight selection 
by using the XGBoost regression model. 
The main strengths of aMLLibrary with respect to other state-of-the-art libraries are its ease 
of use, customizability, and extensibility. A simple configuration text file is required to launch 
a full experimental campaign for all implemented models. This input file is declarative, 
therefore a collection of ML models can be used without writing a single line of Python code. 
Default probability distributions for hyperparameters are provided, and they are general 
enough to allow the automatic tuning mechanism to find the appropriate parameter values 
without further input by the user, which is most useful for those inexperienced with ML. At 
the same time, the user has full control over the experimental campaign thanks to the many 
options and flags available in the configuration file. Finally, extensibility is a major advantage 
for advanced users who wish to implement new data pre-processing techniques or new 
regression models in the aMLLibrary environment. One can simply write a plugin or a model 
wrapper and add it to the library, while exploiting or building on the existing features already 
available.  
Individual analyses conducted by aMLLibrary can compare in a single run multiple alternative 
ML methods, and parallel processing of the training phase of the models is supported, to 
exploit the potentially large computational power available on the machine to which it is 
deployed. The user can specify the number of parallel cores to be used, and the library 
automatically distributes the training experiments evenly among the parallel workers, even 
if the underlying scikit-learn model is limited to single-thread execution. Furthermore, the 
library implements a fault tolerance mechanism by saving incremental progress checkpoints. 
If the experimental campaign is interrupted, e.g., because of the failure of the server the 
library is running on, it can recover the previous results and resume from there. 

 
4.2 Static optimization and transformation layer  

 
4.2.1 Sieve, Process, and Forward (SPF) 
 
The adoption of purposely designed information and service models based on Value-of-
Information (VoI) methodologies and tools presents significant advantages for the realization 
of self-adaptive and composition-friendly services operating in the Compute Continuum. 
More specifically, the SPF information-centric and value-based service model enables the 
streamlined development and management of services that can be either in edge devices, 
i.e., in the fog, or in the cloud, migrate to different computing platforms, and automatically 
scale their computation and bandwidth requirements according to the current execution 
context. The approaches adopted by SPF to explore interesting trade-offs between 
information processing speed and accuracy, leveraging VoI based prioritization and content-
based filtering, have proved to be very effective and capable of bringing important 
advantages not only for fog services running on edge devices but also for those running in 
the Cloud.  
To better support the deployment of HPC applications, it would be interesting to extend the 
VoI model defined within SPF for considering the peculiarities of these applications. 
Specifically, defining a formal notation to quantify the utility that HPC applications can bring 
to the general public could help SPF to prioritize the execution of computing-intensive HPC 
applications over general-purpose fog services when needed.  

 
4.2.2 ParSoDA: Parallel Library for Big Data Analysis 
 



 

 

ParSoDA was designed to facilitate the development of complex data analysis applications, 
mainly because it provides a set of data collection, filtering, transformation, analysis 
functions and algorithms that are typically used in the context of social and web data analysis. 
However, users are free to extend these functions with their own if they need any custom 
behavior. ParSoDA defines a quite generic scalable and distributed execution flow, which can 
support any type of data analysis application. In addition, it is characterized by a modular and 
extensible structure that can be easily extended to support other application contexts and/or 
execution runtimes. To make ParSoDA more usable in large-scale HPC systems, it could be 
extended to support integration with other runtime systems, including support to more 
scalable distributed storage and/or data structures. 

