
SPOKE 1

FUTURE HPC & BIG

DATA

FLAGSHIP 3:

Selection of candidate

prototypes

frameworks and

development tools for

HPC

EXECUTIVE SUMMARY

This is the second deliverable of Spoke 1 Flagship 3. After presenting the general map
of competences of the �agship a�liates in the �rst deliverable “Survey_of_state-of-
the-art_approaches_and_gap_analysis_on_HPC_dev_tools_D4.3”, this deliverable focus
on providing an overview of the candidate prototypes that will be the focus of the
�agship research and implementation activities until the completion of the project.
The candidate prototypes are designed to leverage the synergies among various tools
developed by the �agship a�liates, aiming to o-er HPC application developers
improved tools, methodologies, and technologies. All of this will be incorporated within
the context of the cloud/HPC convergence scenario outlined in the �agship description.
After anintroduction, also aimed at correctly placing the prototypes in the overall
Cloud/HPC tool stack, Section 2 introduces the di-erent prototypes planned. For each
candidate prototype we shortly outline the main features and the �nal goal, and then
we outline its status, the expected improvements, the main cooperations and �nal
validation tests to be used to assess the quality of our work.
In some cases, the candidate prototypes will eventually be applications or use cases
demonstrating combined & synergic use of tools developed by di-erent research
groups contributing to �agship activities. In other cases, the candidate prototypes will
eventually demonstrate the possibility to use some tools in di-erent contexts
improving di-erent non-functional features of interest (performance, power
consumption, e�ciency, …) in either small applications or in other tools.
In all cases, we delineate anticipated outcomes along with methods for evaluating the
achieved results.

1 Introduction..5

2 Candidate prototypes..9

2.1 Compression of peta-scale collections of textual and source-code files..9
2.1.1 Introduction..9

2.1.2 Related works..9

2.1.3 Actual prototype description and maturity level...10

2.1.4 Prototype evolution and implementation...12

2.1.5 Final validation tests..16

2.2 Astrophysics data analysis and visualization...16
2.2.1 Introduction..16

2.2.2 Related works..17

2.2.3 Actual prototype description and maturity level...18

2.2.4 Prototype evolution and implementation...20

2.2.5 Final validation tests..23

2.3 Genomic variant calling pipeline...24
2.3.1 Introduction..24

2.3.2 Related works..25

2.3.3 Actual prototype description and maturity level...25

2.3.4 Prototype evolution and implementation...29

2.3.5 Final validation tests..30

2.4 Edge-Cloud continuum federation infrastructure...30
2.4.1 Introduction..30

2.4.2 Related works..32

2.4.3 Actual prototype description and maturity level...33

2.4.4 Prototype evolution and implementation...44

2.4.5 Final validation tests..46

2.5 Interactive Computing Service..47
2.5.1 Introduction..47

2.5.2 Related works..47

2.5.3 Actual prototype description and maturity level...48

2.5.4 Prototype evolution and implementation...49

2.5.5 Final validation tests..52

2.6 Serverledge: QoS-Aware Function-as-a-Service in the Edge-Cloud Continuum..........................53
2.6.1 Introduction..53

2.6.2 Related works..53

2.6.3 Actual prototype description and maturity level...54

2.6.4 Prototype evolution and implementation...58

2.6.5 Final validation tests..60

2.7 Improving I/O phases in computational modelling of Galaxy Formation.....................................60
2.7.1 Introduction..60

2.7.2 Related works..61

2.7.3 Actual prototype description and maturity level...61

2.7.4 Prototype evolution and implementation...65

2.7.5 Final validation tests..65

2.8 WorldDynamics.jl..66
2.8.1 Introduction..66

2.8.2 Related works..66

2.8.3 Actual prototype description and maturity level...67

2.8.4 Prototype evolution and implementationCompleto...68

2.8.5 Final validation tests..70

2.9 Optimized deployment of cloud-native applications over multi-cloud and cloud continuum
scenarios..70

2.9.1 Introduction..70

2.9.2 Related works..70

2.9.3 Actual prototype description and maturity level...71

2.9.4 Prototype evolution and implementation...73

2.9.5 Final validation tests..74

2.10 FastFlow: an alternative programming model for HPC applications..74
2.10.1 Introduction..74

2.10.2 Related works..74

2.10.3 Actual prototype description and maturity level...75

2.10.4 Prototype evolution and implementation...78

2.10.5 Final validation tests..79

2.11 Anomalous subgroup characterization with DivExplorer...79
2.11.1 Introduction..79

2.11.2 Related works..80

2.11.3 Actual prototype description and maturity level...80

2.11.4 Prototype evolution and implementation...81

2.11.5 Final validation tests..83

2.12 Compilation flow and deployment strategy targeting RISC-V accelerators for HPC computing
...83

2.12.1 Introduction..83

2.12.2 Related works..84

2.12.3 Actual prototype description and maturity level...85

2.12.4 Prototype evolution and implementation...86

2.12.5 Final validation tests..86

2.13 National Federated Cloud/HPC Infrastructure...86
2.13.1 Introduction..87

2.13.2 Related works..87

2.13.3 Actual prototype description and maturity level...87

2.13.4 Prototype evolution and implementation...89

2.13.5 Final validation tests..90

3 References..91

1 Introduction

Representative prototypes, models, and frameworks are essential tools in engineering
and science for the development, evaluation, validation, and test of ideas, concepts,
and processes [126], [127]. Moreover, these tools provide support and feedback when
analyzing new solutions, methods, approaches, schemes, or architectures. In fact,
prototypes reduce the gap between �rst stages of an idea and the realistic
implementations by supporting analyses of a system under clear evaluation targets
(e.g., evaluate the performance of a multi-processor under speci�c operational
conditions).

In general, most prototypes provide a set of controlled conditions to evaluate the
technical feasibility of theories in environments and scenarios that are like the real
operation of a system. The quality and functionality of a prototype is given by its
�delity, so high-�delity models and prototypes include most of the expected
functionalities and details of a real system. Similarly, low-�delity prototypes include a
reduced number of features but still allow the evaluation and analysis under limited
scenarios. In some cases, one single high-�delity prototype involves all possible
operative scenarios and can be exploited for evaluation and analysis.

On the other hand, one or more high/medium-�delity and complementary prototypes
(i.e., with di-erent abstraction levels) might contribute to evaluate di-erent features
and provide consistency, high accuracy, or more extended analyses than one single
prototype. Similarly, the use of prototypes can be used to anticipate behaviors in a
system and identify unexpected constraints (e.g., physical, technical, or �nancial)
before reaching production phases. Thus, the identi�cation and selection of feasible
prototypes and models is a crucial step for the evaluation of several features also in
the HPC domain. In fact, one or more prototypes are vital tools to evaluate solutions
and management mechanisms against non-functional properties in HPC machines,
such as the power management and the monitoring of energy or reliability features.

This delivery report analyzes and selects a set of prototype candidates, frameworks,
tools, and artifacts to test and validate if a pro�table convergence between HPC and
Cloud/edge computing techniques, architectures and tools is possible, to realize what
is called the Hybrid Cloud-HPC architecture. Such approach has a certain number of
bene�ts, as described in the introduction to the deliverable D4.FL3, �rst the possibility
to exploit the �exibility in the management and autonomic orchestration of resources,
the reliability and the geographical pervasive distribution of the Cloud/edge
datacenters and devices, enabling the possibility to execute HPC applications on
existed IaaS or FaaS infrastructures. The goal of the D4.FL3 document is to identify the
most promising areas for future research and development in HPC development tools,
analyzing the current state-of-the-art approaches and identifying gaps.

The HPC architecture de�ned in the D4.FL3 deliverable will be fully exploited in this
deliverable, where we will outline a selection of candidate prototypes exploiting the
HPC tools made available by the partners, aimed at showcasing the activities of the
partners in the Flagship. In the subsequent deliverables, the candidate prototypes will
be extended, integrated, and assessed to demonstrate the advances achieved with
respect to the state of the art at the beginning of this project.

Choosing and selecting the proper set of candidate prototypes is challenging, since
every partner has di-erent competencies and their tools, described in the D4.FL3
deliverable, cover di-erent levels of the Hybrid Cloud-HPC architecture shown in �gure
1. This architecture spans multiple technological stacks and target platforms and,

more precisely, is composed of six layers, whose have been deeply analyzed in
D4.FL3, starting from the high-level application model layer, down to the runtime
application management and hardware optimization layers: such a complex and
vertical architecture lead to a great variety of tools, frameworks, and prototypes. In
this introduction, we give an idea of the main selection criteria we have decided to
apply to select the candidate prototypes that will be described in the section 2 of this
document.

The �rst and main criterion we adopt to choose the candidate prototypes for this
document is their capacity to cover the most part of the architecture. The idea is to
select prototypes for which an increase in such coverage is possible respect to their
actual implementation. For this reason, the second criterion, which is directly
connected to the �rst, is the possibility to integrate at least two tools of di-erent
partners in developing the �nal version of the prototype, with the constraint that these
tools will introduce new functionalities at di-erent level of the architecture, without
introduce overlapping, exploiting their di-erences in goals, constraints, performance
metrics and so on. Figure 1 shows how the di-erent chosen prototypes will cover the
Hybrid HPC-Cloud architecture de�ned in D4.FL3: the �gure shows that there are not
level of the architecture that have been not covered by at least a prototype, but also
that the coverage is not homogeneous, although we tried to select prototypes to
foster such characteristic; we can note that the most part of the prototypes cover the
higher two levels of the architecture, while the orchestration and runtime
management layers are less covered, in particular since the beginning: such
functionalities are added through partners’ frameworks such as the Edge/Cloud
infrastructures described by the Politecnico di Torino, the University of Padova or the
University of Pisa.

Figure 1: Hybrid HPC – Cloud architecture layers and prototypes’ placement

The last important selection criterion we decide to take in consideration for this
document is the maturity level of the actual existed prototypes. To give an objective,
immediate and measurable value to this criterion, we employ the well-known
Technology Readiness Level standard concept. Technology Readiness Level
(TRL) is a concept used to assess the maturity and readiness of a particular
technology or software product. Originally developed by NASA, TRL is now widely
adopted across various industries to evaluate the advancement and potential of
technologies before they are fully implemented or deployed. In the context of
software, TRL provides a framework for measuring the readiness of a software solution
based on its development stage, performance, and associated risks. It helps
stakeholders, such as developers, investors, and decision-makers, to assess the
feasibility, reliability, and potential impact of adopting a speci�c software technology.
The TRL scale consists of several levels, typically ranging from TRL 1 to TRL 9, each
representing a di-erent stage of technology maturity. The idea is to increase the
actual maturity level to at least a TRL of 5 (Technology validated in relevant
environment) or 6 for the prototypes declaring the most maturity levels (Technology
demonstrated in relevant environment), until the end of the project, choosing �rst
prototypes that allow the most increase in TRL, declared by the partners in the
description of each prototype in section 2. We do not give a superior limit to the �nal
TRL, but a minimum �nal value of 5 for the TRL is needed and mandatory, to lead to a
deployable prototype, allowing to test its main functionalities and to stress the
integration of the tools in suitable environments such as the Edge/Cloud
infrastructures referred before in this introduction. Such tests, described brie�y at the
end of every prototype’s description section, try to validate a set of KPIs (decided by
each partner) to stress the and involving, in some cases, very large datasets.

Figure 37: Technology readiness levels of prototypes

In �gure 37 are shown, for each of the thirteen prototypes selected for this document,
(1) the main partner that had developed it until the beginning of the project, and
has/have the main responsibility for their development as described in the section 2,
for the rest of this project, (2) its denomination inside the project, (3) its actual TRL
and (4) the declared TRL at the end of the project; we can note that the most number
of prototypes start from a TRL of 2, 3 or 4 (with only 3 prototypes at TRL 5), allowing
the possibility to increase each of them of at least two technology readiness levels,
which is a sensible increase in its maturity.

2 Candidate prototypes

2.1 Compression of peta-scale collections of textual and source-code
�les

2.1.1 Introduction

Most organizations store and analyze larger and larger datasets that are
often stored in public clouds such as Google Cloud, Amazon AWS, and
Microsoft Azure. An important trend in cloud data warehousing is the
separation of storage and compute, where the data is stored in distributed
cloud objects, and where compute power can be spawned elastically on
demand. The main idea of this emerging paradigm is to store data in so-
called data lakes [88]: namely, storage systems with a blob API that hold
data in generic and usually open formats, such as Apache Parquet and
ORC. Blobs can be seen as any structured, semi-structured, and
unstructured piece of data, such as source code �les, row groups of
databases, etc.. Compressing these large collections of �les is very
challenging and this problem was addressed in the past with various
techniques, most of them spurring from a di-erent but related problem,
known as near-duplicate document detection. This arises mainly in the
context of Web crawling, because duplicate and near-duplicate web pages
induce signi�cant drawbacks in the performance of Web search engines
given their impact on index-space usage and on possibly returning
repeated results. Thus, with the explosive increase in the size of the Web,
search-engine designers started already in the '90s to investigate
strategies for detecting these (near) duplicate pages. It was soon clear that
a naive algorithm comparing all pairs to documents was prohibitively
expensive, so researchers proposed algorithms for detecting near-
duplicate documents with a reduced number of comparisons based on the
concept of “�ngerprinting”. After these results, the literature �ourished on
theoretically grounded approaches to �ngerprinting methods and several
experimental results were published to compare them. The A3lab of UNIPI
has a long-time expertise in designing data compressors, with tens of
papers concerning this topic and the related one of compressed indexes. In
[87] we addressed the problem at hand via the so-called PPC paradigm:
Permuting + Partition + Compress, whose main algorithmic idea was to
�rst permute the �les to bring close to each other the most “similar” ones;
then partition them into blocks (of a proper size); and eventually compress
each block with a suitable compressor (whose compression window is at
least larger than the block size). At the best of our knowledge, no open-
source software is available for compressing large collections of textual
and source-code �les.
In this project, we aim at designing and implementing a software library
allowing to compress collections of several billions of texts and source
code �les (written in markup and programming languages, thus not just
HTML) fully exploiting the computational power of the PPC-paradigm to
achieve e-ective compression ratio and e�cient (de)compression speed in
two di-erent scenarios: Backup and RandomAccess. The former concerns
the storage scenario in which we support only a streaming access to the
whole compressed collection; the latter concerns the case in which we
want to support e�cient access to individual �les of the compressed
collection. We plan to test our library on the Software Heritage archive [89]
whose size is more than 1 PB of data, and it is continuously growing.

2.1.2 Related works

Open formats (like Parquet or ORC) internally use combinations of light-
weight compressor schemes and general-purpose compression schemes,
like LZ4, Brotli, Snappy or Zstd. This combination is neither e�cient in
terms of scan performance nor compact, and this is why new open-source
�le formats are emerging. Essentially, in all the mentioned solutions �les
(blobs) are always compressed individually trying to leverage the usually
limited repetitiveness present inside each one of them. But, it is well
known that these rapidly growing datasets are highly repetitive among
blobs. In fact, blobs coming from the same context (i.e., same data lake)
are often very similar, so it is essential to use proper compression
techniques to leverage this characteristic and achieve high
compression/decompression speeds over large data lakes.
This problem is like the near-duplicate document detection problem, as we
commented in section 2.1.1. A naive algorithm comparing all pairs to
documents is prohibitively expensive, so Manber [79] and Heintze [80]
were among the �rst to propose algorithms for detecting near-duplicate
documents with a reduced number of comparisons based on the concept of
“�ngerprinting”. After these results, the literature �ourished on
theoretically grounded approaches to �ngerprinting methods, with two
pioneering and ground-breaking results by Broder [81] and Charikar [82].
Broder proposed to estimate the similarity of two documents by properly
comparing a subset of the �ngerprints computed from every sub-sequence
of adjacent tokens, called “shingles”, within the input documents. The
obtained subset was called MinHash of the document. Charikhar proposed
another approach, nowadays called SimHash, that estimates the similarity
of two documents by randomly projecting each token of a document into a
binary array, and then adding the projections of all its tokens. For both
algorithms, there can be false positives (non-near-duplicate document
pairs returned as near-duplicates) as well as false negatives (near-
duplicate document pairs not returned as near-duplicates). Several papers
(see e.g., [80], [83], [84], [85]) compared these two �ngerprinting methods
experimentally over collections of several billions of Web pages and
declared SimHash as a robust practical approach. The literature o-ers
other approaches to compute the set of �ngerprints, the most notable one
is Winnowing [86], which were proved to achieve better mathematical
guarantees than SimHash and other interesting properties.
We contributed to this literature, by adapting those approaches to the case
of HTML document collections [87] and proposing the so-called PPC
paradigm: Permuting + Partition + Compress, whose main algorithmic
ideas were described above. However, at the best of our knowledge, no
open-source software is available for compressing large collections of
textual and source-code �les.

2.1.3 Actual prototype description and maturity level

Our preliminary prototype is based on the permute-partition-compress
(PPC) framework, it hinges on a single-threaded implementation in Python,
and it is able to manage GBs of data, but it is not able to scale to TBs/PTs.
Its algorithmic structure consists of three main modules:

 [PERMUTE] create an ordering between the �les/blobs;

 [PARTITION] partition the �les into proper size blocks (typically of few
MBs);

 [COMPRESS] compress all those blocks via a proper commodity general-
purpose compressor (à la gzip, zstd, brotli, …). In order to support the
random access to individual �les, save for each of them the pointer to
the compressed block where it is stored.

As far as the PERMUTE step is concerned, we have investigated two main
approaches that we can classify as context-based or content-based, which
appear to be very promising in the use case scenario we are considering.

The context-based approach deploys information coming from the
�lename, the �le type, and the (parent) directories that include the �le to
be compressed; here, we postulate that these metainformation provide a
proxy of the �le content and thus can be exploited to cluster together
similar �les.

The content-based approach deploys information present inside the �le to
be compressed and thus requires sophisticated techniques that allow to
manage TBs of data in succinct space and e�cient time. Here, as
explained in the Deliverable1 document we foresee the use of advanced
shingling techniques and proper locality-sensitive hashes, together with
e�cient algorithms for the clustering of high-dimensional vectors (that
spur from those hashes).

We are experimenting several instantiations of the PPC paradigm: from the
simplest one, in which the permutation is the arbitrary one and the
compressor is gzip (the one currently adopted in the Software Heritage
archive); to more sophisticated approaches in which the permutation is
based on the clustering of SimHash or MinHash �ngerprints thanks to
algorithms which exploit geometric or graph considerations; and, �nally,
we are investigating also the use of compressed indexes (à la FM-index or
CSA) in order to achieve entropy-bounds in space occupancy and still
preserving the ability to decompress only the requested �le, and not much
more.

Another dimension of our tests has been to evaluate our proposed
compression methods in two di-erent scenarios: Backup and
RandomAccess. The former concerns the storage scenario in which we
support only a streaming access to the whole compressed collection; the
latter concerns the case in which we want to support e�cient access to
individual �les of the compressed collection.

We have performed a very preliminary experimental analysis over a
collection of millions of �les derived from a snapshot of the most popular
repositories on GitHub for a total of 25 GBs and have achieved signi�cant
compression ratios (up to 6% over C �les and up to 15% over Python �les)
and (de)compression speeds (up to hundreds of MBs/sec), which compares
favorably with respect to the current ratio of about 50% achievable on
single-�le compression.

The �gure 2 reports the main result concerning the BackUp scenario over
the collection of Python �les, comparing [left] the compression speed
(MB/sec) versus the compression ratio (%), and [right] the de-compression
speed (MB/sec) versus the compression ratio (%).

Figure 2: (De)Ccompression speed vs ratio

They include compression algorithms implementing context-based and
content-based approaches, using as commodity compressors either gzip
(with option -9) or zstd (with option -22), and working on:

 [red] individual �les
 [orange] a sequence of �les serialized according to a random order
 [blue] a sequence of �les serialized according to the �lename order
 [cyan] a sequence of �les serialized according to an order established

according to some �ngerprinting methods combined with some
clustering/sorting algorithms

 [yellow] a sequence of �les serialized according to an “hybrid” order
that exploits content-information derived from the MIME type and
coding language of the �le

Figure 2 clearly shows that the most powerful algorithms are able to
achieve a compression ratio performance close to 15%, but with a
compression speed which is very low, and thus possibly unacceptable for
large �le collections as the ones we wish to manage eventually. It is also
evident that the very simple ordering based on �lenames is among the
most e-ective. The part on the right of Figure 2 shows that the
decompression speed is very appealing and close to 500 MB/sec for a
single-thread, and with the �lename-sorted approach among the fastest
ones. This performance is already interesting for a production scenario.
If we consider the results about C �les, the compression ratio gets even
more astonishing, because it reaches 6%. This compares very favorably
against the gzip-approach on individual �les which gets close to 30%.
As far as the RandomAccess scenario is concerned, the following picture
shows the results for the case of �les blocked in 4MBs or 16MBs, and with
the balloon on the right picturing the di-erences with respect to the
approach which compresses the whole serialized list of ordered �les,
hence without blocking.

It is evident that the loss induced by compressing the sequence of �les in
blocks is not large in terms of compression ratio, and this occurs even for
the simplest serialization approach based on �lename sorting. In the light
of these experiments, we can classify the TRL 6 of our prototype as 3
(three): Experimental proof of concept.