 
4.2.3 BLEST-ML (BLocksize ESTimation via Machine Learning) 

 
BLEST-ML introduces several contributions in the block size estimation task, with respect to 
the state-of-the-art of static and dynamic techniques for data partitioning and automatic 
tools used in HPC contexts for hyper-parameter tuning. 
With respect to static approaches, which define a priori how data should be partitioned, our 
approach takes into consideration dataset characteristics and algorithm features. In addition, 
it can determine a suitable partitioning before the execution, using a machine learning 
model. In this way, it avoids the overhead introduced by dynamic approaches, which adapt 
data partitioning to the actual workload at runtime by dynamic adjustments. Finally, machine 
learning-based solutions like BLEST-ML can be more accurate and faster than general-
purpose autotuners, which perform a resource-intensive exploration of vast search spaces, 
also adapting at runtime through dynamic profiling. Nonetheless, machine learning-based 
approaches may require a large amount of historical training data in order to generalize well 
to new or unseen inputs and are generally tailored to a specific optimization problem. To 
improve BLEST-ML and to make it more usable in a large-scale HPC context, the plan is to 
extend it to support the choice of other parameters required to configure a distributed 
environment, such as the number of nodes and the RAM to be assigned to each node. In 
addition, the methodology could also be applied to other frameworks and libraries for HPC 
systems other than PyCOMPSs and dislib, as it could be exploited in any case where data 
partitioning is essential to improve application performance and scalability. 

 
4.2.4 Compression of peta-scale collections of textual and source-code files 

 
At the best of our knowledge, no open-source software is available for compressing large 
collections of textual and source-code files. As an example, the Software Heritage archive is 
relying on the compression of individual files by the classic gzip. 
Currently a prototype of the PPC instantiation that hinges on a single-threaded 
implementation is available, and it can manage GBs of data, but it is not able to scale to 
TBs/PTs. 
The aim is at packaging an improved PPC instantiation that can work in a parallel and 
distributed scenario by adopting models, frameworks, and tools for parallel and distributed 
batch processing across clusters. Moreover, the plan is to systematically experiment the 
SimHash, MinHash and Winnowing fingerprints, as well as implement and test other 
permuting and partitioning strategies. 
 
4.2.5 MALAGA, MultidimensionAL Big DAta Analytics over Massive Graph DAta 

MALAGA introduces the proposal of a comprehensive framework for supporting big 
multidimensional data analytics over massive graph data, thus defining a plethora of 
emerging open problems that are related to both the implementation and the optimization 



 

 

of the various big multidimensional data analytics tasks. These open problems can be 
addressed by defining innovative techniques and algorithms that take into consideration the 
well-understood properties of big data, including volume, velocity and variety, which become 
even worse when associated with graph-shaped data sources. These techniques and 
algorithms are the most important progress of the MALAGA framework, which will be 
considered in the PNRR CN-HPC research project. Last but not least, defining and 
implementing suitable case studies showing the capabilities of MALAGA in emerging big 
graph data applications and systems is another goal to be pursued by the project activities. 
On the other hand, MALAGA must be prone to be used in a high-performance computing 
setting, according to the project’s guidelines. In order to achieve this nice amenity, it is 
necessary, for a side, to integrate MALAGA with state-of-the-art platforms for big data 
processing, like Hadoop, and big data management/analytics, like Spark, and, from another 
side, to design and develop specialized (optimized) solutions for big multidimensional data 
representation, management and indexing in distributed environments. 

4.2.6 FastFlow/WindFlow: high-level and efficient streaming 

One of the highest priorities nowadays in the context of software ecosystems is to provide 
programmers with practical and effective parallel programming tools targeting single high-
end servers and many interconnected server platforms with the same level of offered 
performance. Additionally, there exists a need for programmers to use tools designed to 
coordinate and connect heterogeneous parts of an extensive distributed application without 
rewriting parts of the application when migrating from a classical HPC infrastructure to a 
more heterogeneous Cloud/Edge distributed platform. The FastFlow parallel programming 
framework aims to contribute to this research direction. The objective is to provide a run-
time system capable of squeezing the maximum performance of the underlying single-node 
platform and being able to overlap computation and communication to amortize distributed 
communications yet enabling an easy transition from pure shared-memory applications to 
mixed shared- and distributed-memory applications without the need to mix multiple 
programming models. The streaming data-flow paradigm and the Building Blocks concepts 
offered by the FastFlow programming represent a solid feature not always present in other 
well-established frameworks. Additionally, with the evolution of single-node hardware, 
which comprises advanced heterogeneous multicores and accelerators such as GPUs and 
FPGAs, traditional scale-out streaming engines have proven ineffective in exploiting such 
new architectural facilities [149]. The WindFlow library tries to fill this gap by providing a 
scale-in stream processing library capable of offloading streaming computations on hybrid 
hardware while providing a high-level programming approach. 