2.1.4 Prototype evolution and implementation

The entities involved in the evolution of the prototype and its
implementation will be mainly UNIPI and UNICS, with some contribution by
IIT with respect to the compression of -omics data, as detailed below.
Moreover, we expect synergies with the Software Heritage consortium (at
INRIA), ENEA (which will host in the next months a mirror of the Software
Heritage archive), and the Department of Computer Science at the
University of Bologna.
The mirror is named "experimental" because its architecture and
components di-er from those adopted on the central archive at INRIA.
Speci�cally, the mirror storage employs the distributed �le system
Seaweedfs, which is designed for e�ciently storing a huge number of small
�les, such as source codes generally are. Furthermore, by "experimental" it
is also intended that the mirror is not a plain replica of the main archive at
INRIA, but relies on a partially di-erent technological implementation,
better suited to the particular type of 'data' handled and to its processing
for research purposes and well integrated into ENEA's HPC facility.
We plan to scale the above preliminary experimental scenario to 200 GB
�rst, and later to TBs of data. This data will be fetched from the largest
available archive of open-source code — i.e., Software Heritage — thus
contributing to its long-term code preservation with reduced HW resources.
The Software Heritage [89] initiative aims at collecting the complete
history/heritage of human coding publicly available, replicating it massively
to ensure its preservation, and sharing it with everyone who needs it, from
science to industry. The initiative was launched in 2015 by INRIA – the
French national research institute for digital science and technology – in
agreement with UNESCO and assembling a group of prestigious supporters
and committed sponsors including, among the others, Microsoft, Intel,
Google, VMWare, GitHub, Qwant, Nokia Bell Labs, Société Générale, the
Alfred P. Sloan Foundation, and the Universities of Bologna and Pisa. Our
university is part of this initiative both formally and operationally because
in the last few months we have started collaborating on the design of the
storage and indexing infrastructure of the Software Heritage dataset. We
aim at addressing this large-scale problem as a UseCase of this PNRR
project because of its massive size, its novelty and impact, as well as
prestigious collaborations that we will be able to set out of it.
Figure 3 provides a snapshot of the evolution of the Software Heritage
archive since its creation in 2015.

Figure 3: size of the Software Heritage archive

In technical terms, the Software Heritage dataset is organized as follows.
Source code artifacts (e.g. software projects, releases, commits,
directories, etc.) ingested by the crawlers are stored and organized as a
direct acyclic graph whose leaves are the so-called "blobs", which
represent the raw content of (source code) �les. Presently, blobs
contribute to about 99% of the space of the main copy of the Software
Heritage archive, which is reported to contain over 800 TB of data [89].
Since the archive is steadily growing, the consequent impact on the
scalability and storage cost of the archive and its mirrors is becoming a
serious concern, not only in economic terms, but also in terms of energy
demands and environmental impact of operating storage devices and
replacing them when worn-out.

To mitigate this issue, blobs are currently compressed individually using
the classic gzip tool and thus achieving a compression ratio which is
around 50% (hence, half of the archive). However, this approach fails to
exploit the vast compression opportunities o-ered by new compressors
(such as Brotli, Zstd, etc.) and by the redundancies present in the
collection of �les belonging to this archive. There are indeed intra-
repository redundancies (e.g. versions of the same source code �le) and
inter-repository redundancies (e.g. di-erent repositories implementing
similar software components in the same programming languages). As
reported above, the compression of individual �les using gzip is roughly a
factor of 2x; however, if we use zstd (one of the best performing
compressors to date) with the most time-consuming parameter settings
the compression ratio gets to around 25% with a factor 2x improvement.
However, both these approaches do not exploit the intra-repository
redundancies and inter-repository redundancies known to exist in the
Software Heritage archives. The experiments conducted in the previous
section over a small collection of 25GB of �les coming from GitHub, have
shown that our preliminary prototype can achieve signi�cantly improved
performance in several respects: compression ratio, compression speed
and decompression speed.

Therefore, the use case we plan to address consists of deploying our newly
designed compression tools, possibly extending and improving them (in

e�ciency and e�cacy), to compress a large part of or the entirety of the
Software Heritage archive, taking as much as possible advantage from
both the context-based approach and the content-based approach. Our
aim is to establish which one provides the best compression ratio in this
scenario at reduced computational resources.

The current status of our prototype is in terms of a single-threaded
implementation. New (single-threaded) algorithms are in preparation to
implement versions of the context-based and the content-based
compressors and will be designed and implemented in the next few
months for achieving an even better compression ratio. This code will be
distributed via GitHub or other code-sharing platforms, and it will
constitute, as far as we know, the �rst open-source library for compressing
peta-scale collections of textual and source-code �les.

A parallel and distributed implementation is to be developed to achieve
better time e�ciency, given the signi�cant size of the Software Heritage
archive. There are two key issues to investigate. First, we need to
understand whether the context-based features are enough to derive
e-ective compression ratios because they are easily computable and
exploitable (being based on the sorting of short strings), and therefore
they can easily scale to GBs/TBs archives by deploying parallel/distributed
sorters (such sorter which are available in most BigData platforms).
Second, we need to investigate how to e�ciently compute the content-
based features, which require a high throughput for the shingles and
highly-scalable clustering and sorting algorithms for grouping similar �les.

We intend to extend our compression libraries to a parallel and distributed
scenario by adopting models, frameworks, and tools for parallel and
distributed batch processing across clusters. We therefore foresee
synergies in the development of our compression pipeline with the
following libraries: ParSoDA - Parallel Library for Big Data Analysis
(UNICAL) (see D4.FL3, section 2.2.2) and the library FastFlow/WindFlow
for high-level and e�cient streaming (UNIPI-DI) (see D4.FL3, section
2.2.6), and with Genomic variant calling pipeline (IIT), described here
in section 2.3. Furthermore, we are evaluating the feasibility and the
hardware requirements (in terms of networking, storage, and computing)
to transfer, store and compress a mirror of either a large part or the
entirety of the Software Heritage archive.

ParSoDA is a parallel computing library that includes algorithms widely
used to process and analyze on multiple computing nodes data gathered
from di-erent sources (e.g. web, social media) with the goal of extracting
di-erent kinds of information (e.g., user mobility, user sentiments, topic
trends, frequency, etc.). ParSoDA de�nes a general structure for a data
processing pipeline that is composed of di-erent steps (data acquisition,
data �ltering, data mapping, data partitioning, data reduction, data
analysis and data visualization) that can be combined together based on
the application logic. For each of these steps, ParSoDA provides a
prede�ned set of functions. For example, for the data �ltering step,
ParSoDA provides functions for �ltering geotagged items based on their
position, time of publication, and contained keywords. Programmers are
free to extend this set of functions with their owns. The current version of
ParSoDA contains a wide set of prede�ned parallel functions organized in
seven packages, corresponding to the seven ParSoDA steps. Details on

each function are available at [90]. Applications based on the ParSoDA
library can be run on both Hadoop and Spark clusters. This allows ParSoDA
to reduce the execution time by parallelizing code execution and exploiting
the computational and storage resources of clusters.

In the context of this use case, ParSoDA can be used to de�ne a data
compression pipeline composed of three main phases: 1) parallel sorting of
�les based on their �lenames, or other content- or context-based features;
2) serialization and grouping of �les in blocks of prede�ned size; 3) parallel
compression of those blocks of �les by commodity or ad-hoc compressors.
The �rst phase will be implemented by de�ning an ad-hoc function that
exploits parallel and distributed (string) sorting algorithms. For the second
phase, we will investigate how to exploit data locality to reduce data
migration costs. Finally, a data parallel function will be de�ned to perform
the data compression phase. An experimental evaluation will be performed
to select the most appropriate runtime (Hadoop/Spark) and �le system
(e.g., HDFS) to be used.

FastFlow is a C++ header-only parallel library intending to provide
application designers with essential features for parallel programming via
suitable abstractions (e.g., Pipeline, ordered Task-Farm, Divide&Conquer,
Parallel-For-Reduce, Macro Data-Flow, Map-Reduce) and a carefully
designed runtime system. At the lower software layer of the library, there
are the so-called Building Blocks (BBs), i.e., recurrent data-�ow
compositions of concurrent activities working in a streaming fashion, which
are used as the primary abstraction layer for building high-level parallel
patterns and complex data-streaming network topologies of sequential
operators. Following the principles of the structured parallel programming
methodology, a parallel application (or one of its components) is conceived
by selecting and assembling a small set of well-de�ned BBs modeling data
and control �ows. BBs can be combined and nested in di-erent ways
forming either acyclic or cyclic concurrency graphs, where nodes are
FastFlow’s concurrent entities and edges are communication channels. All
high-level parallel patterns o-ered by the upper layers of the FastFlow
library have been implemented using the BB components. Furthermore,
BBs have been used to implement special-purpose parallel libraries
providing high-level APIs for speci�c application domains. A remarkable
example in this sense is the WindFlow library for Data Stream Processing,
which has been built upon FastFlow’s BBs with extensive support for
di-erent streaming semantics (e.g., timestamped ordered execution,
watermark propagation, and micro-batching) and the seamless use of HW
accelerators (GPUs and FPGAs). In terms of support for di-erent
architectures and platforms, FastFlow provides the application
programmers with a uni�ed interface that enables them to generate
executable programs that can run on both shared- and distributed-memory
platforms. The distributed runtime has been implemented by leveraging
BBs and extending them to preserve the original data-�ow streaming
programming model. Inter-process communications are implemented both
in TCP/IP and MPI.

In this use case, the FastFlow library can be used to implement the entire
data compression work�ow expressing stream parallelism between the
di-erent phases, thus enabling their overlap. Additionally, leveraging the
FastFlow parallel BBs can accelerate the single work�ow phase to improve
vertical scalability by enforcing, if needed and suitable, the WindFlow

library to accelerate intra-node parallelization phases requiring complex
streaming semantics and/or the use of HW accelerators. However, careful
implementation and an in-depth experimental analysis will be needed to
identify a suitable trade-o- between the di-erent kinds of parallelism used
to maximize the utilization of computing resources.

For these purposes, ENEA makes its storage resources and CRESCO6
supercomputing infrastructure available to the project. CRESCO6 - an HPC
cluster of 434 nodes with 2 Intel 24-core processors and a GPFS parallel
�lesystem - is integrated into the ENEA grid environment and is located in
Portici. Furthermore, thanks to a dedicated 10Gb link between ENEA
Bologna and ENEA Portici, a large part of the Software Heritage blob
archive could be also replicated on the high throughput storage of
CRESCO6 to sustain the increased processing power of the parallel and
distributed implementation.

2.1.5 Final validation tests

The KPI used to evaluate the success of our tests will be the classic ones in
the realm of data compression tools: compression ratio, compression
speed (MB/sec) and decompression speed (MB/sec), as adopted in the
previous section.
A �rst milestone of this project will be the creation of a few datasets on
which to experiment our compression tools. The datasets size should be of
up to a few hundred GBs, so that they will provide a succinct
representation of several facets of the whole archive. In particular, we will
aim at downloading snapshots of that size for the various coding languages
(C, Python, Javascript,...) and also a random snapshot mixing several
languages, in order to have a better “picture” of the performance of our
tools over the overall archive through the use of a sample of reduced size.
This should allow us to extrapolate performance �gures for the whole
archive and for the more homogeneous parts consisting of blobs
containing a single coding language.
As of September 2022, the main copy of the Software Heritage archive
contains about 12 billion blobs, with a median size of 3 KB, for a total
compressed size of about 800 TB [89]. Since the compression technique
that is currently adopted in Software Heritage is reported to obtain an
average compression factor of 2x (by applying gzip on individual �les), we
can expect that the total uncompressed size of the blobs is about 1.6
petabytes. If the preliminary results obtained on the snapshot of 25GBs
(shown above) would be con�rmed at the total archive scale, then the
trivial use of the better zstd (in place of gzip) would guarantee an
occupancy of 400TBs. But in this use-case we aim for more, and thus hope
to get down to a few TBs of space occupancy for the whole archive, or to
achieve few TBs (or less) of space occupancy for “vertical” archives in
which we have only Python, Java, Javascript, C or C++ source codes.
In addition to the case of the Software-Heritage archive, we will also
investigate the application of this software library to the case of genomic
datasets, such as VCF �les, which are growing in size because of the
continuously improving performance of modern DNA sequencing machines.
In this context some codes are already available – say genozip, vcfshark,
etc. – we aim at understanding how they can be combined with our
approach, as we did for gzip and zstd, and working on collections of �les
rather than single ones. In this context we expect that content-based

approaches will perform better than context-based ones (i.e. �lename
sorting) because these latter are mainly agnostic to the �le content.

2.2 Astrophysics data analysis and visualization

2.2.1 Introduction

Modern astronomy and astrophysics produce massively large data volumes
(in the order of petabytes) coming from observations or simulation codes
executed on high performance supercomputers. Such data volumes pose
signi�cant challenges for storage, access and data analysis, leading to the
development of a fourth data intensive science paradigm [1] (also known
as eScience). A critical aspect in understanding, interpreting, and verifying
the outcome of automated analysis and data mining processes is the
visualization of the scienti�c results. Data visualization is a fundamental,
enabling technology for knowledge discovery, and an important research
�eld that covers a number of di-erent topics such as: optical and radio
imaging, simulation results, multi-dimensional exploration of catalogs and
public outreach visuals.
Visual exploration of big datasets poses some critical challenges that must
drive the development of a new generation of graphical software tools [2],
speci�cally:
 Interactivity: The majority of existing astronomical analysis and

processing solutions lack the ability to deal with datasets exceeding the
local machine’s memory capacity while visual exploration and discovery
in complex, multi-dimensional datasets is more e-ective through real-
time interaction although sizes may not �t the available memory. For
complex visualizations the relevant computations should be performed
close to the data to avoid time consuming streaming of large data
volumes. This can be achieved via �exible distributed architectures
striking a balance between local interactive exploration tools and
remote services hiding data complexity.

 Integration: Most of the data analysis systems are implemented as a set
of separate independent tasks that can interact and exchange
information via stored �les only. This will be a signi�cant factor which
delays or even prohibits day-to-day data analysis tasks over big data
sizes. Visualization tools should be ideally fully integrated within the
scientists’ toolkit for seamless usage, abstracting from technical details
freeing scientists to concentrate in doing science. Tools should be
coupled with advanced high performance computing (HPC) resources to
deal with requests to archives through scienti�cally meaningful
lightweight versions of the datasets obtained by analysis/processing
operators since full data sizes may not �t the available memory to allow
real-time interaction.

 Navigation: Some of the current data processing techniques depend on
parameters tuning, which may not be easy to achieve with large data
sizes due to processing power limitations. Adopted solutions should
allow intuitive and sophisticated navigation among datasets by
exploiting ubiquitous environments, such as tablets or motion
controllers, o-ering new Human–Computer Interaction paradigms to
better tune the processing parameters. Local exploration tools should
enable interactive visualization optimized for ubiquitous computing
environments, intuitively controlling the resulting visualization.

 Collaboration: It will no longer be an easy job to develop a simple script
or program to deal with such data. These tasks usually require a deep

knowledge of technicalities and programming experience which are
typical of computer scientists rather than of astronomers. Tools should
be built into the processing pipelines in order to facilitate visualization,
processing and analysis of big data in a collaborative manner. Tools
should be combinable within e.g. science gateway technologies to allow
collaborative activity between users and provide customization and
scalability of data analysis/processing work�ows, hiding underlying
technicalities.

Therefore, over the years, the astrophysics domain has developed a set of
ad-hoc tools and software modules to tackle these challenges. With the
emergence of high-performance visualization and Visual Analytics (VA) as
enabling technologies, some of these components become candidates to
be replaced by either faster, more accurate, or more e�cient data-driven
technologies modeling pre-processing, run-time, and post-processing
stages by exploiting the latest technological opportunities.

2.2.2 Related works

Visualization plays a fundamental role in almost every scienti�c discipline
facilitating qualitative and quantitative data analysis, for new knowledge
generation and e-ective communication of end results. Suitable tools and
approaches can boost scienti�c productivity signi�cantly, e.g., by revealing
hidden trends or intrinsic patterns in the data, leading to fresh insights and
eventually, new scienti�c discoveries.

The big data revolution is providing enormously large, incredibly rich, and
highly complex data volumes that impose extremely challenging demands
on traditional visualization approaches (see e.g. [17, 18]). The demands to
address are e�ciency, i.e. the ability to handle rapidly the underlying data
complexity, and intuition, i.e. the ability to reach suitable interpretation by
domain experts.

Innovative visualization tools and solutions must be able to (i) handle
complex and heterogeneous datasets, (ii) support multiple visualization
strategies (e.g., 2D and 3D renderings, projection techniques for higher
dimensionality data) and (iii) enable an intuitive and user-friendly data
exploration. Moreover, the ever-growing size of the datasets underlines the
need for moving from the traditional standalone model to novel distributed
approaches, relying on cloud-based infrastructures able to meet the
increasing demand for resources.

ParaView [19] is a large scale parallel visualization software, designed for
e-ective exploitation of high performance infrastructures. A web enabled
version, ParaViewWeb, can act as a Web Application by allowing users to
remotely connect via web browsers to a ParaView server. The Cactus
computational framework [20] can support a web browser interface for in
situ visualization and steering tasks. The user can instrument existing high
performance applications with the Cactus API, perform steering tasks and
view visualization outputs through a web browser. WebVis [21] is a multi-
user, client-server, visualization framework with a web-based client
o-ering services in the cloud and is accessible via netbooks, smartphones,
and other web-and JavaScript-enabled mobile devices.

2.2.3 Actual prototype description and maturity level

INAF has been developing and maintaining the Visualization Interface for
the Virtual Observatory (VisIVO) [4,23] at the TRL5 level and extended it
with the ViaLactea Visual Analytic [5] module (VLVA).

VisIVO is developed adopting the Virtual Observatory standards and its
main objective is to perform 3D and multi-dimensional data analysis and
knowledge discovery of a-priori unknown relationships between multi-
variate and complex astrophysical datasets.

VisIVO is deployed in a variety of �avours as follows:

 VisIVO Server [5] - a platform for high performance visualization,
 VisIVO Library [5]- for running complex work�ows on DCI, clouds and

HPC infrastructures to e�ciently produce complex views of the dataset
and full movies directly with the user-code internal data representation
(i.e. without the need to create intermediate �les).

 VisIVO ViaLactea Visual Analytics (VLVA) [6,7] - which allows to exploit
a combination of all new-generation surveys of the Galactic Plane to
analyze star forming regions of the Milky Way.

a. Prototype modelization, structure and functional description

To render the visualization, we typically require three steps: data
importing, �ltering and viewing. The importing process converts the
supplied datasets (originally in di-erent formats) into an internal binary
format. A VisIVO Binary Table (VBT) is a highly-e�cient data
representation used by VisIVO Server internally. A VBT is realized through
a header �le (extension .bin.head) containing all necessary metadata,
and a raw data �le (extension .bin) storing actual data values. For
example, the header may contain information regarding the overall
number of �elds and number of points for each �eld (for point datasets)
or the number of cells and relevant mesh sizes (for volume datasets). The
raw data �le is typically a sequence of values, e.g. all X followed by all Y
values. The �ltering process allows to perform several operations on the
data, this may include randomization or decimation to reduce the �nal
resolution, mathematical or statistical operators or commonly adopted
cosmological post-processing such as the three commonly used mass
assignment functions, i.e., the nearest grid point (NGP), the cloud-in-cell
(CIC), and the triangular-shaped cloud (TSC) methods. Finally the
visualization process creates multi-dimensional views from the data that
must �t the available RAM. The kinds of visualization include data points,
volumes and vectors and are based on the Visualization TooKit (VTK) [8].
Figure 4 depicts the typical visualization pipeline of VisIVO Server
consisting of the application of the three main modules: VisIVO Importer,
one or more VisIVO Filter(s) and one or more VisIVO Viewer(s).

Figure 4:visualization pipeline of VisIVO server

b. Actual implementation

In the presented use case, we deal with multi-dimensional simulated and
observational data. Simulated data are produced by
N-body/hydrodynamical cosmological simulations. We will primarily focus
on GADGET [2] (GAlaxies with Dark matter and Gas intEracT) simulated
data. The primary result of a simulation with GADGET are snapshots,
which are simply dumps of the state of the system at certain times.
GADGET supports parallel output by distributing a snapshot into several
�les, each written by a group of processors. This procedure allows an
easier handling of very large simulations; instead of having to deal with
one �le of larger size, it is much easier to have several �les with a smaller
size. Each particle dump consists of a multiple number of �les. Each of
the individual �les of a given set of snapshot �les contains a variable
number of particles. However, the �les all have the same basic format,
and all of them are in binary. A binary representation of the particle data
is our preferred choice, because it allows much faster I/O than ASCII �les.
In addition, the resulting �les are much smaller, and the data is stored
loss-less.
Observational data are mainly related to the major new-generation
surveys of the Galactic Plane from the infrared to the radio band, both in
thermal continuum and in atomic and molecular lines, from Europe-

funded space missions and ground-based facilities. We will primarily focus
on large scale data cubes in the radio band coming from precursors
and/or path�nders of the Square Kilometre Array [3], the largest and
most accurate radio telescope arrays which are under construction in
Australia and South Africa.
The size and complexity of this data require optimized codes and full
integration within the astronomical pipelines and work�ows exploiting
HPC and exascale systems.
Within the FL3 activities, VisIVO will be extended and optimized for the
real-time visualization of cosmological simulated data, giving the
opportunity to compare with observational multiwavelength data,
exploiting the available HPC platforms.
The importing modules are being parallelized for multi node/multi thread
platforms using MPI. Speci�cally, the importing modules will use MPI-IO to
parallelize multiple reads and writes on common �les and a Consumer-
Producer approach, useful for load balancing, depicted in Figure 5.

Figure 5:Producer - Consumer approach schema

The �ltering modules will be extended to exploit multi GPU platforms
investigating CUDA and OpenACC[10]. Depending on the underlying
complexity of the �lter modules, some of them will instead employ MPI
(e.g. the �lters to merge VBTs or add new tabular columns).
The viewer modules core technology, based on VTK, is already optimized
for emerging processor architectures [11] and will be tailored to support
the �ne-grained concurrency for data analysis and visualization
algorithms required to drive extreme scale computing by providing
abstract models for data and execution that can be applied to a variety of
algorithms across many di-erent processor architectures. Finally a client-
server based architecture (employing Paraview) will be exploited to avoid
large scale data movements and to set up the render engine close to the
data.

c. Validation tests and results

VisIVO has been already deployed using Science Gateways [22, 9] to
access DCIs (including clusters, grids and clouds) using containerization
and virtualization technologies, it has also been selected as one of the
pilot applications deployed on EOSCpilot infrastructure demonstrating
that the tools can be accessed using gateways and cloud platforms and it

has been deployed on EOSC, e�ciently exploiting Cloud infrastructures
and interactive notebooks applications [9].

2.2.4 Prototype evolution and implementation

a. Prototype evolution direction

The �nal aim of the prototype evolution direction and the related
implementation activities will be tailored to pursue the following
objectives:

 O1: Enhance the portability of the VisIVO modular applications and
their resource requirements. VisIVO modules, i.e. importer, �lter(s)
and viewer, are being parallelized to further exploit HPC and Exascale
infrastructures in FL5. Thus improving its portability and potentials of
integration with other astrophysical pipelines and computing
resources will make VisIVO fully integrated within the scientists’ toolkit
for its seamless usage, abstracting from technical details freeing
astronomers to concentrate in doing science.

 O2: Foster reproducibility and maintainability. A visualization aided
data analysis usually requires several parameter settings for pre-
processing and actual rendering of a complex multidimensional
dataset. Furthermore, in this era of Open Science, o-ering novel
mechanisms and techniques to make scienti�c discoveries
reproducible and maintainable is a must, especially for enhancing
scienti�c and technical collaboration.

 O3: Take advantage of a more �exible resource exploitation over
heterogeneous HPC facilities (including also mixed HPC-Cloud
resources). So far VisIVO has been onboarded to the European Open
Science Cloud (EOSC) and has been improved toward meeting the
Cloud requirements and o-ered services. With the increasing size and
complexity of astrophysical datasets, there is a need for increasing the
computing performances as well as the storage capacities for
processing and analysis tasks while maintaining the Cloud software-
as-a-service opportunities.

 O4: Minimize data-movement overheads and improve I/O
performances. The importer modules of VisIVO rely on heavy I/O tasks
for translating the astrophysical datasets in the internal VisIVO binary
format that is also the one imported for the VisIVO �ltering and
visualization modules. Therefore, minimizing the computing costs of
these I/O tasks could potentially improve the overall performances of
the VisIVO pipelines.

The VisIVO tools and related software will be provided by INAF
Astrophysical Observatory of Catania (OACT). For this work plan we
expect collaboration with UNITO (for StreamFlow and Jupyter Work�ow,
see deliverable D4.FL3), with UNIPI (for CAPIO and Nethuns, see
deliverable D4.FL3) and with CINECA (for the Interactive Computing
Service, see D4.FL3, and for improving the parallel implementation of the
VisIVO modules).

b. Prototype evolution structure and description

Figure 6: evolution of the Cloud deployment prototype

Additionally, we would like to improve I/O performances, since VisIVO
work�ows communicate through �le read/write operations as depicted

e.g. in the exempli�cative work�ow depicted in �gure 7.

Figure 7: exemplificative workflow of VisIVO communications

c. Prototype implementation and involved tools

We would like to investigate work�ow abstractions to allow a portable
representation of the VisIVO modular applications and their resource
requirements, fostering reproducibility and maintainability, to take
advantage of heterogeneous HPC facilities (including also mixed HPC-
Cloud resources) while minimizing data-movement overheads. In
particular:

 StreamFlow (UNITO). We aim to: i) execute the di-erent VisIVO
modules in multi-container environments to eventually support the
concurrent execution of multiple communicating tasks in a multi-agent
ecosystem; and ii) to allow for hybrid work�ow executions on top of
multi-cloud or Hybrid Cloud HPC infrastructures. We expect that its
hybrid work�ow approach will enable the deployment of the di-erent
distributed VisIVO work�ow steps onto di-erent modules and to
exploit the topology awareness emerging from the VisIVO work�ow
models allowing StreamFlow to implement locality-based scheduling
strategies, automated data transfers, and fault tolerance. Moreover,
we expect to increase the reproducibility and provenance of our
VisIVO work�ows also thanks to the exploitation of the Common
Work�ow Language [12] (CWL) and all its related platforms e.g. the
Work�ow Hub [13] and the RO-CRATE [14] and supports also other
Work�ow managers like Galaxy [15], Air�ow [16] or others (see
D4.FL3, section 2.1.6).

 Jupyter Work<ow (UNITO). Additionally, we plan to investigate the
Jupyter Work�ow kernel to describe the VisIVO work�ows and execute
them in a distributed fashion on Hybrid Cloud HPC infrastructures
aiming to improve the usability, readability and maintainability of
VisIVO applications. Moreover, we expect this integration to improve
the application scalability to better exploit the heterogeneity of the
underlying computing resources (see D4.FL3, section 2.1.5).

 The Interactive Computing Service (CINECA). The service will be
exploited to explore the functionalities o-ered in particular the ones
related to the web interfaces enabling VisIVO pipelines. This work will
include the implementation of Python wrappers to VisIVO Command
Line Interfaces thus seamlessly integrating VisIVO with interactive
notebooks and Python codes. Additionally, we will test and explore the
VNC based features for enhancing the capabilities of VLVA and, �nally,
we will test the StreamFlow integration within the service when it will
be available (see D4.FL3, section 2.1.4).

Additionally, we would like to investigate fast I/O techniques for
optimizing the importing of large-scale datasets (currently employing
MPI). Such as:

 CAPIO (UNIPI+UNITO). We would like to investigate the integration
of VisIVO work�ows with the CAPIO middleware to boost its I/O
performances without modifying the original codebase and allow it to
coordinate the I/O within the VisIVO modules and, eventually, inject
streaming capabilities into its work�ow (see D4.FL3, section 2.4.3).

 Nethuns (UNIPI). Additionally, we will investigate the feasibility to
integrate the lightweight userspace library Nethuns that o-ers a
straightforward programming model for network I/O and test the
available I/O accelerations frameworks, nicknamed engines, as a
backend (see D4.FL3, section 2.4.2)

2.2.5 Final validation tests

The �nal validation tests will be tailored to evaluate the degree of
accomplishment of the development activities toward reaching the 4
objectives presented in Section 2.2.4 part a targeting the increasing of the
TRL higher than TRL 6. The enhanced portability of Objective 1 and the
increased �exibility of resource exploitation of Objective 3 will be

validated by the successful implementation and execution of VisIVO
work�ows on a number of di-erent computing infrastructures, including
Cloud and HPC centres at INAF and also the others available by the FL3
consortium (e.g. HPC4AI from UNITO or infrastructures at CINECA)
eventually exploiting ready to use interactive notebooks. To accomplish
this latest activity, a python wrapper to VisIVO Server will be developed.
The increased reproducibility and maintainability of the visualization
pipelines o-ered by VisIVO, as mentioned in Objective 2, will be validated
by a number of work�ows developed and available on common
repositories to demonstrate the results over challenging use cases such as
large scale cosmological simulations or visualization of large scale SKA
precursors datacubes. Finally I/O performances will be measured to
validate the Objective 4 tested on datasets with increasing size and
complexity.

To summarize, the Key Performance Indicators used to evaluate the
success of our developments are presented in the following table.

KPI Description Success
measure

VisIVO Work�ows The delivery of a
repository including the
most common
work�ows to exploit
VisIVO in data intensive
scenarios (e.g.
cosmological
simulations or
visualisation of large
scale SKA precursors
datacubes) and perform
the processing on
di-erent computing
infrastructures (from
HPC to Cloud).

At least 3

VisIVO wrapper The development of a
wrapper for VisIVO
Server in Python to
integrate VisIVO with
interactive notebooks
and Python codes.

3 (one for each
VisIVO Server
module: Importer,
Filter, and Viewer)

VisIVO interactive
notebooks

Integration of ready-to-
use VisIVO notebooks
templates to be
exploited and
eventually customised
within Jupyter Work�ow
and/or the Interactive

At least 3

Computing Service.

I/O performances The improvement of
VisIVO I/O
performances with
CAPIO and, eventually,
Nethuns tested on
datasets with
increasing size and
complexity.

Measurements of
I/O performance
improvements
over at least 3
di-erent datasets
with increasing
size and
complexity.

2.3 Genomic variant calling pipeline

2.3.1 Introduction

Omic data analysis is becoming more and more a routine activity in several
hospitals and research labs. This data availability allows for an
unprecedented amount of molecular detail which opens new avenues in
terms of data analysis towards precision medicine [24]. When dealing with
genomic data in particular, these data require a systematic and not trivial
pre-processing step before any actionable knowledge can be derived. This
step is generally referred to as variant calling and it is the one which
bridges the raw data to information usable by the clinician to carry on the
investigation and infer a possible disease or disease predisposition.
Variant calling is indeed a critical step in genomic analysis that involves
identifying genetic variations, such as single nucleotide polymorphisms
(SNPs), insertions, and deletions, across the genome.
Genomic data coming from Next Generation Sequencing (NGS) devices
[25] (or more recently even from Oxford Nanopore devices [26]) require
indeed the de�nition of a dedicated multi-step pipeline for variant
identi�cation followed by varian annotation and prioritization. Towards this
aim several intermediate tools must be used and employing work�ow
managers to orchestrate such pipelines is crucial to obtain an e�cient and
manageable execution. In this proposal we discuss the enhancement of an
existing pipeline. In the following, in section 2.3.2, we revise some recent
literature on the topic, in section 2.3.3 we discuss our actual prototype, in
section 2.3.4 we discuss the planned improvements and in section 2.3.5
we devise a set of �nal tests for the enhanced platform validation.

2.3.2 Related works

Over the years, a wide range of variant calling algorithms have been
developed, each with its own strengths and limitations. Traditional
methods such as samtools [27] and GATK [28] rely on mapping reads to a
reference genome and using statistical models to detect variants. These
prove to be reliable and largely used. Together with these methods others
try to improve the performance especially in regions of the genome with
high sequence complexity or low coverage. To address these challenges,
methods such as DeepVariant [29] have been developed that utilize deep
learning to improve accuracy and sensitivity. Additionally, the use of
multiple samples and joint variant calling have been shown to improve

variant detection, especially for rare variants. However, the sheer volume
of data generated by high-throughput sequencing technologies presents its
own challenges, such as scalability and data storage. To address these
issues, cloud-based platforms such as Google Genomics, Illumina Dragen
on cloud and AWS Genomics have emerged that provide scalable and cost-
e-ective solutions for genomic data analysis. Overall, the state of the art in
variant calling continues to evolve as new technologies and algorithms
emerge, with the ultimate goal of improving our understanding of the
genetic basis of disease and informing precision medicine.

2.3.3 Actual prototype description and maturity level

We have recently de�ned a prototype variant calling pipeline built around
GATK-Parabricks [30] which is currently implemented via Next�ow [31] and
that takes advantage of, among other resources, GPUs computing
capabilities. In this kind of pipeline, where possible, it is particularly useful
to submit jobs to di-erent queues of HPC infrastructures where each
process can be associated with a speci�c queue (for example a GPU queue
is desirable for some tasks whereas a CPU one may prove adequate for
other activities). This also allows us to easily add new features. In the
following we give more details in the current implementation whose
maturity can be ascribed to the TRL4 level.

a. Prototype modelization, structure and functional description

In this �rst prototype we deal with single nucleotide variations detection.
Our pipeline is pictorially represented in �gure 8. The current
implementation is managed via next�ow and the key steps in sequence
are: alignment, variant calling, annotation and prioritization. In the
variant calling step variants are detected whereas in the annotation and
prioritization steps they are biologically characterized and prioritized
based on available clinical knowledge on genetic diseases. In the next
subsection we give details on the current implementation and each single
step.

Figure 8: Genomic variant pipeline

b. Actual implementation

Now we discuss in detail the current implementation of the above
mentioned three key steps namely: alignment & variant calling,
annotation and prioritization.

Alignment & Variant Calling

In the �rst part of the analysis the nVidia Clara Parabricks package is
used. This software is a porting of GATK [28] to a GPUs-based
architecture. This package leverages GPUs parallel computing capabilities
to accelerate alignment and variant calling. As it is rooted on the “GATK
best practices” the produced data are perfectly comparable to traditional
pipelines. In detail the function “germline” (the one of current interest) of
the package is equivalent to the sequential use of the following tasks:
alignment of the DNA reads present in the FASTQ �le through BWA-Mem;
ordering with respect to the coordinates; mark the duplicates with
MarkDuplicates, compute and apply the base quality score with BQSR;
lastly perform the variant calling through HaplotypeCaller. During this
execution step some �les are generated: the BAM �le (binary and
compressed) contains the information about the aligned reads, the VCF
�le that contains the identi�ed variants, additionally some auxiliary �les
are generated which contain the alignment quality (e.g. duplication
metrics). Taking advantage of GPUs for a human WGS (at 40x of
coverage) Parabricks allows to reduce the analysis time to a few hours
whereas on traditional software and CPU-nodes it may easily require 1-2
node computing days. Parabricks is natively containerized hence it is easy
to ship it to any GPU-based node. At this step of the execution pipeline, if
no further a-priori information is available from the user, one could return
the raw data �les, namely the BAM and VCF �les, one pair for each
genome. The total amount of data is about 80 GB for the BAM �le and 20
Gb for VCF.

However, at this stage the data is still quite raw and hence further steps
are needed to acquire some biological/clinical knowledge. Once the VCF is
generated it is possibly necessary to evaluate which variants are possibly
false positive. In this case the tool used is VariantFiltration from the GATK
package. The generated VCF �le (or �les) contains only the metrics
associated with the reads by the sequencer, but it does not contain any
biological information associated with the variant; it only contains the
position with respect to the reference genome and the change of
base/bases. Hence some further steps are necessary, dubbed annotation
steps, that allow including more biological information in the �nal �le.

Annotation

There exist several programs in the scienti�c Community and among
them we choose three largely used ones:

1. SNPE- [32] introduces information relative to the functional e-ect of
the variant and predicts the e-ect of the variant on genes and
proteins (e.g. change of amino acid in the expressed proteins for the
case of coding regions).

2. ANNOVAR [33] introduces information about possible modi�cations
that regard the coding region, about possible links with Mendelian
diseases, frequencies associated with the variant in the DB such as
gnomAD, pathegenocity and conservation scores.

3. In case the sequence is somatic (cancer) the COSMIC [34] tool is used
to verify the presence of the variant in its database.

The pipeline produces at this point an HTML report on the data generated
by SNPe- through the MultiQC software, which is also used to verify the
quality of the output data. Results are hence “published” in speci�c user
selected folders or archived.

Prioritization

Once the annotation step is �nished the subsequent step consists in the
prioritization of the variants. The prioritization process is characterized by
several �ltering levels in which the variants, more or less putatively
relevant for research and the clinic, are selected. This process is
leveraged by the availability of reference databases which support the
prioritization process by the explicit knowledge of the correlation between
the disease and the variant and hence the genes involved. All the
procedures are related to rare variants identi�cation which are the kind of
variants that typically correlate with the disease except from multi-
factorial more complex cases.

The �rst �ltering step in the prioritization work�ow allows to remove the
polymorphisms and the common variants present in the VCF, indeed
according to the ACMG [35] guidelines those are most probably benign
(hence of no clinical interest). Common variant means a variant which
has frequency over 5% on the population.

The second �ltering level considers the impact that the variant has over
the protein expression and it is based on the IMPACT scored assigned by
the SNPE- annotator. In this way one can remove all the variants which
are synonymous or lie in intronic regions and that don’t have any e-ect
on the splicing.

The third �ltering level excludes those variants which cannot be
considered to be valid because their quality is not su�cient. This step is
necessary to remove false positive which could be ascribed to the reading
method of the genomic device. Indeed, devices such as Next Generation
Sequencing ones can produce several false positives, particularly where
there are repeated sequences patterns.

The fourth �ltering level is disease-speci�c and utilizes a variable list of
genes depending on the speci�c pathologies. For each pathology one has
a BED input �le, namely a set of genes and positions at which the
analysis is carried out.

The last step consists in an evaluation of the pathogenicity scores that
again is inspired by ACMG guidelines. First one evaluates the InterVar
score [35] and the variant is kept only if the state pathogenic or probably
pathogenic is detected. The variants with an InterVar score that is benign
or likely benign are discarded. In case the variant bears an uncertain

clinical meaning the ClinVar score is evaluated too [36] using a similar
acceptance/rejection method.

In the case these two tools lead to an uncertain outcome, the CADD score
and the allelic frequency are checked: the variant gets �ltered out if the
CADD score is below a minimum threshold or if the allelic frequency is
more than a given threshold.

c. Validation tests and results

The pipeline has been cross validated with other genomic labs on variants
called on real-world input FASTQ �les from Illumina NGS devices. A cohort
of more than one hundred patients has been used and the results have
been compared with the variants reported on a reference WES clinical
analysis. Out of the 150 variants reported by the reference WES analysis
only 11 were not identi�ed by the proposed pipeline, and of these only
two were exonic. A paper is in preparation and the software will be made
publicly available.

2.3.4 Prototype evolution and implementation

Currently the prototype maturity level could be ascribed to TRL4 and along
the project timeline we can envision targeting TRL5. In the next
subsections we deliver details on this process.

a. Prototype evolution direction

The increased TRL can be achieved through an increased �exibility of the
software related to both the execution model and the data. Hence the
Key Performance Indicators (KPI) here will eventually be two. The �rst
will be the sought-after possibility to remotely run the process on a HPC
system, hence along the lines of the so-called Cloud-HPC convergence
philosophy; moreover, in general �exibilization of the whole execution
process is targeted. The second aim is related to data transfers; currently
moving the raw results means possibly transferring several Gigabytes of
data rendering the process feasible, yet daunting. Hence the second KPI
will be related to the improved data transfer through compression
techniques. Further improvements, not currently planned, could be
possible and we will consider them along the project execution.

b. Prototype evolution structure and description

While we don’t plan to change the overall backbone of the software, we
plan to improve synergistically, or where strictly necessary to replace, the
current work�ow manager. We plan to insert at the beginning and the
end of the work�ow some improvements regarding the execution model
and the data compression and retrieval. In the next section we report in
higher details the involved tools and the related planned improvements.

c. Prototype Implementation and involved tools

Preliminarily to the improvements description it is necessary to deliver
some further information on both the data in terms of input and output

and code. The number of samples (individuals) will be decided depending
on the speci�c dataset; however each individual translates into two
FASTQ.GZ �les of size between 10 and 100 GBs. The output of the
pipeline per individual is approximately 100 GB where 80 GB ascribed to
the BAM �le whereas 20 GB related to the VCF. The code is developed in
the Next�ow work�ow manager language (which runs on top of the Java
Virtual Machine) and orchestrates the previously mentioned several tools
ranging from python (Parabricks) to the above-mentioned annotation and
�ltering and tools in various programming languages (e.g. Java, perl). To
leverage parallel computing nodes in multi-cores and GPU architectures
currently we target the PBS queue based systems.
In this demonstration we �rst target the adaptation of the current
implementation of the pipeline to the Stream<ow [37] (UNITO, see
D4.FL3 section 2.1.6) environment with the aim of increasing the
�exibility. We will be employing Stream�ow to allow the remote execution
of the pipeline and hence render agile the whole execution and to �nally
retrieve the output data. The increased �exibility will allow us also to test
the pipeline in several other (possibly heterogeneous) execution
environments hence not only allowing a fast provisioning but also
allowing us to evaluate the e-ect of system hardware/software aspects
such the availability of GPUs, di-erent storage and �le systems available
in the host machines. This will permit us to use the toolset as a
benchmark for more or less heterogeneous execution environments
where the role of the HW and the software will be evaluated.
The other “tool” we will leverage is data compression. Indeed, currently
the pipeline, for each single individual, produces about 80 GB for a single
BAM (compressed binary �le) and about 20 GB of un�ltered VCF (textual
uncompressed �le). Moreover, the input FASTQ.GZ �les can occupy up to
80 GB of space. In this context, it is interesting to test and possibly propel
the further development of �le compression tools (A3lab, UNIPI, see
D4.FL3 section 2.2.4). The compression tools can be applied to VCF �les
in isolation and groups but possibly even to the input FASTQ �les,
depending on the data movements involved. We will challenge existing
codes (e.g. genozip [38], vcfshark [39]) and possibly combine them with
A3lab tools and know-how.
The resulting pipeline will hence endow a higher level of �exibility in the
execution and will require less networking (bandwidth) resources thanks
to the compression frameworks and retrieval we will be adopting. Further
technological investigations may be pursued depending on intermediate
results or further ideas that may emerge during the project lifespan.