4.2.7 Clustering Algorithm 
 
Before effectively deploying networks with distributed decision points, a number of crucial 
concerns must be tackled. This includes figuring out strategies for balancing and task 
scheduling, devising real-time data streaming protocols, ensuring the fault tolerance of 
distributed applications, and creating energy-efficient mixed precision algorithms. Further 
investigation and experimentation in actual use cases will be necessary to address these 
challenges and progress forward, drawing on techniques and approaches developed for 
similar high-performance distributed systems [150]. 
 
4.2.8 High performance and Low Power Hyperspectral Image Analysis 
 
Preliminary results with synthetic dataset encourage further investigation of the problem, 
but before we can effectively use the proposed method in real-world situations, it is 
necessary to conduct more research and experiments. For instance, it is necessary to analyze 



 

 

real datasets that are not publicly available, exploit different data types, and utilize more 
efficient libraries for inference. Additionally, it is necessary to further analyze different 
energy modalities in the edge computing devices on other applications. Other important 
topics that need to be addressed are the management of communication networks in an 
autonomous vehicle and how to assess the reliability of the method while ensuring its 
security. 

 
4.2.9 DivExplorer: Analyzing Machine Learning Model Behavior via Pattern 
Divergence 
 
Differently from existing approaches, in this case efficient exploration of all subgroups with 
adequate representation in the dataset is allowed. As a result, the model behavior can be 
fully characterized.  Moreover, DivExplorer allows the understanding of the model behavior 
at the subgroup and global levels. Furthermore, the proposed approach is model agnostic. 
Hence, it treats the classification model as a black box, without knowledge of its internal 
working.  
The current version of DivExplorer has been successfully applied to understand ML model 
behavior on small- and large-scale data. The aim is to enhance it for understanding Big Data 
models. The efficient exploration of DivExplorer is suitable for parallel and distributed 
implementation, allowing its adoption in a Big Data context. 

4.3 Orchestration layer 
 

4.3.1 BookedSlurm 
 

BookedSlurm takes a different approach to the Slurm job scheduler, extending its 
consolidated functionalities of resource management and job queues by allowing users to 
create resource reservations under a pay-per-use model using credits as a currency. The web 
calendar provides a graphic tool to examine the cluster state and to select resources to 
reserve instead of relying only on CLI tools. Jobs billing values get a more profound meaning 
when associated with an actual currency cost, allowing one to differentiate between a job 
submitted in the queue and a job with a predefined reservation being scheduled before 
others in their time slot. 
 
4.3.2 Orchestration of composite containerized applications in the Cloud continuum  
 
Two simple principles guided the design of TORCH. The first principle concerns cloud users 
and their need to easily specify the requirements of the application to be deployed in the 
Cloud. We make the basic assumption that application owners are completely agnostic as to 
how their applications are handled on the Cloud. The second principle regards the application 
of a provisioning strategy that clearly separates the provisioning workflow from the actual 
invocation of cloud services that enforce the provisioning. Despite cloud providers expose 
proprietary APIs, the activities underlying any application provisioning process follow a 
common and API-independent pattern, that basically consists in instantiating the required 
resource(s) on the cloud provider infrastructure, deploying the application components on 
the instantiated resources, making the necessary software configuration, and finally running 
the application. By isolating the provisioning workflow from the actual cloud service 
invocation, several benefits derive in terms of reduced coding effort, enhanced 
maintainability, extensibility and scalability.  
The INDIGO orchestrator offers a uniform interface to orchestrate computing resources and 
composite services in the cloud continuum, i.e., in the continuum of resources provided by 



 

 

Cloud and Edge environments. The tool was also proved to work with GPU-powered 
resources for the purpose of running applications that require intense computation. 
Interaction with HPC-like environments was successfully tested via ad-hoc connectors which 
are far from being intuitive and in a form that can be proposed for a large adoption. In that 
regard, the tool must be enhanced to fully support the orchestration and management of 
HPC clusters. 

 
4.3.3 Liqo 
 
Different from current approaches, his project proposes a novel architectural paradigm: 
liquid computing, which builds upon and extends the well-established cloud and edge 
computing approaches towards an endless computing continuum. Then, we present a first 
real implementation of a software framework enabling a continuum of computational 
resources and ready-to-consume services spanning across multiple physical infrastructures. 
Overall, the resulting computing domain abstracts away the specificity of each cluster, 
presenting to the final users, either actively participating as actors or simply renting off-the-
shelf services, a unique and borderless pool of available resources, the so-called big cluster. 
Thanks to this abstraction, applications are no longer constrained in a specific silo, but free 
to fly in the entire infrastructure, selecting the most appropriate location depending on its 
requirements (e.g., a user facing service may be replicated at the edge to account for low 
latency, while another might be constrained to European infrastructures to comply with 
GDPR), and the available resources, while retaining full compatibility (hence, models, tools, 
and commands) with vanilla Kubernetes. 
 
4.3.4 Energy efficient orchestration and resource management in the cloud 
continuum  
 
The current centralized architecture that characterizes current cloud computing infrastructures 
confines resources into data centers far from users and cyber-physical systems. This architecture 
does not support the development of applications and services that are characterized by stringent 
QoS requirements. Critical applications, e.g., industrial, might require low latency and high 
reliability communication with cyber physical systems or users, which is not feasible when the 
application logic is deployed on datacenters that communicate over long-distance links with 
significant delay and prone to failure. To overcome this limitation a cloud-continuum architecture 
[151] is envisioned as the future development of cloud computing. The cloud continuum includes 
an architecture where computing and storage resources are also installed in the intermediate 
computing layers between the data centers and the edge of the network to support the execution 
of applications and services that can benefit from low latency and reliable communication with 
users and cyber-physical systems. In this context, our proposed approach for orchestration and 
resource management and many of the proposed approaches from the literature are not 
adequate as they are designed specifically for a centralized computing environment installed in a 
single location. A revisitation of the current proposed approach is needed to manage a distributed 
computing infrastructure with heterogeneous computing nodes and network connections, 
considering also energy efficiency. Other resource management solutions have been recently 
proposed in literature, e.g. [152], [153], however, a holistic approach is still missing where 
network and computing resources are managed jointly with also considering energy efficiency 
aspects at large.  
 
4.3.5 Serverledge: QoS-Aware Function-as-a-Service in the Edge-Cloud Continuum 

 



 

 

While Serverledge provides a suitable framework for low-latency FaaS execution in the Edge-
Cloud continuum, several challenges still need to be addressed in order to fully support QoS-
aware execution and scheduling in such a dynamic environment.  
Starting with the support of complex FaaS applications, Serverledge can be extended to 
provide function composition by orchestrating the execution of multiple functions organized 
in an application workflow. The support of complex applications also requires the design of 
strategies and mechanisms to effectively manage not only stateless but also stateful FaaS 
functions. 
While offloading provides a useful mechanism to redirect the function execution to another 
node, migration allows to move seamlessly a running function from the current node to 
another one. Migration support can be particularly helpful for long-running functions that 
characterize serverless data analytics and machine learning applications at the edge. 
Function offloading and migration mechanisms call for the design of offloading and migration 
policies that can drive the corresponding decision. As a global formulation of the decision 
problem for the whole system would not scale for realistic deployments, we envision the 
development of decentralized migration and offloading policies. Furthermore, their design 
can be integrated in a holistic way, also taking into account how functions are orchestrated 
within the application workflow and whether they use state. 
As regards lightweight virtualization techniques, Serverledge currently employs a common 
solution to execute functions, which relies on running functions within Docker containers. 
Other containerization engines as well as microVMs (e.g., Amazon Firecracker), that inherit 
the strong isolation of VMs with the minimal management overhead of containers, can be 
integrated within Serverledge. The integration of lighter function sandboxing techniques, 
such as WebAssembly, is another direction to pursue in order to reduce the cold start issue 
and increase the number of functions deployed onto the same node thanks to the reduced 
memory footprint. 
The deployment of Serverledge on the underlying computing nodes is currently static but it 
can be adapted at runtime, for example taking into account node heterogeneity. The nodes 
can be selected through properly designed placement policies as well as scaled by means of 
auto-scaling reinforcement-based policies [154]. The design of coordinated cross-layer 
policies that span from computing nodes, which are geographically distributed, to function 
execution environments deployed inside single nodes represents another challenging issue.  
Finally, Serverledge can be extended towards a sustainable FaaS platform in the Cloud-Edge 
continuum [155]. Energy-efficient scheduling and offloading policies can be designed to 
effectively manage energy-constrained nodes (e.g., battery-powered sensors or 
smartphones) on which Serverledge can be deployed at the network edges. This requires an 
accurate understanding of where and how energy is consumed during function execution, so 
that functions can also be characterized by their energy footprint. 