2.3.5 Final validation tests

As previously mentioned, the two KPI will be the increased �exibility level
and the compression ratio. The �rst KPI will be measured by means of the
successful remote execution of the pipeline both in IIT and non-IIT HPC
infrastructures (e.g. at UNITO) and also the correct data retrieval. We will
be building and delivering pre-con�gured StreamFlow examples to test on
the given systems. Intermediate tests will be carried out at IIT whereas the
�nal ones will be done outside. The success degree of the second aim will
be carried through the estimation of the obtained compression ratio
compared to the current uncompressed �les. For the current
experimentation, to avoid data privacy concerns, publicly available data

will be employed or in any case data with privacy concerns won’t be
moved from the original repository.

2.4 Edge-Cloud continuum federation infrastructure

2.4.1 Introduction

The observed evolution of the computing space warranted by networking
suggests the emergence of a decentralized, federated, yet seamless
organization (see for example [40]). This prediction evokes the concept of
the Continuum as a platform infrastructure where data processing may
take place dynamically where it is deemed most convenient under any of
the criteria of interest to the end user (latency, privacy, energy, etc.). The
concept enables the traditional Internet and the Internet of Things to
integrate into a seamless Continuum, where a multitude of as-a-service
applications may be developed, deployed, and employed regardless of
location [41]. The Cloud and the Edge can both bene�t from forming the
Continuum together, allowing Cloud-like virtualized access to the physical
world to occur in a more distributed and dynamic manner, and favoring the
creation of numerous novel latency-free, private, and secure, energy-savvy
services. This vision of seamless integration extends the literature view,
which regards the Cloud and the IoT as distinct spaces, with the letter
sending data and o]oading computation to the former but not vice versa.
Likewise, the concept goes beyond merely connecting network nodes to
allow computation to happen at predetermined locations in the computing
space. For instance, highly dynamic scenarios comprised of mobile users
and diverse applications require �exible placement of data and computing
for each mobile user.
The foundation of the Continuum is made up of pervasive service platforms
located anywhere the user is, and a multitude of services, with di-erent
granularity, available over the Internet and composed opportunistically
according to user needs. The concept of Continuum is not entirely novel, as
other authors have already described a similar vision in the past [44, 45].
Other researchers, such as [42] and [43], have also proposed analogous
visions and architectures for the Continuum, although limited to the
innovation of data-driven applications, while [44] suggests adopting the
Serverless paradigm [45] for the Continuum. All the mentioned authors fall
short in supporting a wide variety of applications, e.g. like long-running
industrial control loops or even just mainstream Web app servers. Enabling
the Continuum requires design-level (as opposed to merely
implementation) considerations as many operational aspects of the
system, for example orchestration, are highly sensitive to the speci�c
characteristics of the hosted applications as well as of the hosting
infrastructure.
Our e-ort in this project explored the use of state-of-the-art open-source
technologies for building a proof of concept for the infrastructure layer of
the Continuum, around the requirements of it being application-agnostic
and capable of supporting data locality and computational mobility. Our
e-ort assumed the system concept depicted in �gure 9, made of a
collection of cluster nodes, each of which allows forming �exible, agile, and
geographically bound aggregates of networked computing devices. Each
such node federates the resources collectively available within its nodes
and orchestrates their deployment. The federation is achieved via a
dedicated infrastructure layer, which discovers and aggregates services,

data and compute resources transparently across cluster nodes in a
manner that meets end-to-end QoS requirements. As we envision it, the
system dynamically instantiates and schedules services along the path
from source to destination, based on application-speci�c requirements and
constraints. If a single cluster node lacks hardware, software or data
resources to meet the user needs, it will propagate the corresponding
requests outside of its federation to cluster nodes within an acceptable
geographical distance that have the required capabilities. Collaboration
among cluster nodes is essential to support user mobility across
neighboring regions. In the Continuum, services should follow the user
movements without signi�cant outage or perturbation.

Figure 9: High-level view of a federated set of cluster nodes

User applications running on a single cluster node are given access to
requested resources thanks to the intermediation of the service layer.
Applications intending to run on a cluster node specify their service
requirements and constraints, namely the type of resource (e.g., expected
performance, pricing), without needing detailed knowledge of the
underlying infrastructure. The orchestrator receives the requirements from
the service layer intermediary and provisions resources and services as
required, assigning them to compute nodes in the target cluster node.
While geographically distant, such nodes form an interconnected cluster
that logically aggregates the available resources. Services capture
common dependencies like a database and persistent storage for data
sources, along with pertinent constraints on them, such as latency limits
and subscription plans.
In the exploratory work outlined in this document, we studied the
realization of the infrastructure architecture within a single cluster node.
Extending the prototype to federations of cluster nodes is left to future
work.

2.4.2 Related works

Continuum Computing: The work in [49] provides a comprehensive view
of the trend towards integrating Cloud and IoT in a Continuum, and an
articulate discussion of architecture, orchestration, privacy and business-
value issues. The authors of [50] and [51] o-er a broad literature review
regarding the integration of Edge and Cloud in a Continuum. Other authors
have also proposed architectures for the Continuum, but their e-orts were
concentrated on supporting data-driven applications [47, 45, 46]. While the
magnitude of data produced by the Edge is a major driving factor behind
data-driven large-scale work�ows, the Continuum vision should extend to a
broader range of application types. Besides, while the cited research works
achieve some level of integration of Edge and Cloud, they typically fail to
consider the need for service composition, uniform interfaces and portable
execution throughout the Continuum. Addressing these challenges is
crucial to enabling pervasive applications with greater context awareness
and mobility. In passing, it should also be noted that the Continuum of
Computing is recognized as an emerging paradigm by the HiPEAC (High-
Performance Embedded Architecture and Compilation) network of
excellence, sponsored by the European Commission [52].
Osmotic Computing: Back in 2014, the authors of [53] described the
concept of Fluid Internet. This novel paradigm would seamlessly provision
virtualized infrastructure capabilities based on the requirements of
services and users, much like a �uid adapting to its surroundings. In a
similar chemistry analogy, a few years later, in 2016, the authors of [54]
presented the vision for Osmotic Computing. Their work describes a
paradigm that enables the automatic deployment of (micro)services
composed and interconnected over both edge and cloud infrastructures.
Both paradigms present strong a�nities to the goals and challenges of the
Continuum. Notably, the Osmotic paradigm envisions the same
bidirectional �ow of microservices from the Cloud to Edge and vice versa,
depending on the application con�guration. The di-erences between
Osmotic Computing and the Continuum of Computing are subtle but critical
in terms of the novelty of the �nal applications they enable, respectively.
First, Osmotic Computing involves deploying microservices, a mere
evolution of today's practice of building software in silos. Instead of
running the entire application in the Cloud, Osmotic Computing
decomposes it into microservices and deploys the latter across cloud and
edge datacenters. However, such microservices are not composed of
services provided by a ubiquitous intermediary service platform. Osmotic
services are thus limited in their context awareness, as services like city
sensors are unavailable, decreasing business opportunities. Applications
are built instead, at best, in numerous silos [55]. Indeed, the main types of
microservices that the osmotic computing framework orchestrates are
general-purpose [54]. Second, there is a di-erence in semantics. Osmotic
computing envisions an opportunistic balancing of microservices between
the Cloud and the Edge, whereas the Continuum emphasizes a wider
continuity in terms of computing. Such continuity spans from the Cloud to
the extreme Edge with highly constrained devices, all seamlessly
integrated into the Continuum service platform. In contrast, Osmotic

Computing limits itself to comparatively powerful machines such as
Raspberry Pi. For such reasons, we emphasize the importance of exploring
virtualisation technologies to truly include constrained IoT nodes as active
players in the Continuum. Conversely, the Osmotic Computing literature
focuses on more resource-demanding container-based approaches. Third,
once deployed, the Osmotic microservices are relatively stationary to the
deployment location, whereas the Continuum exhibits greater extents of
(potential) mobility. In case of unavailability of resources at edge/cloud,
Osmotic Computing relies on solutions like message brokers (e.g. Apache
Kafka) to store messages temporarily in ad-hoc queues, awaiting to
resume services when resources are available [56]. Conversely, the
Continuum paradigm expects the computation to migrate to the closest
available location temporarily. Additionally, applications in the Continuum
can move geographically to accommodate the user's movement, thanks to
the seamless and ubiquitous service platform.
Serverless Computing: The Serverless paradigm [45], which focuses on
the provision of computational functions, may seem to �t well with the
premises of the Continuum. First, the Serverless programming model
makes developing, deploying, and managing applications dramatically less
burdensome than conventional styles. Second, individual functions may
�exibly and equally run on the Edge or the Cloud, thus earning much
portability. Furthermore, the current state of technologies we later present,
like WebAssembly [46], plays well with the premises of Serverless, with
limited resource access. Several works from the research and industry
communities are actively exploring the combination of WebAssembly and
Serverless Edge functions with notable results [60, 61, 62]. Their work,
combined with the de�nition of serverless work �ows described in [44],
o-er an appealing proposition for the Continuum. However, while well
suited for event-driven and request-reply applications, the Serverless
computing model falls short for long-running services that must feature
high availability and low latency, such as industrial monitoring control
loops. Provisioning and instantiating a Serverless function inevitably incur
additional latency due to cold start and package download, even more in
the face of unpredictable mobile user patterns and distributed networks.
Other authors have also proved that it can be challenging to modify
stateful applications to the Serverless paradigm, e.g. conventional web
servers, since the state is not easily shared among functions [60]. Finally,
the Serverless paradigm typically requires limited execution time, limited
resource access and limited specialized hardware. While these restrictions
allow greater scalability and mobility, they greatly reduce the scope of
applications that can be deployed in them. While recent works are
reducing such limitations by allowing functions to be quickly co-located in
the same machine and memory regions to be safely shared using
WebAssembly sandboxing [59], we deem those limitations intrinsic to the
nature of the Serverless model. The Continuum and the Serverless models
are not to be regarded as one form of computing supplanting the other.
Analogously to how the growth of general-purpose container orchestration
platforms like Kubernetes was necessary to pave the way for implementing
Serverless platforms, we expect a similar direction for the Continuum and
the Serverless ways. As the Edge and the Cloud become increasingly

integrated, the Serverless paradigm will likely act as the dominant service
delivery model within the Continuum.

2.4.3 Actual prototype description and maturity level

Our prototyping e-ort in this project intentionally used state-of-the-art
open-source technologies, in the intent of gauging the distance between
the needs of our vision of Continuum and the available technology. The
TRL of the prototype is at 3, as it is proper for an experimental proof of
concept. The expectation at the end of the project is to have improved
critical elements of the selected technology components to close some of
the critical gaps, making the infrastructure layer candidate for
demonstration in the �eld, which is proper of TRL 6.

a. Prototype modelization, structure and functional description

As depicted in �gure 10, the infrastructure layer of our concept of cluster
node comprises a set of service providers that o-er data and computation
resources. The data can be generated by streaming IoT devices, for
example cameras, smartwatches, and other data sources typical of
"smart things" environments. The computation resources can be
heterogeneous and distributed across the infrastructure, from the Cloud
to the Edge. In the following, we brie�y discuss each element of the
reference architecture for the infrastructure layer.

Figure 10: Reference architecture for the infrastructure.

Orchestrator control plane: The orchestrator control plane is the core
of the orchestration system. It has a resource monitor module responsible
for keeping track of real-time resource consumption metrics for each
node in the compute cluster. The scheduler usually accesses this
information to make better optimisation decisions. The scheduler is

responsible for determining whether the Continuum has enough
resources and services to execute the submitted application. If resources
are insu�cient, applications can be rejected or put on wait until the
resources are freed. Another possible solution is to increase the number
of cluster nodes to host the incoming application. Such nodes can be
provisioned from local machines or anywhere in the network, preferably
close to the cluster. After determining if requirements can be satis�ed,
the scheduler maps application components onto the cluster resources.
This deployment is done by considering the application requirements, e.g.
latency, geographical constraints, availability or utilization.
Compute nodes: Each machine in the cluster that is available for
hosting services and applications is a compute node. Each of these nodes
implements the orchestrator agent runtime with various responsibilities.
First, it collects local information, such as resource consumption metrics
periodically reported to the control plane. Second, it starts and stops
service instances and manages local resources via a virtualisation
runtime. Finally, it monitors the instances deployed on the node, sending
periodic status reports to the control plane. A central responsibility for the
virtualisation runtime on the Compute nodes is to o-er a consistent
execution platform independent of any underlying infrastructure to allow
applications to run across all software and hardware types with the same
behavior. This capability is a fundamental enabler owing to the extreme
heterogeneity of the devices in the Continuum.
IoT nodes: IoT nodes are embedded devices that act as sensors or
actuators, provided as services to the cluster (more on this to follow). The
IoT nodes are heterogeneous in runtime implementation and
communication protocols. Applications in the cluster interface with them
via brokers provisioned by the cluster. Besides, the embedded devices
support dynamic con�guration by running arbitrary virtualisation modules
in a lightweight runtime. In addition to warranting interoperability among
Compute nodes, the IoT runtime must also be compatible with the
application format accepted by Compute nodes, when the module size
and the hardware requirements can be satis�ed by the target device.
Such extended service interoperability enables greater �exibility and
novelty in deciding where some aspects of IoT computing, such as
controlling and pre-processing, happens. Allowing arbitrary computation
to run safely on microcontrollers e-ectively opens the embedded world to
the Continuum as an additional place of intelligent computing, rather than
only as a mere data collector and dummy actuator.
Underlying infrastructure: One of the main requirements of the
infrastructure architecture is to allow deployment on a large variety of
platforms. The cluster machines can be either VMs on public or private
Cloud infrastructures, physical machines on a cluster, or even mobile or
Edge devices, among others. Such extreme diversity requires rethinking
mainstream virtualization technologies in a form that does not require the
application programmer to have prior knowledge of the eventual
execution contexts.

b. Actual implementation

In this section we outline the implementation choices we made for the
realization of our current prototype of cluster node.

Service orientation

The web has become the world's most successful vendor-independent
application platform and the dominant architectural style on it is
Representational State Transfer (REST) [62] that makes information
available as resources identi�ed by URIs. The web is a loosely coupled
architecture and applications communicate by exchanging
representations of these resources using the HTTP protocol. HTTP is the
most popular application protocol on the Internet and the pillar of the
Web. However, new communication protocols (e.g. CoAP, which we
discuss later in this section) are emerging to extend the web to the
Internet of Things and HTTP itself is undergoing revisions (e.g. HTTP/3 or
QUIC [63]). Our rationale for picking REST is threefold. First, REST
resources are an information abstraction that allows servers to make any
information or service available, identi�ed via Uniform Resource
Identi�ers (URIs). For example, this allows the sensor nodes in our PoC to
act as a server and own the resource's original state. The client
negotiates and accesses a representation of it. Such representation
negotiation is suitable for interoperability, caching, proxying, and
redirecting requests and responses. These features enable seamless
inter-operation and better availability of any kind of service in the
Continuum, especially IoT-involved services. Besides, under the REST
architectural paradigm, IoT nodes can advertise web links to other
resources creating a distributed discoverable IoT web and resulting in an
even more scalable and �exible architecture. Second, REST allows using a
uniform interface across the Continuum: clients access server-controlled
resources in a request-response fashion using a small set of methods with
complementary semantics (GET, PUT, POST, DELETE). The requests are
directed to resources that expose a generic interface with standard
semantics that intermediaries can interpret. The result is an application
that enables layers of transformation and indirection independent of data
origin. Third and last, REST enables high-level interoperability between
RESTful protocols through proxies or, more generally, intermediaries that
behave as server to a client and play as client with respect to another
server. REST intermediaries �t well with the assumption that not every
device must o-er RESTful interfaces directly. Such �exibility suitably
accommodates the diversity of communication protocols on the Edge. We
used these features to bring IoT nodes into the Continuum as any other
service and to enable the coexistence of multiple equivalent services
o-ered by di-erent Cloud providers. We mapped provider-speci�c
interfaces to uniform RESTful interfaces.

Open Service Broker: In our prototype, we realized a web-based service
platform that implements the RESTful Open Service Broker (OSB)
interface [64]. Components that implement the OSB REST endpoints are
referred to as service brokers and can be hosted anywhere the
application platform can reach them. Service brokers o-er a catalog of
services, payment plans and user-facing metadata. The main components
of the OSB architecture are depicted in �gure 11.

Figure 11: The Open Service Broker Architecture

As Cloud standards still struggle to gain traction, however, we need to
bridge the heterogeneity gap between platforms. To this end, we used
brokers to orchestrate resources at di-erent levels within a provider. As
the number of Cloud vendors is limited, building brokering layers that
align access to di-erent Clouds is an a-ordable endeavor. The service
broker translates RESTful requests from the platform to service-speci�c
operations such as creating, updating, deleting, and generating
credentials to access the provisioned services from applications. Service
brokers can o-er as many services and plans as desired. Multiple service
brokers can be registered with the service platform so that the �nal
catalog of services is the aggregate of all services. The platform is thus
able to provide a rich catalog and a consistent experience for application
developers who consume these services. Over the years, the API interface
of the OSB has matured considerably, learning from the experience of a
wide range of marketplace services and Cloud vendors, such as Microsoft
Azure and Huawei Cloud. The current standard version 2.17 is entirely
designed around asynchronously provisioned services and provides
valuable guidance for challenging situations such as service failures. The
OSB guidance ensures consistent semantics and interoperability across
various service behaviors. Sadly though, service dependency remains a
pain point that needs to be coped with. Currently, the OSB standard does
not support a parent-child relationship model between services, whose
handling is left inconveniently to the discretion of the broker author. The
problems that arise from service dependency include whether to publish
multiple services as standalone packages and how to share credentials
between services, provision and remove them in the proper order, and
solve all these issues uniformly across all platforms.

Figure 12: The REST architecture enhanced with CoAP

CoAP: To include IoT nodes in our REST-based architecture concept, we
adopted CoAP [65], a web communication protocol for use with
constrained nodes and constrained (e.g. low-power, lossy) networks. A
central element of CoAP’s reduced complexity compared to HTTP is that it
uses the UDP transport protocol instead of TCP and de�nes a very simple
message layer for retransmitting lost packets. The protocol is designed
for M2M applications and provides a RESTful architecture between IoT
nodes, supporting built-in discovery of resources. As a result, CoAP easily
interfaces with HTTP for integration with web services while meeting
specialized IoT requirements such as multicast support, very low

overhead and simplicity for constrained environments. We made CoAP
nodes interoperable with the rest of the Continuum by following the REST
architecture’s proxy pattern. We built intermediaries that speak CoAP on
one side and HTTP on the other without encoding speci�c application
knowledge. Because equivalent methods, response codes, and options
are present in HTTP and CoAP protocols, the mapping between them is
straightforward. Consequently, the intermediary can discover CoAP
resources and make them available at regular HTTP URIs, enabling web
services in the Continuum to access CoAP servers transparently in the
OSB service platform.

Orchestration

Kubernetes [47]: is an open-source orchestration framework designed
to manage containerised workloads on clusters, originated from Google’s
experience with Cloud services. Two notable features make Kubernetes
especially attractive for our PoC. First, thanks to the Container Runtime
Interface (CRI) API standardisation, Kubernetes allows for various
container runtimes from a technical perspective, with Docker natively
supported by the platform. This extensibility allowed us to leverage a
uniform virtualisation platform based on WebAssembly, while leaving
the individual Compute and IoT node to decide the most appropriate
runtime (e.g. an interpreter compared to a Just-in-Time or Ahead-of-Time
compiler). Second, Kubernetes provides users with a wide range of
options for managing their Pods (the most basic unit of deployment in
Kubernetes) and how they are scheduled, even allowing for pluggable
customised schedulers to be easily integrated into the system. Notably, it
also supports label-based constraints for the Pods’ deployment.
Developers can de�ne their labels to specify identifying attributes of
objects that are meaningful and relevant to them but that do not re�ect
the characteristics or semantics of the system directly. More importantly,
labels can also be used to force the scheduler to collocate services that
communicate predominantly within the same availability zone, which
improves latency very much and paves the way for context-aware
services.
Akri: To register the IoT devices on the Kubernetes cluster, we adopted
Akri [66], a preliminary Microsoft open-source project which allows
visibility to IoT de- vices from applications running within the Kubernetes
cluster. Akri stretches Kubernetes’ already experimental APIs to
implement the discovery of IoT de- vices, with support for the diversity of
communication protocols and ephemeral availability. Using Akri, the
Kubernetes cluster can carry out dynamic discovery to use new resources
as they become available and move away from decommissioned/failed
resources. Discovering IoT devices is usually accomplished by scanning
all connected communication interfaces and enlisting all locally avail-
able resources. Akri is also responsible for enabling applications to
communicate with the device and deploying a broker Pod as
intermediary. We devised the broker as a web server that abstracts the
actual communication between devices and applications behind the
RESTful API previously described. Our RESTful broker also helps to scale
the number of concurrent HTTP requests by implementing high-
performance cache mechanisms. The IoT resource periodically sends its
sensor readings to the broker, where the values are cached locally. Each
application request is then served directly from this cache without
accessing the actual device, with bene�ts on the average roundtrip time.