 
4.4 Runtime management layer  

 
4.4.1 MoveQUIC: a QUIC-based toolbox for the live migration of microservices at the 
network edge  

 
The existing toolbox has two main limitations. First, the current version has been successfully 
tested in small-scale lab environments, focusing on the performance from the perspective of 
a single user/single service. To better fit the HPC context, a focus should be put into the ability 
of the framework to scale without impacting the service performance, possibly supporting 
the deployment in a distributed computation environment. Second, being a prototype 
implementation, the existing framework is not ready for production deployments.  
Regarding the first limitation, the toolbox should be modified from a standalone object, 
which is not integrated with existing container-orchestration tools, to a more holistic 



 

 

solution, relying on standardized solutions or based on de-facto standards such as 
Kubernetes. Providing such an integration would, on the one hand, enable the stateful 
migration of multiple containers (or better, of Pods) either within the same cluster or among 
multiple distributed clusters and, on the other hand, improving the application of the toolbox 
itself at scale, e.g., applying the migration techniques to load-balancing scenarios, or enabling 
a quick (re)start of complex services, avoiding the so-called “cold start” problem. Moreover, 
although our tool introduces migration times that are in line with those available in the 
literature, the service downtimes introduced by stateful-migration process can still impair 
the performance of the service itself, especially in cases wherein the request rate is high. To 
cope with these aspects the container migration procedure needs to be optimized, possibly 
taking into account knowledge on the application behavior. Finally, as highlighted in the 
description of CRIU, transferring container status from the source to the target computing 
node is a crucial task in the migration procedure. In this respect, the toolbox could be 
extended to support several mechanisms for transferring the container status, e.g., relying 
on a third node acting as an external repository, or relying on a distributed file system, etc.  
Regarding the second limitation, instead, the elements of the toolbox would need to be 
implemented within production-grade software (e.g., Meta’s implementation of QUIC) 
and/or deployed on a real edge platform, to be tested at scale. In this respect, integrating 
the toolbox within a fully-fledged orchestration platform would also foster the application of 
our toolbox into production environments. 

 
4.4.2 Nethuns: a library for efficient, socket-independent network I/O  
 
Most Cloud-based data centers currently use DPDK-based solutions to accelerate access to 
network I/O. However, DPDK has been left out of the first implementation of nethuns since 
its callback-based programming model differs in fundamental ways from the other engines. 
To increase the number of high-performance networking applications that can benefit from 
the ease of programmability and portability of nethuns, the framework must be extended to 
support the DPDK drivers. 
Moreover, eBPF is emerging as a general tool for kernel programmability in the Linux world, 
with important hooks in the network stack, where downloaded eBPF programs can 
implement custom packet processing and traffic control. High performance applications can 
leverage eBPF to reduce the number of kernel/userspace context-switches and by lowering 
the processing latency of network data. The current implementation of nethuns, however, is 
compatible with eBPF only when the underlying engine is AF_XDP, and even in that case the 
user interface is cumbersome. Progress in this area is needed, to design a network 
programming API that understands eBPF programs independently of the engine, possibly 
integrating techniques like eBPF in userspace. 
 