As many distributed monitoring applications are usually read-only during
their operation (e.g. sensors collecting data in our case), this architecture
exhibits great scalability. A potential goal is to enable new types of
services where physical sensors can be shared with thousands of users
with little impact on latency and data staleness. However, at the time of
writing, this is still a very distant achievement. The Kubernetes Device
Plugin API heavily in�uences the current Akri architecture. Such interface,
already considered experimental by the Kubernetes community, was
designed for hardware attached to compute nodes, e.g. GPUs. However,
IoT devices can live independently from the nodes, and most of them do.
Akri expects a 1:1 relationship between compute node and device,
whereas most IoT devices do not have any kind of relationship to any
node per se. This mismatch has several undesired consequences,
especially on scalability and resiliency. Another pain point in Akri’s
current state is that the project lacks more advanced yet very needed
features for implementing software caching or assuring high availability
or autoscaling in IoT scenarios. Such features are admittedly harder to
provide but highly needed to bring the Cloud to the Edge and vice versa,
an essential preliminary step to the Continuum.

Figure 13: The Akri contribution to the infrastructure layer

Figure 13 shows that the Akri architecture can be divided into four main
components: the agents, the controller, the brokers and the
con�guration. A con�guration extends the Kubernetes API with new
communication protocols and the related metadata, such as the protocol
discovery parameters or the Docker image for the agent container. The
Akri agent is a Pod responsible for discovering devices according to a
communication protocol. It keeps track of the device state and
communicates status updates with the Akri controller.

Virtualisation, interoperability and portability

WebAssembly (Wasm) [48], �rst announced in 2015 and released as a
Minimum Viable Product in 2017, is a nascent technology that provides
strong memory isolation (through sandboxing) at near-native
performance with a much smaller memory footprint. WebAssembly is a
language designed to address safe, fast, portable low-level code on the
web. Developers who wish to leverage WebAssembly may write their
code in a higher-level (compared to bytecode) language such as C++ or
Rust [67] and compile it into a portable binary that runs on a stack-based
virtual machine. We picked WebAssembly as the technology enabling
virtualisation, interoperability and portability in the Continuum for two
fundamental reasons. First, WebAssembly provides language-, hardware-,
and platform-independence by o-ering a consistent execution platform
independent of any underlying infrastructure to allow applications to run
across all software and hardware types with the same behaviour. The
importance of such a feature for the Continuum cannot be emphasised
enough. Second, WebAssembly is advertised as safe and fast to execute.
No program code can corrupt its execution environment, jump to
arbitrary locations, or perform other unde�ned behaviour (which memory-
safe languages, such as Rust, contribute to preventing). Thanks to that
execution guarantee, a WebAssembly may su-er only data exploits
mitigated by applying memory and state encapsulation at the module
level rather than the application level. Granular memory encapsulation
means that even untrusted modules can be safely executed in the same
address space as other code, a critical point for dynamic con�guration in
constrained devices and multitenancy in the Compute nodes of our
architecture. Performance wise, benchmarks of Wasm runtimes on
modern browsers have shown a slowdown of approximately 10%
compared to native execution, typically within 2x [49, 51]. WebAssembly
is currently looked at as a candidate method for running portable
applications without containers. Ideally, WebAssembly can provide
signi�cantly more lightweight isolation than VMs and containers for multi-
tenant service execution. This idea is still in its infancy, but there has
been consistent interest around it in recent years ([57], [58] and [59]),
especially for serverless computing.

Another strong point of WebAssembly is enabling arbitrary code
execution on highly constrained devices across the Continuum. The
authors of [68] and [69] have also explored various WebAssembly-based
mechanisms for safe arbitrary execution on constrained devices and have
evaluated the trade-o-s between e�cient Wasm processing and memory
consumption. Generally speaking, Just-in-Time compilers for
WebAssembly exist (e.g. Wasmtime [70]) and receive more attention
from the community, but their size and complexity make them unsuitable
as yet for microcontrollers. Although WebAssembly interpreters can often
run more than 10x slower than native C [71], they help dynamically
update and debug system code, but are not yet mature in terms of
performance and energy e�ciency. Interpreting WebAssembly on
microcontrollers o-ers an appealing alternative to other language
runtimes. The WebAssembly standard has many features that make it
attractive for embedded devices [69]. First, as mentioned before,

WebAssembly can be generated from di-erent source languages and run
on many CPU architectures. Furthermore, many broadly used language
runtimes such as JavaScript, Lua, or Python cannot provide predictable
execution. They may require excessive memory for a microcontroller,
whereas Wasm requires no mandatory garbage collection and only a few
runtime features around maintaining memory sandboxing. This
lightweightness is a most valuable asset in an embedded adaptation.

Overall view

Figure 14 summarizes the key technologies employed in the prototyping
of the infrastructure layer of our reference architecture for the
Continuum.

Figure 14: Technology baseline for the architecture of the reference infrastructure

c. Validation tests and results

Assessing the �tness of WebAssembly for the Continuum
infrastructure

Arguably, WebAssembly is one central enabler in our quest for the
Continuum, for portability and virtualization, but also for computational
mobility. On that account, we performed an in-depth analysis of how
WebAssembly fares technically in our prospective implementation. We
evaluated WebAssembly’s �tness for Continuum purposes along three
axes.

1. Its suitability as a portable binary format for pure computational
services, showing its signi�cantly smaller size than other mainstream
alternatives un�t for highly constrained IoT devices.

2. Its �tness as an interpreter for the same embedded devices to
understand whether it can guarantee safe virtualized execution while
keeping the promise of reasonable performance and predictability.

3. Its maturity for Cloud-like capabilities. We present a cluster of
Kubernetes nodes whose virtualisation runtime is based on a Just-In-
Time Wasm compiler. The nodes accept applications distributed as
Wasm container images under the Open Containers Initiative Artifacts
speci�cation [72].

For our evaluation, we have used the following devices:
 Edge cluster nodes: 4 Raspberry Pi 4 Model 3B+ with Quad-core

Cortex- A53 (ARMv8) 64-bit SoC at 1.4GHz and 1 GB physical memory.
The Raspberry 3B+ model has been chosen to showcase the feasibility
of the presented technologies on limited low-powered machines,
relatively cheap and with only 1GB of memory. Our results are
comparable with other research regarding containerised virtualization
over Raspberry Pi [61];

 Sensor nodes: STM32F407 microcontrollers with ARM Cortex-M4
core, 512KiB �ash storage, and 128KiB of memory. The device is also
capable of many 32-bit �oating-point operations. Raspberry Pi and
STM32F407 microcontrollers are designed for moderately high
computational performance, low unit cost, and power e�ciency in
Edge and IoT computing environments.

We trust these empirical results generalize for ARM machines and
microcontrollers in the Cortex-M family.

Axis 1: Wasm for IoT devices

Figura 15:Wasm size vs C dynamic library size (in KiB).

Figure 15 compares the sizes of di-erent Wasm binaries compiled from
the Polybench [73] modules. The Polybench benchmark suite o-ers
relevant functions to embedded systems as it includes standard matrix
and statistical operations. We have chosen the C dynamic library size as a
meaningful comparison since it is a close alternative to Wasm binary �les.
Both outputs have been compiled from the same Rust source code and
using the same LLVM toolchain and optimisation �ags. The results
undeniably favor the Wasm binary format as the C dynamic lib is often
many times larger. Comparing Wasm �les to containers would be even
less relevant and greatly favor the former, as containers package a whole
operative system �lesystem, which is unnecessary for pure computational
IoT services. Even the tiniest image base (Alpine Linux Mini Root
Filesystem) has an additional size of about 5.5MB uncompressed.

Axis 2: Wasm as an interpreter

Figure 16: Wasm interpreter vs Rust native performance.

Figure 16 plots the slowdown of the Wasm interpreter executing
Polybench benchmarks on the STM32F407 microcontroller against native
Rust. The results show a dramatic slowdown, with a reduction factor of
100-400x. Such results dispel the prospect of using Wasm interpreters on
microcontrollers to support dynamic recon�guration. However, the Wasm
interpreter we used, wasmi [74], was the only available Rust
WebAssembly interpreter, and we adapted it to work on embedded
devices. The interpreter was designed for safe execution in the
blockchain instead of e�ciency in highly constrained devices. Alternative
embeddable interpreters, implemented in the memory-unsafe C
language, show a much inferior execution penalty, in the order of 30-60x
slower than native [69]. Arguably, however, a 30x execution penalty can
still seriously deter the usage of interpreters in microcontrollers.

Another crucial concern we have found in our work is that the heap
overhead of using Wasm interpreters is not predictable. Such
unpredictability does not come again in favor of the usage of
WebAssembly on microcontrollers, as embedded devices have extremely
limited resources and must have predictable behaviors to ensure proper
execution. Such de�ciency is an intrinsic issue with interpreters, as the
code instructions and execution data structures must be stored in heap
memory. This behavior contrasts with the binary executables that can
save and access instructions or read-only data on the more capable �ash
storage. Writable data is saved in the stack instead, and it can be
estimated with accuracy in many production-grade toolchains like C and
Ada.

Finally, running Wasm on resource-constrained microcontrollers also
presents a memory-design issue. Wasm’s pages are 64KiB by standard,
too large for microcontrollers that often have between 16-256 KiB RAM.
Dynamic allocation is a common requirement even for embedded
systems. However, Wasm speci�es that the sandbox should expand
memory by 64KiB chunks, insu�ciently granular for constrained
embedded systems. Consequently, we had to adapt the interpreter to
allocate non-standard pages of 16KiB. Otherwise, it would have been
impossible to execute any benchmark on the STM32F407 microcontroller,
as additional heap space is required for the interpreter’s internal
structures and the Wasm instructions themselves.

Wasm on the Cloud

We successfully integrated WebAssembly into Kubernetes with Wasm
Pods running on Krustlet [75], while the container Pods are scheduled on

K3s [76] Kubelet. Krustlet (a Kubernetes-Rust-Kubelet stack) is an
experimental implementation of the Kubernetes compute node (Kubelet)
API that supports Wasm as virtualisation technology. Therefore, it listens
to the Kubernetes API event stream for new units of execution (Pods) and
runs them under a WebAssembly System Interface (WASI) runtime
(notably, Mozilla’s Wasmtime [70]). K3s is a fully certi�ed Kubernetes
distribution geared towards Edge environments backed by a commercial
company. K3s is implemented in Go and packaged as a single binary of
about 50MB in size. At the time of writing, it has yet to be possible to
implement a portable web server and compile it as an application to
Wasm. There is an underlying issue with implementing network servers
as there is neither su�cient network API nor multi-threading support in
the standard yet. On the one hand, the current WebAssembly System
Interface (WASI) standard only contains a few methods for working with
sockets that are insu�cient for complete networking support. Adding
support for connecting to sockets is fundamental to allow Wasm modules
to connect to web servers, databases, or any service. On the other hand,
the lack of concurrency primitives means that a server running in
WebAssembly is single-threaded, or its implementation has to be
signi�cantly more complex (e.g., like Node.js’s event loop [77]). This
limitation severely restricts the workload capabilities of the server. Lately,
the WebAssembly speci�cations have outlined a thread and atomics
proposal intending to speed up multi-threaded applications. At the time of
this writing, however, that proposal is still in the early stage and
implemented only in web browsers, behind an experimental �ag.

The hands-on evaluation presented in this paper has taught two main
lessons. On the one hand, that, in concept, the WebAssembly technology
is especially �t for the Continuum as we envision it. On the other hand,
however, the current standard and the corresponding industrial
implementations signi�cantly penalize resource-constrained platforms,
making them an exceedingly inadequate destination for applications
seeking temporary hosting as part of compute mobility. The underlying
theme is that the Wasm speci�cations (notably memory management,
networking and concurrency) are not mature or robust enough as yet for
use with real-world applications, let alone for innovative Continuum
services. At the time of writing, navigating the WebAssembly landscape
to �gure out how to create ad-hoc workarounds to such limitations [78],
remains a distinct (and annoying) responsibility of the application
developer, which also makes portability harder to achieve.

2.4.4 Prototype evolution and implementation

a. Prototype evolution direction

As noted earlier, we reckon the TRL of our current prototype
implementation to be at 3, as proper of an experimental proof of concept.
Our target at the end of the project is to get as close as possible to TRL 6,
which we expect to achieve by improving critical elements of the selected
technology components, thereby making the infrastructure layer
candidate for in-the-�eld demonstration in a yet-to-be-determined
application domain.

b. Prototype evolution structure and description

Our architecture concept assumes user applications to consist of the
execution of work�ows that traverse service components deployed
dynamically across compute-capable nodes of the Edge-to-Cloud
Continuum. This vision gives rise to the notion of “dynamic
orchestration”, where the execution work�ow is speci�ed in terms of
required services and the matching to provided services may be resolved
dynamically based on user-preferences, service levels, privacy, energy,
and latency requirements. One direct implication of that vision is that the
deployment of service components selected for the work�ow may be
dynamic and opportunistic, and therefore may also contemplate mobility
and migration. Figure 17 depicts this notion.

Figure 17: example routes of mobility of "compute bundles" across federated cluster zones.

c. Prototype Implementation and involved tools

Enacting the vision of the previous section, entails several distinguishing
requirements, which re�ect the discussions in that section and that we
recall now in this conclusion, in a bottom-up fashion.

1. The �rst signi�cant requirement is that the service components of
interest to our concept should be realized as “compute bundles” that
can be deployed dynamically in safe sandboxed “envelopes” hosted in
resource-adequate Edge nodes. We plan to meet this requirement with
an enhanced version of the WebAssembly runtime, which we want to
improve for the time predictability of its execution behaviour, and for
its “embeddability”, that is to say, for its goodness of �t for functional
capabilities coupled with frugal footprint for compute and storage
needs.

2. Allowing compute bundles to migrate requires understanding they
may have ongoing communications with client endpoints, which may
also share a connection state. This scenario requires server-side
connection migration, which is not currently implemented in the QUIC
standard, but may be supported by MoveQUIC prototype proposed in
[128] and extensively described in deliverable report D4.FL3, section
2.4.2.

3. The WebAssembly runtime would be the central element of the
Compute node and should be able to negotiate CoAP-level API
bindings to nearby IoT nodes for sensing and actuation actions on
controlled devices. To that end, the Compute node should feature
local orchestrator capabilities, which we plan to provide with an
improved Krustlet-to-Wasm integration, where “improved” means
disentangled from Kubernetes and capable of supporting deployments
within and outside of the boundaries of its own cluster zone. Krustlet is
especially interesting to us as it is implemented in Rust, a language
that we consider especially �t for embedding in predictability-aware
system aggregates. Figure 18 depicts the internal architecture of a
cluster zone in our architecture concept.

Figure 18: an inside view of a cluster zone made of one Compute node paired with an IoT node.

4. The next level up in our system concept is the orchestrator control
plane across federations of Compute nodes. In that direction, we shall
continue to explore the usability of Akri, which is designed for
cooperation with a Kubernetes-type scheduler, and we would like to
extend to non-Kubernetes control planes. In parallel to that, we shall
look at ways to incorporate a single cluster zone in larger federations,
using Liqo.io (extensively described in deliverable report D4.FL3,
section 2.3.3).

5. Describing and deploying the user application as a dynamic
orchestration of an execution work�ow will need a �exible
orchestration platform for which we plan to explore the use of the
INDIGO orchestrator, the third integration-candidate technology
described in deliverable report D4.FL3, section 2.3.2.

Figure 19: overall view of the proposed system concept, with identification of the key technology candidates.

Figure 19 provides a pictorial representation of the overarching system
concept described in this section, which positions the key technologies that
we plan to employ in its prototype realization. The resulting use case will
need to be put to trial against an application scenario of industrial interest.
What this application may be remains to be determined at present, but
discussions about it are ongoing with national and international partners.

2.4.5 Final validation tests

The validation tests that will be needed to evaluate the soundness, viability
and performance of this vision include several scenarios, each of which
evoked by the previous enumeration:

1. We shall test our WebAssembly implementation and see how better is
performs than the standard version in scenarios similar to those
discussed in section 2.4.4.

2. We shall test how well the MoveQUIC technology integrated in our use
case serves the migration needs of compute bundles at the server-side
of the user application. The primary axis of evaluation for these tests
will be continuity of service during “live” migration, that is, without
interruptions of service.

3. We shall test the ability of our Kruslet variant implementation to
operate outside of Kubernetes and to support deployments within and
outside of the boundaries of its own cluster zone.

4. We shall test how Liqo.io �ts in the federation-level orchestration plane
foreseen by our architecture concept, and how well it integrates with
Akri for interfacing with edge resources.

5. We shall test how adaptable the INDIGO orchestrator is to the concept
of dynamic orchestration entailed in our system vision.

2.5 Interactive Computing Service

2.5.1 Introduction

The Interactive Computing Service (IAC) provides access to computational
data on an HPC system via a web interface, with near-immediate access to
such resources. This is an alternative approach to the traditional access to
HPC resources, which is usually based on ssh access on a remote login
system on which a scheduling system dispatches the jobs on some queues.
There are multiple reasons why such kind of approach might be preferable
with respect to the “traditional one”:

 Avoiding queues might be preferable for small amount of resources.
 Work�ow can be modi�ed interactively while is running, with respect to

intermediate results.
 A web interface is more user-friendly, extensible, and allow the use of

visualization tools.
 Web sessions can be easily restored when closed.

In our approach the base interface we choose is Jupyterlab [91], extended
and customized with respect to our needs. In particular, our aim is to adapt
the “classic” Jupyterlab approach (which is web-based) onto the
computational nodes of an HPC center (which are optimized for parallel
computations rather than act as web servers). These two di-erent
components traditionally head in opposite directions from the
technological point of view, thus In order to match them we will employ
several software tools:

 a frontend part which is exposed to the web.
 a backend part which run a collection of software to be employed by

the user for his/her parallel computations.
 a server/client approach in the middle in order to �ll the gap between

the two components above.

The frontend part is the one exposed to the web, and also manages user
authentication and resources selection (see below). The backend part is
thought to rely on the HPC infrastructure, and the software which is
provided to the user is organized in di-erent releases, in order to maintain
retrocompatibility when upgrades are released. The server/client approach
exploits the Slurm scheduler and the BatchSpawner feature of Jupyterlab
(properly extended to our needs).
Once the user access to the framework, a form is displayed, to be �lled in
order to specify for instance:

 the amount of requested resources
 a time limit for the session
 which backend release he/she wants to use

After that, a web interface with all the software contained in the chosen
backend release is shown to the user; the software is running on the HPC
nodes and can be freely employed by the users for their purpose.

2.5.2 Related works

E4 Engineering [100] is the main developer of the framework from which
this infrastructure is derived; the initial setup for the implementation
described so far is derived from their GAIA suite [101], in particular from
the version developed in the context of the ICEI project [102] of the Fenix
Research Infrastructure [103].
Most of the work developed in the ICEI context has been to deploy the core
part of the services, starting from the open source solutions available for
the main components needed: the core part of the infrastructure relies on
Jupyter [130], which handles the web interface once the server is allocated
on the backend part: this operation is handled via Slurm [131], and the
joining link between these two elements is represented (in our case) by a
modi�ed version of the Batchspawner implementation [132]. The work
related to the Fenix Research Infrastructure was to provide a general
deployment tool for all the supercomputing centers which are project
partners (CINECA, BSC, CEA, CSCS, JSC), and the solution provided by E4
has been built with Ansible playbooks [92] available for all the involved
partners; the prototype solution has been deployed at CINECA using both
the cloud infrastructure “ADA cloud” [133] and some dedicated compute
nodes from Galileo 100 cluster [134], and the result constitutes the
development infrastructure described in the sections below and the
starting point for the work that will be realised in the project.

2.5.3 Actual prototype description and maturity level

At the present stage it can be estimated a TRL level of 4, since a pre-
production and a development platform are up and running at CINECA; the
latter has allowed testing of experimental features before the pre-
production scale.

a. Prototype modelization, structure and functional description

So far, the IAC framework in the development environment works
smoothly with a frontend interface running on the HPC cloud
infrastructure hosted at Cineca (ADA Cloud), relying on a local restricted
user database and with a dedicated Slurm controller running in the same
cloud environment, in order to grant �exibility in terms of testing the
scheduler con�guration. On the backend side, two HPC nodes have been
isolated and dedicated to such a framework; such nodes are perfectly
equivalent to the ones that will be used at production scale.

Figure 20: Interactive Computing Service architecture

b. Actual implementation

The code is mostly composed by Ansible playbooks [92] and Python
scripts, relying on Conda [93] and Mamba [94] installers; everything
relies on Jupyter as main dependency as well as Jupyter Server Proxy [95]
for spawning di-erent servers with respect to the traditional Jupyter
experience; Slurm scheduler is the last essential component for the whole
framework. Many additional dependencies are present but optional,
based on the additional extensions and tools (e.g. Xeus kernel [96] for C+
+, Julia [97] and R [98] kernels, VSCode interface [99] that need to be
deployed.

c. Validation tests and results

Several tests have been collected to be used as test cases and validation
procedures for the current implementation; in particular, tests involving
GPU utilization have been deeply tested using all the modules which
support GPU. Such tests have been collected in an internal git repo and

can be made publicly available. Customized kernels and integration with
the HPC module environment using them have also been tested. More in
general, any work�ow involving the environments made available by the
service can be used as a valid test case to validate the infrastructure.