4.4.3 CAPIO: cross-application programmable I/O 

 
CAPIO proposes a novel methodology to transparently inject I/O streaming capabilities into 
scientific workflows, improving the I/O performance without modifying the applications. The 
novelty of this work is twofold: the I/O coordination language allows users to express 
workflow data dependencies with streaming semantics, while the CAPIO runtime transforms 
a batch execution into a streaming execution following the semantics given using the 
coordination language. 
 
4.4.4 INSANE: A Uniform API for QoS-aware Host Networking as a Service 
 
INSANE significantly simplifies the development of latency-critical services based on 
acceleration techniques by offering QoS-aware host networking as a service, introducing 



 

 

minimal (ns-scale) overhead, and making applications portable across heterogeneous 
environments such as public clouds and edge cloud nodes, thus unleashing a new generation 
of ultra-low latency cloud continuum applications in several time-critical domains. 
For HPC applications, libfabric is currently the most advanced and widely used 
communication API. Also known as Open Fabrics Interfaces (OFI), it defines a communication 
API for high-performance parallel and distributed applications, and is a low-level 
communication library that abstracts several networking technologies. However, INSANE is 
designed as an high-level alternative to libfabric, particularly for the future of HPC, where 
Ethernet networks are expected to replace proprietary technologies like Infiniband. 
Moreover, INSANE's architecture makes it easy to integrate additional technologies, 
including those used in HPC, storage access, and GPUs. 
 

4.5 Hardware layer 
 

4.5.1 MLIR: multi-level intermediate representations for heterogeneous computing 
platform  

 
MLIR can improve the current state-of-the-art thanks to its design philosophy, mainly: 
▪ Domain-specific optimization: MLIR supports domain-specific optimizations by 

design, which can lead to better performance and more efficient code generation. 
This feature is essential in ML and other scientific computing domains, where 
specialized algorithms and data structures are often used. 

▪ Flexible representation: MLIR provides a flexible representation that is customizable 
to meet the needs of different domains and applications. This approach makes 
developing tools and compilers tailored to specific use cases faster and easier to 
maintain and evolve. 

▪ Modularity: MLIR has a modular design, making it easier to develop and maintain 
complex systems and integrate them with existing tools and frameworks. 

Eventually, MLIR provides a powerful and flexible approach to developing compilers and 
other tools for ML and other domains. Its domain-specific optimizations and flexible 
representation make it a compelling choice for developers looking to improve performance 
and efficiency in their applications. Up to now, MLIR has been adopted in a few application 
domains, while the potential benefits mentioned above can be extended to more HPC areas. 
In this context, the proposed tool aims to bridge this gap. 

 
 
  



 

 

5 Synergies between Use Cases and Tools 
 
Some of the tools presented in the previous Sections can be exploited synergistically to cope with some 
typical use cases for HPC applications. In this Section, we illustrate some preliminary relevant use cases 
identified by the Flagship partners that require the adoption of HPC tools and that provide a preliminary basis 
for the investigation of the industrial prototypes that will be involved in the Flagship's future activities. 
These use cases include the optimization of complex astrophysical processes and the processing of large-
scale genomic data. Moreover, some of the partner’s HPC tools are already adopted in existing prototypes 
that can benefit from integration with other HPC tools.  By leveraging our presented HPC tools, these use 
cases can be addressed more efficiently and accurately, leading to significant improvements in research and 
innovation. 
 
The synergies between use cases and tools will be fully presented and analyzed in the second deliverable, 
D5.FL3: Selection of candidate prototypes for frameworks and development tools for HPC. 
 

● Astrophysics data analysis and visualization 
o Over the years, the astrophysics domain has developed a set of ad-hoc tools and 

software modules to tackle the challenging particularities of the field. With the 
emergence of high-performance visualization and Visual Analytics (VA) as enabling 
technologies, some of these components become candidates to be replaced by either 
faster, more accurate, or more efficient data-driven technologies modeling pre-
processing, run-time, and post-processing stages 

 
● Modelling galaxy formation and clustering 

o Theoretical astrophysics heavily exploits advanced numerical algorithms and High 
Performance computational tools to model the highly nonlinear phenomena involved 
with stellar formations and evolution within galaxies.  

o The environment of a galaxy is a highly nonlinear environment, hosting stellar 
populations which form from the interstellar gas in a process driven by gravitational 
instability and strongly affected by radiation heating and cooling. In turn, stellar radiation 
can significantly affect the ability of the interstellar medium to form new stars. These 
feedback mechanisms operate on comparable spatial and temporal scales. The 
formation of Supermassive Black Holes (hereafter SMBH) at the centers of galaxies adds 
a further feedback component. 
 

● Genomic variant calling pipeline 
o Genomic analysis is becoming more and more a routine activity in several hospitals and 

research labs. Genomic data coming from Next Generation Sequencing (NGS) devices 
requires the definition of a dedicated multi-step pipeline for variants identification (i.e., 
variants calling), annotation and prioritization.   
 

Some of the presented tools that are ready to be exploited, instead, are summarized in the following: 
 

● Interactive Computing Service 
o The IAC framework works smoothly with a frontend interface running on the HPC cloud 

infrastructure hosted at Cineca (ADA Cloud), relying on a local restricted user database 
and with a dedicated Slurm controller running in the same cloud environment, to grant 
flexibility in terms of testing the scheduler configuration. On the backend side, two HPC 
nodes have been isolated and dedicated to such a framework.  

o This general approach allows to test different combinations of frontends and backends 
exploiting novel configurations in the context of the CN-HPC while deploying the tools 
listed in Section 2 of this document.  



 

 

o With the same approach in mind, it will be possible to try to address the needs of all the 
partners of the CN-HPC. For instance, a valuable synergy and potential cooperation could 
be evaluated with the Jupyter Workflow tool and the StreamFlow tools.  

● VisIVO  
o  https://visivo.readthedocs.io/, [156] at the TRL7 level. Extended with the ViaLactea 

Visual Analytic [157] module (VLVA). VisIVO will be extended and optimized for the real-
time visualization of cosmological simulated data, giving the opportunity to compare 
with observational multiwavelength data, exploiting the available HPC platforms. 

o Workflow abstractions to allow a portable representation of modular applications and 
their resource requirements, fostering reproducibility and maintainability should be 
investigated, to take advantage of heterogeneous HPC facilities (including also mixed 
HPC-Cloud resources) while minimizing data-movement overheads, exploiting the 
StreamFlow and the Jupyter Workflow presented in Section 2. 

o Additionally, fast I/O techniques could be exploited for optimizing importing of large-
scale datasets (currently employing MPI). Such as: CAPIO and Nethuns. 
 

● Compression of peta-scale collections of textual and source-code files 
o A single-threaded implementation of the UNIPI compression library is almost ready and 

has been successfully deployed to compress blobs of several dozens of gigabytes. New 
(single-threaded) algorithms are in preparation and will be designed and implemented 
in the next few months for achieving an even better compression ratio. 

o The parallel and distributed implementation is to be developed to achieve better time 
efficiency, given the significant size of the Software Heritage archive. 

o The compression libraries will be extended to a parallel and distributed scenario by 
adopting models, frameworks, and tools for parallel and distributed batch processing 
across clusters. 

o Possible synergies can be exploited with the Parallel Library for Big Data Analysis 
(ParSoDA) and FastFlow/WindFlow, and with the mirror of the Software Heritage archive 
set up by ENEA to perform the experiments needed for evaluating the efficiency and 
efficacy of the tool. 
 