2.5.4 Prototype evolution and implementation

The development setup described so far resembles the same setup of the
production environment, including all its features but with the possibility to
tune them with additional degrees of freedom.

For instance, the dedicated Slurm controller allows to test ad-hoc
scheduler parameters without the risk of compromising the jobs running on
the cluster. In the same fashion there might be multiple instances of the
frontend interface, e.g. running on di-erent virtual machines, relying on
the same backend infrastructure. The same approach can be easily
obtained at backend level: each collection of tools displayed in the
launcher is packed in a single “release”, and di-erent releases can be
added and chosen in the login phase by the user; since backend releases
are completely independent one to each other, ad-hoc releases can be
added with di-erent purposes and content.

a. Prototype evolution direction

We aim to further extend the current infrastructure exploring di-erent
additional tools: for instance, a remote desktop implementation is still
missing and it will be tested for instance via TurboVNC [104] and/or Xpra
[105] integration; R-Studio [106] and Octave [107] will be also tested for
integration.
Another important direction we would like to explore is the deployment of
the framework on the bare metal nodes for the incoming Leonardo
infrastructure [108], which hosts a set of visualization nodes which are
worth exploring as a possible hosting environment for the IAC tool.
Further needs by other partners involved in the project will be explored,
trying to meet their needs to the fullest possible extent.

b. Prototype evolution structure and description

The production environment would look exactly the same as the
development one, besides the fact that the frontend part is relying on the
compute nodes and the Slurm controller of the production environment;
there’s no relevant di-erence in the frontend setup, which can be hosted
either on bare metal nodes or once again in the cloud environment, like in
the scheme in �gure 21.

Figure 21: evolution of the Interactive Computing Service architecture

In the end, this general approach allows us to test di-erent combinations
of frontends and backends when novel con�gurations will be needed in
the context of the CN-HPC: this makes it possible to try to address the
needs of all the partners of the CN-HPC, �tting with other tools in this
proposal.

c. Prototype Implementation and involved tools

A valuable synergy and cooperation will hold with the Jupyter Work<ow
tool and the StreamFlow tools presented by UNITO in D4.FL3,
respectively in section 2.1.5 and section 2.1.6; Jupyter is the cornerstone
of the IAC implementation; StreamFlow implementation by UniTO can be
tested in order to try to operate a distributed work�ow among di-erent
platform via the Interactive Computing interface; this approach would be
highly innovative, since it could co-operate with the interactive computing
interface on two di-erent levels:

 on local basis, distributing the Jupyter cells execution using compute
nodes interactively in place of backend nodes; this could largely
improve the resources availability for interactive work�ows, spanning
the execution of the single Jupyter cells on the whole cluster.

 on a remote basis, since it would make available all the cluster and
the cloud options available for the same user logged to the service.

Another integration that will be explored is with the VisIVO tool
presented by INAF here in section 2.2; a Python wrapper for the VisIVO cli
will be developed in order to ease the interaction with the Jupyter
notebooks; at this point it will be possible to create in the Interactive
computing interface a custom environment for the visualization and data

analysis using VisIVO and make it available for the users via web browser;
in addition, when the VNC integration will be implemented in the IAC, the
VisIVO graphical user interface can be tested and eventually used directly
from the browser.

Furthermore, we can integrate the DivExplorer tool presented in D4.FL3
section 2.2.9 by PoliTO inside the Interactive Computing framework.
DivExplorer o-ers a Python library to be executed in a local environment:
the modules contained in such library can be easily included in an ad-hoc
kernel to be displayed in the Jupyter launcher of the Interactive
Computing interface. The kernel would be available to all the users who
have access to the service, and easily accessible from the web browser;
the users could also bene�t from the monitoring tools included in the IAC
in order to identify and �x bottlenecks in real-time during the notebook
execution.
In terms of deployment, the integration between the tools would require
including an Ansible playbook for the ad-hoc environment, with a
compliant approach with respect to the ones already present for the
deployment of the service.
On the DivExplorer repository are also hosted several use cases [129] in
form of Jupyter notebooks, which can be used as validation tests for the
integration of the tools.

2.5.5 Final validation tests

The same tests reported for the development infrastructure can be also
used to validate the production one. Such dataset could be integrated with
some tests in order to validate the integration with VisIVO, to be added in
collaboration with the INAF team; the above-mentioned tests for the
DivExplorer integration [129] can be added too to the set of validation
tests.
Summing up, the Key Performance indicator to be achieved at the end of
the project are the followings:

 Toolset expansion: in order to enhance the user experience using the
IAC service the aim is to increase the number and the variety of tools
that are o-ered to the user; in particular this KPI aims to add at least
three of the following tools in the default launcher:

o Remote desktop visualization (via VNC and/or Xpra protocols)
o Julia kernel
o R-Studio web interface
o Octave web interface

 Distributed work<ow: Integration with Stream�ow and Jupyter
work�ow tools presented by UniTO has the aim to run Jupyter cells from
IAC implementation on a remote host. This KPI can be considered
achieved if the integration among these tools is successful, in particular
if:

o Jupyter Work�ow and Stream Flow are successfully implemented
inside a IAC development implementation

o Such implementation will be able to run the above-mentioned
validation tests on a remote host (e.g. a remote cloud
environment and/or an HPC cluster)

 Integration with DivExplorer: To achieve such integration with the
tool presented by PoliTO, a “DivExplorer” environment has to be

successfully added in the launcher of a IAC implementation, and in such
environment validation tests for DivExplorer has to be successfully run

 Integration with VisIVO: To achieve such integration with the tool
presented by INAF in section 2.2, a “VisIVO” environment has to be
successfully added in the launcher of a IAC implementation, and in such
environment validation tests for VisIVO has to be successfully run

 Implementation on Leonardo: In order to achieve this KPI, a IAC
implementation has to be successfully run on Leonardo cluster[108],
and validated with the above-mentioned validation tests.

2.6 Serverledge: QoS-Aware Function-as-a-Service in the Edge-Cloud
Continuum

2.6.1 Introduction

The Function-as-a-Service (FaaS) paradigm emerged as an evolution of
Cloud computing services, relieving users from infrastructure management
and resource allocation responsibilities. It allows users to deploy �ne-
grained functions, developed using their programming language of choice,
and execute them in a serverless fashion.
A lot of e-ort has been spent recently trying to provide the bene�ts of
FaaS to applications running at the edge of the network (e.g., Internet-of-
Things applications). However, the limited availability and heterogeneity of
computing resources at the edge, as well as the challenges of geographical
distribution, call for speci�c architectures and policies for FaaS at the edge
of the network. First solutions have been proposed for Edge-based FaaS,
including light function sandboxing techniques instead of OS-level
virtualization. However, these solutions either work within single Edge
nodes or scale over multiple nodes without considering geographical
distribution. Therefore, we lack a platform with the ability to span both
Edge and Cloud and adaptively exploit both.
Serverledge, a FaaS framework designed for the Edge-to-Cloud continuum
at the University of Rome Tor Vergata, aims to �ll such a gap. Serverledge
adopts a decentralized architecture, with nodes organized into edge zones
and cloud regions based on their location. Every Serverledge node, being it
at the edge or in the cloud, is able to schedule and execute invocation
requests with minimal or no interaction with the rest of the system,
keeping latency as low as possible. To cope with load peaks and extend
Serverledge node’s local capacity, Serverledge also supports vertical (i.e.,
from edge to cloud) and horizontal (i.e., among Edge nodes) computation
o]oading, allowing nodes to forward invocation requests that cannot be
served locally. Our framework accounts for di-erentiated groups of users,
each characterized by one or more Quality-of-Service (QoS) requirements,
possibly speci�ed in terms of response time, availability, energy
consumption.
Serverledge is implemented in Go, supports functions written in multiple
programming languages (speci�cally, Python, JS, and any language
through custom images), currently relying on simple-yet-popular Docker
containers for isolated function execution.
We have designed Serverledge with �exibility in mind, aiming to contribute
a �exible and easy-to-extend prototype to the research community, for
future investigations on FaaS at the Edge. To this end, Serverledge is an
open-source project available on Github [121] and has received the artifact
badges at IEEE Percom 2023, where Serverledge was �rst presented.

In this project, we plan to extend Serverledge following multiple directions,
that span from the runtime management layer to the
virtualization/containerization layer and providing di-erent mechanisms
and policies that include function o]oading and migration and energy- and
QoS-aware scheduling policies.

2.6.2 Related works

Existing open-source FaaS frameworks (such as OpenFaaS [109] and
OpenWhisk [110]) are not well suited for Edge environments, mostly
because of: 1) the use of centralized schedulers or gateway components,
which introduce latency in geo-distributed settings, 2) memory-demanding
function sandboxes, usually based on software containers, 3) and overly
simple and best-e-ort scheduling policies, which do not account for the
complexity of Edge infrastructures. Therefore, researchers started
investigating solutions to better support FaaS at the Edge and novel
frameworks have been recently presented that better suit Edge
environments. They often exploit lightweight function sandboxing
mechanisms instead of OS-level virtualization (e.g., Faasm [111] and
Sledge [112, 113]). However, these solutions either work within single
Edge nodes or scale over multiple nodes without considering geographical
distribution.
The solutions closest to Serverledge are Faasm [111] and Colony [114], as
they support function execution o]oading. Faasm [111] is an open-source
research prototype that introduced Faaslets, an isolation abstraction for
high-performance serverless computing. Relying on Faaslets, Faasm
signi�cantly reduces the initialization time and memory footprint of
function sandboxes, compared to container-based approaches. Moreover,
Faasm has built-in support for function chaining and state management.
Faasm runs using multiple worker nodes, which can schedule and o]oad
requests horizontally to other workers. However, Faasm does not explicitly
consider geographical distribution of the nodes.
Colony [114] is a framework for parallel FaaS in the Cloud-Edge continuum.
Its goal is to let nodes process data on their resources while also o-ering
their computing capacity to the rest of the infrastructure. Colony di-ers
from most existing FaaS frameworks as it relies on task-based
programming models through COMPSs. The generated work�ows are then
executed over the infrastructure, possibly o]oading tasks both
horizontally and vertically.
Sledge [112, 113] and tinyFaaS [115] are other FaaS frameworks
speci�cally designed for Edge environments, aiming to provide serverless
execution with reduced resource consumption. The key di-erence between
the solutions mentioned above, including Serverledge, and these two
frameworks lies in the fact that Sledge and tinyFaaS target single-node
deployment scenarios and, thus, they lack the ability to exploit Cloud
resources.
Other works (e.g., [116, 117, 118]) study architectures and algorithms for
function placement and load distribution in decentralized FaaS systems,
but relying on the existing Cloud-oriented frameworks for actual function
execution, possibly incurring the issues mentioned above when running at
the Edge.

2.6.3 Actual prototype description and maturity level

Serverledge is a decentralized FaaS platform designed for Edge-Cloud
computing environments. Serverledge allows users to de�ne functions
through high-level programming languages and automatically allocates
resources for their execution upon invocation. Following the approach
adopted by most the existing FaaS platforms, Serverledge currently
executes functions within software containers, which are spawned as
needed and initialized with the code and libraries required by each
function.

Figure 22: Overview of Serverledge architecture.

Figure 22 illustrates the high-level architecture of a Serverledge
installation, which consists of one or more nodes deployed either in Cloud
data centers or at the edge of the network, and a global registry. The latter
provides distributed nodes with the required data about the system,
including membership information about the deployed nodes. Within the
registry, nodes are organized into di-erent cloud regions and edge zones
based on their location. Cloud regions typically represent geo-distributed
data centers, while edge zones may be associated with, e.g., single towns
or cities. Each cloud region may further comprise a load balancer to
distribute incoming requests to the nodes deployed in the region. Note
that, while the global registry represents a single logical entity in the
architecture, it may be deployed with multiple replicas for scalability and
fault tolerance.

The core idea underpinning the design of Serverledge is that there are no
single or privileged entry points for function invocation. Indeed, users can
send invocation requests to any node (e.g., one in their proximity).

Compared to FaaS platforms designed for the Cloud, scheduling
functionalities are not centralized and, thus, every node is able to schedule
the execution of incoming requests. This is particularly important for Edge-
generated requests, which are not forced to reach a centralized gateway in
the Cloud for scheduling.

Serverledge adopts a per-request container scaling behavior, where new
containers are only spawned when needed. In particular, when an
invocation request enters the system, if enough resources (i.e., CPU and
memory) are available, a new container is spawned and initialized to
execute the function. When this happens, the request has to wait for the
container to be fully initialized before being served and it experiences a
cold start. To reduce cold start frequency, containers are not immediately
destroyed after function completion and are kept in a warm pool until a
�xed timeout expires. If one or more warm containers are available, these
can be re-used to serve new requests for the same function, thus avoiding
a cold start.

Because of the limited resource capacity of Edge nodes, it is likely that a
single node (and perhaps a whole edge zone) cannot sustain the incoming
load. Therefore, Serverledge allows nodes to o]oad invocation requests to
other nodes, when needed. In particular, we support both vertical and
horizontal o]oading. The former refers to execution requests being
forwarded from edge to cloud nodes, whereas the latter indicates request
o]oading among edge nodes.

We now analyze in more detail the architecture of a Serverledge node,
whose architecture is illustrated in �gure 23. Each Serverledge node
comprises the following components: API Server, Scheduler, Local Registry,
O]oader and Container Pool.

Figure 23: Architecture of a Serverledge node.

The API Server provides a set of key functionalities through an HTTP API,
which is primarily used by client applications (e.g., to create and invoke

their own serverless functions), but it is also accessible to other
Serverledge nodes (e.g., for o]oading). In particular, each node supports
the following key operations:
 /create to register a new serverless function;
 /invoke: to invoke an existing function, possibly specifying one or more

input parameters and QoS requirements for the submitted request;
 /list: to get a list of the registered functions;
 /delete: to de-register an existing function;
 /status: to obtain information about a node (e.g., amount of available

resources and current state of its container pool).

Serverledge uses a Global Registry (see �gure 22) to store information
about the nodes in the system and the registered functions. To provide
low-latency access to the shared information stored in the Global Registry,
each Serverledge node is equipped with a Local Registry, which acts as a
local cache. Besides caching, the Local Registry stores local and
neighborhood information (e.g., who are the neighbor edge nodes and
their amount of available resources) that is collected and managed on the
node itself, without propagating it at global level. To build and update such
neighborhood information in an e�cient and scalable manner, each
Serverledge node relies on the gossiping-based Vivaldi algorithm, which is
traditionally employed in peer-to-peer networks.
When a function invocation request is received from a node, it is passed to
the Scheduler, which provisions the required resources for execution if
possible. If local execution is either not possible because of resource lack
or shortage or not convenient in order to ful�ll the request QoS
requirements, the Scheduler can either decide to o]oad the request to
another Serverledge node or to drop it. Figure 23 illustrates the di-erent
decisions that the Scheduler can take for each function invocation
request.

Figure 24: Function scheduling decision: if local execution is not possible, the Scheduler can drop the request or
offload it.

Let’s now consider the case in which the Scheduler serves locally the
request on the basis of the scheduling policy decision. If the request
requires a new container, it is spawned and initialized by copying the
source code package of the function into the container. Since containers
are not immediately destroyed after function completion and are instead
kept in a pool of warm containers, they can be reused to serve new
requests for the same function, thus avoiding a cold start. Besides picking
or creating containers for function execution, the Scheduler can apply
other decisions to incoming requests. First, the Scheduler can decide to
o]oad requests to another node, which will take care of actual function
execution. O]oading decisions can be driven by the limited resource
capacity of edge nodes, due to which a single node (and perhaps a whole
edge zone) cannot sustain the incoming load. Furthermore, requests can

be dropped by the Scheduler and, thus, not executed at all. As regards the
o]oading policy, Serverledge currently provides a proof-of-concept naïve
policy that also integrates QoS support. According to it, the Scheduler tries
to process each request locally on the node. If this is not possible, because
there is not enough memory on the node, the request is o]oaded.
Speci�cally, latency-sensitive requests are o]oaded to a neighbor edge
node, to avoid the additional network delay. Conversely, best e-ort
requests are o]oaded to the Cloud, to preserve edge nodes.
The O]oader is in charge of supporting the mechanism for both vertical
(i.e., from the edge to the cloud) and horizontal (i.e., within an edge zone)
o]oading. When the Scheduler makes an o]oading decision for a request,
a target node is selected relying on the Local Registry, which provides
information on the neighbor edge nodes and the available cloud regions (if
any). Then, the request is forwarded to the selected node. According to the
o]oading mechanism currently supported, the local node acts as a reverse
proxy, submitting the invocation request to the API of the remote node.
The local node waits for the computation result traveling back from the
remote node and sends it back to the invoking client as soon as possible.
Serverledge performance has been evaluated experimentally against three
state-of-the-art FaaS platforms, which are OpenWhisk, tinyFaaS and
Faasm. Compared to Apache OpenWhisk, in an Edge-like deployment,
Serverledge shows a dramatically higher throughput. Compared to
tinyFaaS, Serverledge has a slightly lower throughput. However, compared
to tinyFaaS, Serverledge can scale the execution beyond a single node
through o]oading and increase the overall throughput. Compared to
Faasm, Serverledge shows comparable response times, and even better on
average; bene�ts of Faasm are still evident looking at the maximum
response time because of the lightweight function runtime it employs.
More details on the evaluation, as well as other details regarding the
implementation, are discussed in [124], that is integrated by a companion
artifact paper at PerCom 2023, which has received two badges (Artifact
Certi�ed and Result Certi�ed). In the light of these experiments, we can
classify the TRL of our prototype as 3, that is Experimental proof of
concept.

2.6.4 Prototype evolution and implementation

Serverledge has been designed with the aim to �ll the gap between Edge
and Cloud and provides a �exible and extensible framework for FaaS in
geographically distributed environments. While Serverledge provides a
suitable framework for low-latency FaaS execution in the Edge-Cloud
Continuum, several challenges must still be addressed to fully support
QoS-aware execution and scheduling in such a dynamic environment. We
analyze how Serverledge can evolve following multiple directions, that
span from the runtime management layer to the
virtualization/containerization layer.
Starting from the orchestration layer, Serverledge can be extended to
support function composition and state management, enabling the
execution of complex applications. Serverledge currently supports the
execution of single functions and the orchestration of more complex
applications, likely composed of multiple functions, is under the
responsibility of the invoking clients. We plan to allow users to de�ne their
applications as work�ows by composing functions. To this end, a serverless
work�ow language such AWS Step Functions or AFCL [119] can be

supported by Serverledge. The latter is a YAML-based language that
supports a rich set of constructs to express advanced control �ow and data
�ow. Deploying and executing work�ows clearly requires a revision of the
scheduling and o]oading policies in use.
Implementing stateful applications on top of serverless functions, which
are stateless by nature because of their ephemeral execution
environments, is challenging. While a naïve solution relies on third-party
data stores to externalize application state, this approach leads to poor
performance due to the additional latency incurred every time the state is
read or written. Therefore, it is necessary to design strategies and
mechanisms to manage application state alongside functions.
As regards the runtime management layer, live function migration can be
provided in Serverledge. While serverless functions usually have a short
duration, long-running functions are gaining popularity as approaches for
serverless data analytics and machine learning are explored. The existence
of such workloads at the edge calls for live migration mechanisms, so as to
possibly migrate running function instances to free up resources as needed
or, in general, to respond to adaptation needs. Indeed, function migration
to a di-erent node can allow the system to revise initial scheduling
decisions that become far from optimal over time, to reschedule a
resource-consuming and long-running function on a di-erent node having
more powerful resources, or to support smooth movement of mobile users
during function execution. To the best of our knowledge, live migration has
been exploited very limitedly for serverless functions. Needless to say, the
development into Serverledge of function migration paves the way for the
design of migration policies and their integration with o]oading policies in
a comprehensive manner. In addition, the support for migration is strictly
related to the virtualization/containerization techniques used in
Serverledge.
Serverledge nodes can o]oad incoming invocation requests to neighbor
edge nodes or remote cloud nodes. However, o]oading decisions must be
carefully planned by o]oading policies on the basis of a multitude of
factors, including the desired QoS of the requesting user, the resource
demand of the invoked function, the current load of the node and the
network. As a global formulation of the problem for the whole system
would not scale for realistic deployments, we envision the development of
decentralized o]oading policies.
Finally, at the orchestration layer load balancing policies among the
Serverledge nodes belonging to the same zone can also be studied, taking
into account the availability of warm containers in order to avoid the cold
start.
At the virtualization/containerization layer, Serverledge currently executes
functions within Docker containers. Other containerization engines (e.g.,
Podman), as well as microVM (e.g., Firecracker) can be integrated within
Serverledge. The integration of lighter function sandboxing techniques,
such as WebAssembly-based runtime environments, is another direction to
pursue at this layer. WebAssembly (Wasm) has been already proposed
(e.g., in Faasm [59] and Sledge [57, 113]) as an alternative method for
running serverless applications at near-native performance, while
providing strong memory isolation, small memory footprint and optimized
invocation time. In particular, Serverledge can leverage WasmEdge to
accelerate the serverless functions. WasmEdge [122] is a lightweight, high-
performance and extensible WebAssembly runtime for cloud-native, edge
and decentralized applications. Finally, another possible direction to
explore regards the support of even lighter and specialized function

execution environments, such as those provided by unikernels. To this end,
a promising open-source project is Unikraft [123], which reduces virtual
machine and container image sizes to a few KBs by tailoring the operating
system, libraries and con�guration to the particular needs of the
application.
At the infrastructure layer, we currently do not select and scale
(horizontally or vertically) the nodes on which Serverledge will be
deployed. Serverledge can thus be integrated with placement and auto-
scaling policies that take place at the infrastructure layer.
At the hardware layer, Serverledge can be extended to run on specialized
or resource-constrained devices. This extension is intertwined with the
support of lighter virtualization techniques that allow functions execution
on heterogeneous resources.
As regards the QoS parameters, Serverledge currently provides the ability
to specify performance-related metrics, such as the function response
time. The monetary cost can be easily added to consider the FaaS
execution on edge nodes which are managed by third-party entities or on
on-demand Cloud resources. However, to increase the energy awareness,
we call for a holistic e-ort in this direction in the context of Serverledge.
Indeed, considering the energy consumption of computer systems is
increasingly important for environmental and economic aspects. Energy
awareness is especially important at the edge of the network, where
computing devices may be equipped with limited energy resources (e.g.,
battery-powered sensors or smartphones). A FaaS system comprising such
energy-constrained nodes should necessarily take scheduling decisions in
an energy-aware manner, so as to extend the device lifespan and reduce
the need for frequent battery replacements or recharging (e.g., o]oading
requests with less tight latency requirements). While researchers have
started considering energy aspects within FaaS systems (e.g., [120]), there
are not yet established techniques and tools to measure the energy
footprint of serverless functions across di-erent implementations and
deployments. Indeed, measuring the energy consumption of applications
presents general challenges which we inherit, along with FaaS-speci�c
issues that mainly arise from the FaaS programming model. Speci�cally, an
open issue is how to measure the per-function energy footprint and
whether estimates that rely on models turn out to be su�ciently accurate
for our scope. Moreover, it is also interesting to develop new Serverledge
system components able to predict the energy required to execute
functions as well as to perform lower-level tasks (e.g., initializing a
container), in order to devise proactive energy management approaches.

Traditional KPIs for edge systems, and thus FaaS systems that operate in
the cloud-edge continuum, include response time and throughput. In our
evaluation of Serverledge, we have relied on these KPIs, using for the
workload di-erent functions either taken from existing FaaS benchmarks
(e.g., Sieve and Fibonacci sequence) or developed on purpose (e.g., a
binary image classi�er based on a convolutional neural network).
Besides traditional KPIs for serverless edge systems, we also plan to
consider power-e�ciency related KPIs.

As discussed in section 2.6.3, we reckon the TRL of Serverledge current
prototype to be at 3, which has been also validated during the artifact
evaluation that took place at IEEE Percom 2023. Our target at the end of
the project is to reach TRL 6. We expect to reach this level by improving

core components and features of the Serverledge architecture as
discussed above.

We intend to integrate Serverledge with the energy e�cient orchestration
and resource management in the cloud continuum tool provided by the
University of Pisa (UNIPI, see D5.FL3 section 2.3.4) with the overall goal
of providing a holistic energy-e�cient management that spans from FaaS
execution at the edge to FaaS frameworks deployed in Cloud data centers.
UNIPI already experimented with energy e�cient orchestration and
resource management at the cloud level. Given the FaaS timing
constraints, the goal is to minimize the energy consumption. This is
achieved by managing how FaaS resources are redirected to di-erent
cloud nodes and by taking into account the current load of each node and
trying to consolidate the allocation of resources to power o- some of the
nodes whenever possible. The current tool will be extended and integrated
with the Serverledge toolkit to manage heterogeneous nodes from both
the cloud and the edge. It will also handle vertical o]oading from the edge
to the cloud and viceversa, whenever the status of the underlying
resources or the evolution of the application requirements need that.
Other tools that we would like to investigate include MOVEQuic (UNIPI,
see D4.FL3 section 2.4.1) for function live migration and the support of
WebAssembly described by the University of Padova within their prototype.

2.6.5 Final validation tests

The KPIs used to evaluate the success of our tests mainly rely on response
time and throughput, which can be easily measured using open-source
monitoring tools (e.g., Prometheus,[125]). To evaluate the performance of
lightweight runtime environments for FaaS as alternatives to Docker
containers, speci�c KPIs are the cold start latency and the memory
consumption.
If energy-awareness is integrated into Serverledge, we will also need to
identify proper energy measurement tools at the hardware and software
levels. As regards the latter, the PowerAPI middleware toolkit
(https://powerapi.org) allows us to estimate the power consumption of
applications without the need of deploying physical power meters. This
toolkit, which relies on SmartWatts software power meter, could be
exploited to obtain the energy footprint of functions.
As regards the workload for the �nal evaluation tests, a proper mix of
functions (and serverless work�ows, if supported) from existing (and
upcoming) serverless benchmarks should be carefully selected in order to
test the di-erent features, mechanisms and policies provided by
Serverledge. A proper mix of functions should include CPU-intensive and
memory-intensive functions, as well as stateless and stateful functions,
possibly developed in multiple programming languages.
To generate the load, the Locust tool (https://locust.io) can be e-ectively
used. It is a Python-based load testing tool that allows us to emulate the
behavior of concurrent users issuing function requests, with con�gurable
think times or maximum rates. Locust supports running load tests which
are distributed over multiple machines and can therefore be used to
simulate millions of simultaneous requests and evaluate Serverledge
scalability.

2.7 Improving I/O phases in computational modelling of Galaxy
Formation

2.7.1 Introduction

The formation and evolution of galaxies and of the Supermassive Black
Holes (hereafter SMBHs) at their centres is a central theme of
contemporary Astrophysics and Cosmology. Numerical modelling of this
problem has proven to be challenging due to the truly long-range nature of
the gravitational interaction, which cannot be shielded [136]. For these
reasons the computational complexity of algorithms devised to model
galaxy formation and evolution poses challenging problems when coded in
parallel codes. Very often astrophysical codes are adopted as testbeds of
new hardware architectures, as they are able to challenge their scaling
capabilities.
The prototype we are proposing is designed to cope with a well-known
state-of-the-art parallel code, FLASH [135]. This code implements a spatial
and temporal partition based on a Adaptive Mesh Re�nement (hereafter
AMR) decomposition and a rather sophisticated hierarchical tree schemes
to deal with the long-range gravitational interactions. Our main aim
consists in improving the frequent I/O phases using tools made allowable
within the current FL3, in particular two of them: Nethuns and CAPIO .

2.7.2 Related works

The I/O of large checkpoint and generated data �les from large numerical
runs executed by large, parallel codes represents a serious bottleneck in
many codes. These issues have been discussed for the FLASH code, and
few solutions have been proposed [137, 138]. However, the performance
of these approaches in terms of scalability up to exascale computing
platforms has not yet been demonstrated.

2.7.3 Actual prototype description and maturity level

We will now provide a short description of the two prototypes we are going
to use.

FLASH [140] is a modular AMR Computational Fluid Dynamics (hereafter
CFD) code. It was originally developed to model thermonuclear �ashes
occurring inside stars which will develop into Type II Supernovae, and in
particular the detailed evolution of the radiative and thermal balance
during the expansion phases. The AMR structure of FLASH proved to be
particularly e-ective in numerical modelling in general highly
inhomogeneous systems: for this reason, the code was enriched with a
large amount of physical modules to model phenomena like e.g. radiative
cooling, magnetic �elds, cosmic ray transport, etc. Besides that, also the
range of available numerical solvers has been signi�cantly extended, and
as of today includes PPM, Split, Unsplit Hydro Solver, Riemann Solver, and
few more.

Besides these, a Relativistic Hydro Solver, a Magnetohydrodynamic Solver
(with a relativistic MHD option), a few Flux Limiters to consistently account
for radiative transfer in relativistic contexts, and other physical sources like

thermal conduction (both isotropic and anisotropic), sub-resolution
turbulent stirring, implemented also through (semi)-implicit di-usion
solvers have been developed and integrated as additional modules.

Finally, a few gravity solvers have been provided: a Particle-Particle-Mesh
(PPM) and a hierarchical Tree solver, the latter implementing a parallel
Barnes-Hut spatial decomposition with a Peano-Hilbert ordering path
scheme to enhance the parallel e�ciency of the communication among
di-erent blocks within similar tree levels. These gravity solvers are
particularly important in astrophysical applications because they enable a
modelling of self-gravitating systems like stars, galaxies, and clusters
thereof and also of the processes of stellar formation. The latter is
triggered by gravitational instability arising in a �nite-pressure, self-
gravitating interstellar medium inside positive density �uctuations
satisfying the Bonnor-Ebert instability criterion.

It is thus of paramount importance to implement accurate numerical
algorithms to compute the gravitational interactions. This task is made
di�cult by the global character of gravity, a truly long-range, unshielded
interaction which prevents from adopting local computational schemes.

a. Prototype modelization, structure and functional description

In �gure 25. we present a �owchart of a typical FLASH problem, showing
the code architecture.

Figure 25: A schematic diagram of the FLASH units hierarchy and inheritance.

A FLASH unit de�nes its own Application Programming Interface (API),
which is a collection of routines the unit exposes to other units in the
code. A unit API is usually a mix of accessor functions and routines which
modify the state of the simulation. There exists API for all the di-erent
required functionalities: grid decomposition, hydro solver(s), step
advancement, physical input, I/O functions.
The Main Unit is a collector and organiser for other code units and
controls the consistency of the organisation of the work�ow. Some units

are common to all simulations, and thus are always present: typical
examples are the Grid and the I/O units.
The modular structure of FLASH guarantees that the user can build
her/his own computational problem by independently assembling a set of
speci�c modules, corresponding to speci�c API implementations. Note
that each unit can have more than one implementation of its API. The
Grid Unit, for example, has both an Adaptive Grid and a Uniform Grid
implementation. Although the implementations are di-erent, they both
conform to a common standard, the Grid API, and therefore appear the
same to the outside units. This feature allows users to easily swap various
unit implementations in and out of a simulation without a-ecting the way
other units communicate. Thus, no parts of the code have to be rewritten
if the users decide to implement the uniform grid instead of the adaptive
grid.
A very important feature of FLASH are the stub units. The top directory
of every unit contains a stub or null implementation of each routine in the
Unit’s API. The stub functions essentially do nothing. They are coded with
just the declarations to provide the same interface to callers as a
corresponding “real” implementation. They act as function prototypes for
the unit. Unlike true prototypes, however, the stub functions assign
default values to the output-only arguments, while leaving the other
arguments unaltered. These units provide a skeleton for the user to
implement algorithms which are not carried in the default distribution of
FLASH, like for instance initialization and boundary conditions speci�c to
the physical problem the user wants to model.

Figure 26: A simplified representation of the Grid Unit.

Figure 26 above shows a simpli�ed representation of the Grid unit, which
creates the spatial grid decomposition of the domain and controls its
consistency. The frequent calls to the Paramesh routines control the
consistency between (sub)grids at di-erent re�nement levels and
between blocks of the same level (amon others). Particles here represent
discrete objects like single stars or star clusters (characterised not only
by a mass spectrum but also in their stellar evolutionary properties as
Simple Stellar Populations [SSP]). The latter represent physically
independent objects which interact with the gaseous component (the
Interstellar Medium) both gravitationally and by exchanging energy
(stellar feedback). The GPMapToMesh and GPMove units control these
exchanges.

Figura 27: The I/O unit.

In this work we will focus on the I/O Unit, whose structure is represented
in �gure 27, and in particular on the HDF5 I/O, which is one of the less
optimised and critical phases [138]. FLASH produces two types of data
�les: standard and checkpoint outputs. The latter contain only a reduced
set of data related to physical and grid variables needed for visualisation
and analysis, while the former also contain all the intermediate data
needed to restart a simulation from a given timestep. FLASH provides
di-erent HDF5 I/O unit implementations - the serial and parallel versions
for each supported grid, Uniform Grid and PARAMESH structure. The
format of the HDF5 output �les produced by these various I/O
implementations is identical; only the method by which they are written
di-ers.
By default, the parallel mode of HDF5 uses an independent access
pattern for writing datasets and performs I/O without aggregating the disk
access for writing. Parallel HDF5 can also be run so that the writes to the
�le's datasets are aggregated, allowing the data from multiple processors
to be written to disk in fewer operations.
Despite its modular architecture, allowing a very large �exibility in
designing target-speci�c numerical experiments and physical simulations,
some physical properties which are not directly deliverable from
hydrodynamic properties are di�cult to be coded in FLASH. One
example comes from Astrophysics: the formation and evolution of stellar
populations in galaxies and the derivation of their spectral properties (a
typical observable quantity) represent computational tasks related but
not output from the code. Instead of producing new modules in FLASH to
undertake these tasks it turns out to be more convenient to glue FLASH
together with other packages speci�cally designed to have stellar
formation and spectral evolution capabilities, like SYGMA [139].
In more detail, the main reasons for this are at least two: (1) Di-erent
spatial and temporal scales: Star formation takes place from Jeans
unstable positive density �uctuations of the ISM, whose spatial and
temporal scales are orders of magnitudes smaller than those related to
the global evolution of the galaxies where they are contained; (2) Code
recycling: There exists already free software packages which compute the
formation of stars from the ISM and the spectral evolution of Simple

Stellar Populations (SSPs), the building blocks used to model the stellar
properties of galaxies.
The �rst characteristic makes it highly inconvenient to build ad-hoc
modules for stellar evolution within FLASH: the large timestep
di-erences between CFD and stellar formation timescales will result in a
signi�cant workload imbalance. An alternative would be to have a parallel
run where at each FLASH timestep star-forming regions are identi�ed and
their data are sent as input to packages like SYGMA which will compute
the properties of (newborn and already present and evolving) SSPs,
giving back to FLASH the radiative and thermal outputs which represent
the stellar feedback on the evolution of the galaxy’s ISM.
We are currently developing a work�ow where FLASH and SYGMA will
run concurrently and asynchronously and perform di-erent tasks: the
latter will evolve the stellar components and calculate their spectral
evolution, while FLASH will continue to be perform the CFD calculations
related to the non-stellar components (including Dark Matter). The two
components will synchronise periodically their outputs for physical
consistency. This will allow a more e�cient simulation strategy, where
independently optimised parallel codes will run independently but stay
loosely coupled, thus mimicking the actual loose physical coupling
between stellar components and the ISM.

b. Actual implementation

FLASH is mostly coded in F90, with some parts coded in C, C++ or
Python for higher e�ciency. A setup Python script is used to arrange the
required units into a compilation directory (user speci�ed) where links to
the actual units and routines needed to produce an executable are
collected.
Parallelization is implemented either with MPI and/or OpenMP. Speci�c
paths to the actual libraries (including those speci�c to I/O) are stored in a
site-speci�c con�guration �le, where compilation and link-speci�c options
can be set. SYGMA is coded in Python and it has recently been evolved
to v. 3.x.
We plan to investigate fast I/O techniques made available within the
present collaboration to improve the I/O both of the large datasets
produced by FLASH and during data exchange between FLASH and
SYGMA. More speci�cally we will use:
 CAPIO (UNIPI+UNITO): We would explore the e-ectiveness of

integrating within the FLASH-SYGMA work�ows the CAPIO
middleware to boost its I/O performances without modifying the
original codes (see D4.FL3).

 Nethuns (UNIPI). Additionally, we will investigate the feasibility to
integrate the lightweight userspace library Nethuns that o-ers a
straightforward programming model for network I/O and test the
available I/O accelerations frameworks, nicknamed engines, as a
backend (see D4.FL3).

c. Validation tests and results

The validation phase has just started. We plan to perform two tests:

 Recompile HDF5 libraries used by FLASH with the Nethuns primitive
calls, and compare the e�ciency for di-erent computing platforms,
including generic clouds.

 Integrate CAPIO in the FLASH-SYGMA work�ow and perform a
series of tests with computational problems of increasing complexity.

2.7.4 Prototype evolution and implementation

a. Prototype evolution direction

The prototype described above is at TRL2 (experimental proof of
concept). The further steps of evolution will aim at reaching two targets:
 Implement e-ective I/O capabilities within the work�ow and testing

over a signi�cant range of di-erent platforms, from Linux clusters to
more e�cient and homogeneous HPC systems up to a cloud
environment, to evaluate the e-ectiveness with increasing
complexity in terms of weak and strong scalability.

 Implement at least one similar work�ow where FLASH is loosely
coupled to packages di-erent from SYGMA, related to problems
arising e.g. in plasma con�nement physics.

b. Prototype Implementation and involved tools

As described above, we will exploit two main tools made available within
the current collaboration: CAPIO (UNIPI) and Nethuns (UNIPI), see
D4.FL3 in sections, respectively, 2.4.3 and 2.4.2.
CAPIO will be used to allow communications between two loosely
coupled codes, i.e. FLASH and SYGMA. The coupling between them
arises from the need to update a subset of data from the former, related
to spatial regions within a galaxy whose physical state is heavily a-ected
by a component (stars) whose properties are concurrently computed by
SYGMA. We plan to use CAPIO to avoid checkpointing from inside
FLASH, which would require developing new modules. We foresee a
higher versatility allowed by this methodology, particularly when applied
to highly inhomogeneous cloud computing environments.
Nethuns will be used to improve the I/O of the large data outputs
produced by FLASH, i.e. of both checkpoint and data �les. This is
particularly relevant as parallel I/O is seen as one of the major
bottlenecks in the exploitation of FLASH capabilities on future exascale
architectures.

2.7.5 Final validation tests

The �nal phase of this validation will consist in a systematic exploration of
the scaling properties of two di-erent products:
 The FLASH-SYGMA work�ow exploiting the CAPIO library to loosely

communicate data related to the stellar component in global galaxy
formation and evolution numerical experiments.

 The I/O of FLASH of large datasets with the HDF5 library compiled
using Nethuns to deal with low-level network communications.

This phase will bring the prototype from the current TRL2 to a higher level
and will open the door to the exploitation of the CAPIO and Nethuns
libraries in state-of-the-art, scalable applications (both scienti�c and
technological) on exascale architectures.

2.8 WorldDynamics.jl

2.8.1 Introduction

WorldDynamics.jl is a Julia framework for world dynamics modeling and
simulation. It is an open-source Julia package which aims to provide a
modern framework to investigate Integrated Assessment Models (IAMs) of
sustainable development bene�ting from Julia's ecosystem for scienti�c
computing. Its goal is to allow users to easily use and adapt di-erent IAMs,
from World3 to recent proposals.
An IAM aims to integrate the key aspects of society and economy with the
biosphere and atmosphere within a uni�ed modeling framework. The main
goal is to provide informed policymaking in di-erent contexts such as
climate change, human development, and social development. Each model
spans multiple disciplines including, but not limited to, economics, energy
systems, agriculture, technology, etc. Generally speaking, each model can
be seen as a set of subsystems.
Integrated assessment modeling allows us to estimate what possible future
scenarios look like and to evaluate possible policies. To quantify the
outcomes, numerical models are employed.
Di-erent models were proposed in the last �fty years although they are
not suitable to capture the changing nature and complexity of today’s
economic realities due to climate change.
Despite the current (and future) situation, understanding how each model
works as well as their outcomes, is one of the major open problems. Even
though almost every proposed model is freely available, actual
implementations leverage proprietary software.
Through the means of Julia, we have provided a modern framework to
investigate models of global dynamics focused on sustainable
development based on current software engineering and scienti�c machine
learning techniques.
In particular, our group is developing a Julia library to allow scientists to
easily use and adapt di-erent world models, not only the already cited
WorldX but also recent proposals.

2.8.2 Related works

One of the most di�cult and pressing questions that science has faced is
trying to predict the evolution of human society in terms of its basic
aspects, such as capital investment, food production, natural resources,
population size and pollution. These e-orts have been methodologically
revolutionized by the use of computers in modern times. A historic step in
this regard was the development of the World3 model [142], considered to
be one of the most in�uential computer simulations of socio-economic
systems [143]. To date, several models have been proposed and have
largely in�uenced the scienti�c debate around crucial questions on policy
making.
However, even the most recent models have been developed using
software that is not freely and widely available, such as the DYNAMO
language dating back to the late 1950s and the proprietary software Stella
and Vensim. Moreover, they rely on methods that do not exploit modern
approaches to scienti�c computing in general [141]. Some independent
implementations in di-erent languages have been provided by researchers
[144], but they only deal with certain parts of these models.

World2 and World3, two well-known system dynamics models, have been
implemented in several programming languages and simulation
environments, beyond the popular Vensim and Stella. For instance,
Simulink and Modelica have been used to implement these models. There
are also several implementations of these models in di-erent programming
languages. In Python, several repositories have code implementing some
of the IAMs proposed by the Club of Rome. The most comprehensive
description and implementation of the World2 and World3 models in
Python can be found in [149]. [147] describes an implementation of World2
in R, while [146] provides an implementation of the same model in C++.
The Julia ecosystem also o-ers some IAMs implemented using the Mimi
framework, such as MimiPAGE2009.jl, which implements a model for
estimating the social cost of carbon emissions [148]. ClimateMARGO.jl is
another Julia package that implements an idealized framework for
optimizing climate control strategies by implementing the MARGO model
[145].