● Liqo.io 
o Cloud/HPC Federation. Several real problems advocate the usage of multiple computing 

infrastructures at the same time. Some examples are (a) job bursting (e.g., when 
computing jobs are so intense to consume all the resources in a given clusters, hence 
benefiting from the possibility of borrowing spare resources in other clusters), and (b) 
data gravity-driven computing (e.g., when data, sparse across multiple infrastructure 
providers, require computing to be carried out on the different infrastructures, hence 
dispatching jobs where the data is located). This requires specific tools which are capable 
to enable seamless multicloud computing, hence enabling distributed computing to be 
carried out as everything would be in the same cluster. 

 
● WorldDynamics.jl 

o A Julia framework for world dynamics modeling and simulation. It is a Julia package which 
aims to provide a modern framework to investigate Integrated Assessment Models 
(IAMs) of sustainable development benefiting from Julia's ecosystem for scientific 
computing. Its goal is to allow users to easily use and adapt different IAMs, from World3 
to recent proposals. 

o A first version of the package is available 
at  https://github.com/worlddynamics/WorldDynamics.jl. It includes the 
implementation of the entire WorldX series of models of the Club of Rome.  

 
● Genomic variant calling pipeline 



 

 

o Several intermediate tools are used and workflow managers are employed to 
orchestrating such pipelines since it is crucial to obtain an efficient and manageable 
execution. A pipeline has been defined and implemented, which is currently in 
production (via Nextflow) and that takes advantage of GPUs computing power through 
the Parabricks (https://docs.nvidia.com/clara/parabricks/4.0.0/softwareoverview.html)  
tools suite.  

o The current implementation of the pipeline should be adapted to the Streamflow 
environment with the aim of increasing the flexibility and minimizing data movements. 
Streamflow and its Jupyter notebook implementation will be used. The increased 
flexibility will allow to test the pipeline in several other (possibly heterogeneous) 
execution. 

 
● ParSoDA 

o Parallel Library for Big Data Analysis (ParSoDA) facilitates the development of complex 
data analysis applications, supporting, in its initial version, two of most leading parallel 
and distributed computing frameworks, i.e., Hadoop and Spark.  

o The main contributions of ParSoDA can be summarized: i) to define a general structure 
for data analysis applications; ii) provide an extensible set of functions that can be used 
and combined during the different steps of the computation; iii) reduce the 
programming skills needed for implementing scalable data analysis applications; iv) 
reduce the execution time of data analysis by parallelizing the execution of the code and 
exploiting the computational and storage resources of clusters. 

o The library was initially intended to facilitate the processing and analysis of data from 
social media. In fact, it natively includes data collectors and parsers to handle data from 
the main social media (Facebook, Twitter, Flickr). However, the library is easily 
extendable to support other data sources. 

o The code of ParSoDA is available as open-source software at 
https://github.com/SCAlabUnical/ParSoDA.  
 

● BLEST-ML 
o BLocksize ESTimation via Machine Learning (BLEST-ML) is designed to find a suitable 

estimate for the block size to be used to run data-parallel applications in distributed HPC 
environments. 

o The current version of BLEST-ML does not make use of parallel programming. Parallelism 
could be exploited in a future version of BLEST-ML both for the training of the machine 
learning model and for generating the execution logs, in the case they are not available 
for the training phase. 

o A first implementation of BLEST-ML, tailored to the dislib library for distributed 
computing, is available at the following link: https://github.com/eflows4hpc/dislib-
block-size-estimation 

 
● DivExplorer 

o DivExplorer is an anomalous subgroup identification approach to automatically identify 
data subgroups for which a classification model performs differently than overall 
behavior. Data subgroups are identified by slicing a tabular dataset in the attribute 
domain. The approach integrates frequent pattern mining techniques to extract 
subgroups efficiently with adequate representation in the data.  

o The first version of DivExplorer is available as an open-source Python package at 
https://github.com/elianap/divexplorer.git  and on the Python Package Index (PyPI) 
repository https://pypi.org/project/divexplorer/. 
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