2.8.3 Actual prototype description and maturity level

The tutorial included with WorldDynamics.jl serves as an introduction to
the package's key capabilities. In short, it highlights the following features:

 The ability to recreate all the �gures found in books that detail the
World1, World2, and World3 models.

 The option to perform sensitivity analysis by adjusting the initial
values of variables.

 The capacity to analyze alternative scenarios by modifying either the
model's parameters or the interpolation tables, which are utilized to
approximate non-linear functions through linear segments.

a. Prototype modelization, structure and functional description

We have already implemented some preliminary Integrated Assessment
Models (IAMs) such as the model by Forrester's World2 and Meadows et
al. 's World3.
The models are available in WorldDynamics.jl. In particular, we provide a
modular implementation where each model is composed of several
subsystems implemented as a Julia function and are later composed to
provide a full system. Each subsystem can be analyzed independently
and can be modi�ed to express di-erent states.
As of today, we can reproduce several �gures of the book Dynamics of
Growth in a Finite World and more generally the same outcomes.
Moreover, we can adapt the model to more modern data. Thus, we can
also validate a proposed model studying the outcome of the model and
comparing it with the ongoing development of the real world.
Our project also allows us to perform sensitivity tests by simply modifying
the parameters or the interpolation tables without touching the
underlying models. We can also substitute a description of a subsystem
(i.e., a set of equations) with a di-erent description.
WorldDynamics.jl leverages several Julia’s packages such as
Di-erentialEquations.jl and ModelingToolkit.jl which composes
di-erential-algebraic systems of equations and thus, the structure of an
IAM whose variable interactions are modeled by di-erential-algebraic
equations.

The large size of these systems and subsystems results in a set of
equations that is also of considerable magnitude even for simple models.
To speed-up the resolution phase parallel solver must be used.

b. Actual implementation

The project, which is available at [153], is implemented mainly in Julia,
adopting a modular approach. It includes the implementation of the most
famous models such as the entire WorldX series of models of the Club of
Rome.

The current version of the code allows the user to extend the proposed
model by changing each subsystem independently of any other
subsystem of the same model.
New model can be implemented by providing the required equations and
coe�cients. In particular, WorldDynamics.jl requires the set of
parameters and interpolation tables as well as the initialization data. Each
of the previous is a .jl �le. Then the set of equations gives a subsystem;
all the subsystems are composed to implement the actual model.
By changing the data (parameters, interpolation tables or initialization
data) it is possible to make predictions and analysis of di-erent policies
given the model.
The plot operation allows a visual representation of each subsystem
throughout the time giving an interactive view to the user. The plots
produced include a curve for each equation of the system that together
fully describe the model given the initial data and parameters.
WorldDynamics.jl allows a quantitative analysis of each model and
sensitivity test by changing the parameters, interpolation tables of the
variables in the speci�c. jl �le then, creating the new system and solving
it.

c. Validation tests and results

WorldDynamics.jl was tested against the published models and the
available implementations [152]. The main goal of the test was to show
the correctness of the implementations by recreating the same results
already published of the well-known models.

2.8.4 Prototype evolution and implementationCompleto

The project roadmap includes the implementation of more historically
relevant MEIs, such as Nobel Laureate William Nordhaus' DICE model and
the recent Earth4All model. We are currently working on the latter model
which is already implemented but not modularized before including a
parallel implementation of the solver as well as a �rst automated model
generation through DataDrivenDi-Eq.jl [151].

a. Prototype evolution direction

Julia employed several libraries which o-er the possibility to leverage
parallel (GPU) solvers out of the box. A crucial aspect requires the usage
of DataDrivenDi-Eq.jl; the library allows us to cope with �nding the best
�tting dynamic systems through machine learning algorithms which in
turn, have to be parallelized as well.

Then, WorldDynamics.jl will be extended to exploit parallel
implementations and data driven dynamical models’ computation.
Speci�cally, we will start using Parallel Ensemble Simulations supplied by
Di-erentialEquations.jl to make use of GPUs and speed-up the resolution
of the system of equations.
On the other hand, the World Bank [150] provides a plethora of datasets
for which we aim to develop forecasting models exploiting machine
learning algorithms to generate suitable coe�cients and equations. The
size of the said dataset requires careful implementation and HPC tools.
We will use what The World Bank provides to generate new models
through machine learning. In particular, we will use regression algorithms
to learn functions (instead of coe�cients as in linear regression). This is a
novel approach to model making: until now, every model was developed
'by hand', a non-scalable approach that leads to simple models. The
extension will transform WorldDynamics.jl in a tool to generate models,
compare them with themselves and the data. Moreover,
WorldDynamics.jl will provide a �exible framework that allows the usage
of several solvers and integration with di-erent methods with a reduced
e-ort. WorldDynamics.jl will allow model construction in a simpli�ed way
while enabling the application of modern scienti�c computing techniques
over new and classical models as well as employing machine learning
techniques for model design.

b. Prototype Implementation and involved tools

The library is developed in the Julia programming language, making use
of the ModelingToolkit.jl and Di-erentialEquations.jl libraries.
Moreover, DataDrivenDi-Eq.jl [151], a library for �nding systems of
equations automatically from a dataset, will be used as a �rst tool to
exploit WorldBank’s data to generate a set of functions that �ts the input
data. The main goal is the automatisation of model development.
These tools include automatically discovering equations from data and
using this to simulate perturbed dynamics.
We would like to investigate the work�ow notion to develop a more
accessible framework. WorldDynamics,jl would bene�t from it for giving a
more readable access to the models as well as its work�ow. This implies a
possible cooperation with:

 Jupyter Work<ow (UNITO): Jupyter born as a native Julia notebook.
We want to investigate how the tool can be adapted to make
WolrdDynamics.jl a more accessible framework and to, possibly,
execute our model in a distributed fashion. Here the goal is to
improve the performance and readability while exploiting our own
HPC architecture (supplied by the involved entity INRIA), see D4.FL3
section 2.1.5.

 BDMaaS+ (UNIFE): our tool provides the means to execute several
simulations of the same model with di-erent parameters together
with runs of the model with di-erent subsystems. We aim to exploit
BDMaaS+ framework to speed-up the process and run di-erent
models (and simulations) in a parallel fashion. The nature of our tool
allows the exploit of BDMaaS+’s properties for computing the best
con�gurations. Moreover, we can further exploit the available
infrastructure and cloud computing services (i.e., Amazon EC2) for an
hybrid approach (See D4.FL3 section 2.1.1).

For our future extension, we can bene�t of a possible partition of both
simulation and model discovery based on data utilization.

In addition, we would like to investigate Machine Learning techniques and
the data furnished by real-time simulators. Which means:

 aMLLibrary (POLIMI): we want to take inspiration from their
techniques for our machine learning tasks. Furthermore, we would
like to investigate their tool as a possible validation for our models
since the tool is an independent implementation. Indeed, our main
task is model discovery whose base case is regression for which they
already gave an implementation. We also think their tool can make a
better exploitation of the available data. See D4.FL3 section 2.1.8.

 Real-Time Simulator for Digital Twin and Hardware-In-Loop in
the Electrical Power Networks Scenario (UNIBO): we would like
to investigate their model. Especially the output their simulation
provides to plug-in in our model as a source of new data and hence
equations. In particular, the models until now proposed are generally
based on coarse-grain data. We may use their tool to build a more
precise subsystem alongside to extrapolate useful data for global
consumption. See D4.FL3 section 2.1.3.

2.8.5 Final validation tests

Unlike what has been done until now, we will shift the focus on the
evaluation metrics: the KPIs used mainly rely on performances such as
response time of the simulations and model generations. We will continue
to validate the correctness of our implementations especially for the data-
drive model discovery. In that case, tests against the already implemented
model will be performed.

2.9 Optimized deployment of cloud-native applications over multi-
cloud and cloud continuum scenarios

2.9.1 Introduction

Orchestration solutions such as Kubernetes are becoming useful tools for
HPC users as they seek to deploy and manage increasingly complex
work�ows across a wide range of computing resources, including multi-
cloud and cloud continuum scenarios. Multi-cloud and cloud continuum
scenarios refer to a plethora of interconnected computing resources
consisting of cloud, edge, and on-premises resources, usually located in
di-erent locations with possibly di-erent ownership, renting prices, and
sizes.
However, the high heterogeneity of the cloud-continuum introduces many
challenges from the service management perspective, such as identifying
optimized deployments for HPC applications that might require high
computational resources. To select an optimized deployment, there is the
need to explore multiple con�gurations and to evaluate their performance.
On the one hand, a service provider would like to deploy its application by
analyzing the pricing perspective, thus looking to rent those resources that
can minimize the overall provisioning costs, i.e., the renting prices of the
chosen execution environment, such as Kubernetes clusters or vanilla
Virtual Machines (VMs). On the other hand, communication latencies

between di-erent computing locations might play a crucial role in
assessing the performance of complex work�ows, such as the ones of HPC
applications.
Furthermore, the actual deployment of these applications upon the cloud
continuum is another challenging task. Connecting resources in a multi-
cloud scenario requires creating an overlay network capable of
interconnecting computing resources located at di-erent cloud facilities in
a transparent fashion for both application providers and end-users. Finally,
state-of-the-art orchestration components are not designed to take into
account all these requirements and to fully bene�t from the capabilities of
multi-cloud and cloud continuum scenarios.
Therefore, it is very di�cult to select an optimized con�guration of
computational and network resources of complex HPC applications before
their actual deployment. There is the need to develop novel solutions
capable of continuously exploring di-erent con�gurations from the ones
available, and to shift from one to another according to application-speci�c
requirements, and the current resource availability. To ful�ll this task,
there is the need for novel solutions capable of operating at many levels,
from the simulation of complex cloud-native applications in a cloud-
continuum scenario to the actual deployment and orchestration of these
applications.

2.9.2 Related works

Services and resource management in the Compute Continuum is a
challenging research topic that calls for innovative solutions capable of
managing the multiple layers of computing resources. Even if several
e-orts have been made in the single cloud scenario, multi-cloud and cloud
continuum scenarios are still unexplored. Related e-orts focused on the
requirements of this project, without trying to address them in a
comprehensive manner. Instead, with the development of this prototype
we aim to address the optimized placement of cloud-native applications at
many levels: federating multiple clouds, running what-if scenarios analysis
to �nd the most appropriate allocation of resources, and orchestrating
services.
Among these works, [154] proposes a resource orchestration framework
called ROMA to manage micro-service based applications in a multi-tier
computing and network environment that can save network and computing
resources when compared to static deployment approaches. In [155],
Pereira et al. propose a hierarchical and analytical model to overwhelm the
resource availability problem in Cloud Continuum scenarios. They present
multiple use cases to demonstrate how their model can improve the
availability and scalability in edge-cloud environments. Moreover, the
authors in [156] describe a model-based approach to automatically
assigning multiple software deployment plans to hundreds of edge
gateways and connected Internet of Things (IoT) devices in a continuously
changing cyber-physical context.
On the other hand, Digital Twin (DT) approaches are gaining momentum as
they became a could represent useful tools to enable what-if scenario
analysis [157] of applications running in multi-cloud scenarios. This will
implement a faster (and parallelizable) process for the exploration of a
larger number of con�gurations, and even allowing the rapid prototyping of
custom Kubernetes functions (e.g., autoscaling, scheduling). As a result,
DTs could be very e-ective in speeding up the parameter identi�cation

process, as well as in signi�cantly broadening its scope, with potentially
signi�cant costs savings [158, 159].

2.9.3 Actual prototype description and maturity level

At the current stage, we are working at the design level (TRL 2). The
proposed prototype is an integration of three di-erent tools: BDMaaS+,
INDIGO, and Liqo. This integration aims at enabling an optimized
deployment of complex cloud-native applications over multi-cloud and
cloud continuum scenarios by exploiting the capabilities of multiple and
distributed computing clusters.
While the prototype is still in its design stage (TRL 2), the tools involved in
this project have di-erent maturity levels. Speci�cally, we can summarize
the TRL of each tool as following:

 BDMaaS+ was developed as part of many research projects; we
validated it experimentally in articles published in international
journals and conferences. Therefore, we can claim that BDMaaS+ has
a TRL of 3. See D4.FL3

 INDIGO has a TRL of 5, as it was experimentally validated in
laboratory settings and other use-cases. See D4.FL3

 Liqo has a TRL of 5, as it was experimentally validated in laboratory
settings and other use-cases. Moreover, Liqo is in production at the
Politecnico di Torino, to scale the computational resources when
needed, for example, in all those situations that require an
overbooking of VMs e.g., during the �nal examinations of the
university’s courses. See D4.FL3

a. Prototype modelization, structure and functional description

Figure 28: Applications deployment in a multi-cloud scenario using INDIGO, BDMaaS+, and Liqo.

To solve these challenges, we present a novel approach based on several
contributions as illustrated in �gure 28. Speci�cally, �gure 28 shows the
use-case of an application provider interested in deploying a HPC
application. To do so, the application provider needs to describe the
application and its work�ow using the standardized TOSCA notation.
Then, INDIGO orchestrator interacts with BDMaaS+ to �nd the most
appropriate set of computing resources considering the application
requirements, application provider de�ned policies (pricing, latency), and
the current availability of resources among the multi-cloud.

To do so, BDMaaS+ implements Digital Twin methodologies to enable an
accurate representation of applications operating in multi-cloud and cloud
continuum scenarios. For creating this virtual representation, BDMaaS+
makes use of input static description of an application (TOSCA blueprint)
and the state of resources available across the multi-cloud. By capturing
the state of an existing HPC application through a virtual representation
of the HPC application it would be possible to run simulation-based
accelerated timescale analysis and to select a proper deployment
description.

Then, BDMaaS+ returns to INDIGO the information on the actual
computing resources that can sustain the QoS demanded by the
composite cloud application described in the TOSCA blueprint. With such
fresh data, the INDIGO orchestrator will produce an application
deployment plan that includes a set of Kubernetes “intents”. The
orchestrator will then enforce the application provisioning (i.e., the
deployment of all software modules the application is composed of) by
invoking the Liqo API and providing it with the above de�ned Kubernetes
intents.

Guided by the deployment requests issued by the INDIGO orchestrator,
Liqo will dynamically create a federation of networked computing
resources, then it will take care of instantiating, con�guring and running
the application’s distributed components in the federation. The
advantage of Liqo compared to alternative solutions is the capability to
create a unique virtual cluster spanning across multiple physical
infrastructures, hence simplifying the deployment and the management
of applications within, which behave the same way independently from
their actual location.

b. Actual implementation

Considering that BDMaaS+ makes use of a simulation-based approach, to
shorten the time required for what-if scenario analysis it could be useful
to run parallel simulations (e.g. a simulation per thread). We plan to
develop a parallelized implementation of the BDMaaS+’s Optimizer
component for exploiting the parallelism of multiple CPUs and GPUs when
available. This will speed up the optimization process, thus allowing
BDMaaS+ to promptly �nd a new con�guration in a shorter time. To do
so, we envision to adopt computational intelligence approaches running
parallelized simulations, each one considering a di-erent con�guration.
Furthermore, we envision that other kinds of methodologies such as
bayesian optimization could be used as optimization black-box.

c. Validation tests and results

To validate the prototype, we plan to test the deployment of several
applications and to collect their metrics using Liqo. Then, we will compare
these results with the ones obtained through vanilla orchestration
solutions that do not take into account the requirements of multi-cloud
and cloud continuum scenarios. We expect that the prototype will
overperform vanilla orchestrators from di-erent perspectives:
provisioning costs (USD per day), expected latency, and overall
application performance.

2.9.4 Prototype evolution and implementation

a. Prototype evolution direction

During the project, we will implement the described prototype.
Speci�cally, we are planning to implement all those functions to support
the interoperability between BDMaaS+, INDIGO, and Liqo. This part of the
project will require many e-orts both from the design and the
implementation levels. Furthermore, we need to implement all those
functions that can be triggered by APIs calls. Among these, extending
Liqo's capabilities of collecting monitoring data from a multi-cloud / cloud-
continuum setup will be essential to allow BDMaaS+ to create its
accurate Digital Twin mode.

b. Prototype evolution structure and description

The prototype evolution process will follow an iterative and incremental
approach, with each iteration building upon the previous version to
gradually re�ne and enhance the prototype. This is to create a more

mature and robust design capable of ful�lling the desired requirements.
We believe that at the end of the prototype evolution process, our
prototype will have a TRL of 5.

c. Prototype Implementation and involved tools

As illustrated in �gure 28, this prototype will include three di-erent tools
from di-erent partners: BDMaaS+ from the University of Ferrara (see
DF4.FL3, section 2.1.1) the INDIGO orchestrator from the University of
Bologna (see DF4.FL3, section 2.3.2) and Liqo from the Politecnico di
Torino (see DF4.FL3, section 2.3.3) . With this prototype we aim to create
an a comprehensive solution that leverages multiple technologies to
enable e�cient orchestration in multi-cloud and cloud continuum
scenarios.
With regard to the implementation, we are currently working to extend
the BDMaaS+ framework to support the simulation of cloud-native
applications over multi-cloud and cloud continuum scenarios. This will
enable an accurate modeling of complex and multi-work�ow applications
and their deployment on a plethora of computing resources distributed
among multiple locations. BDMaaS+ will implement an optimization
framework capable of �nding a suitable location in terms of pricing,
latency, and other user-de�ned Key Performance Indicator (KPI). Finally,
another extension will entail the support for continuous optimization by
leveraging the monitoring information provided by Liqo.
To support the proposed integration, we will extend the INDIGO
orchestrator to interact with the BDMaaS+ framework in the aim of
requesting and obtaining a list of computing resources that can support
the SLA demanded by the requesting user. Also, the tool will be enhanced
with new capabilities to combine the information found in the TOSCA
blueprint of the service with the one received from the BDMaaS+,
leverage this data to bake deployment plans in the form of Kubernetes
intents and feed them to the Liqo platform. At the same time, we will
extend Liqo to support the discussed use-case. Speci�cally, Liqo will
extend its northbound API to better support the INDIGO orchestrator and
BDMaaS+, and it will be extended to gather new monitoring metrics at
run-time (network, compute, storage) in order to feed BDMaaS with more
accurate information for its prediction.

2.9.5 Final validation tests

As �nal validation tests, we will evaluate our prototype in a large-scale
multi-cloud environment to verify the feasibility of the approach on real-
world case studies. As part of this validation, we would like to show how
the desired prototype can implement continuous re-allocation of
computing resources in many computing clusters and to adapt to the
current workload or environmental conditions.

2.10 FastFlow: an alternative programming model for HPC
applications

2.10.1 Introduction

FastFlow [160] is a structured parallel programming framework that
supports application programmers in the process of building e�cient

parallel applications by creating composition of parallel patterns
specialized through proper business logic code parameters and system
programmers in the process of building new specialized, possibly domain-
speci�c parallel patterns through the composition of parallel building
blocks.
The entire framework is provided as a header only library that must be
compiled with the user provided business logic code to obtain the
executable. It is being developed since early ‘2000s and maintained by the
University of Pisa and the University of Torino, in Italy, and provides both
stream and data parallel patterns, usually composed into parallel
applications according to the two-tier rule introduced by Kuchen in [161].
Initially, FastFlow has been designed to target shared memory multicore
architectures only. Later, the possibility to o]oad and orchestrate
computations to di-erent kinds of accelerators has been introduced, as
well, most recently, to target classic cluster architectures such as the ones
typically in the the top500 and green500 lists.

2.10.2 Related works

Several parallel programming frameworks have been proposed, based on
the concept of structured parallel programming, either according to the
algorithmic skeleton viewpoint [173] or according to a more software
engineering viewpoint such as the one centered on design patterns [174].
Among all those proposed, the ones still being maintained and used, also
in the framework of di-erent research projects we mention Muesli [169]
that provides support to target both shared memory and cluster
architectures, SkeTo [170] that introduced automatic optimizations of data
parallel computations through conscious exploitation of a map fusion
refactoring rule, OSL [171] that brought into structured parallel
programming the BSP model, and �nally SkePU [172] that also e�ciently
supports GP-GPU accelerators. To the best of our knowledge, Muesli and
SkePU are the ones still used although not explicitly being mainstream in
HPC.

It is worth pointing out that several widely used libraries and frameworks
include concepts from the structured parallel programming area. IntelTBB
provides some parallel patterns similar to the ones provided in FastFlow
and other structured parallel programming frameworks, although the
computation patterns are provided at the very some level of mechanisms
that can be used to program other parallelism exploitation con�gurations
[175]. Microsoft included a lot of patterns in is own .net parallelism library
[176].

2.10.3 Actual prototype description and maturity level

The key idea backing up FastFlow is that programmers (application
developers and/or system programmers) may only express parallelism
through the usage of available parallel building blocks. Each building block
encapsulates all what’s needed to exploit a given well known, reusable,
composable and parametric parallel pattern that must be instantiated and
specialized through the provision of the business logic code implementing
the user/programmer speci�c logic [162]. As an example, a data parallel
computation may be expressed either using a “parallel for” pattern, similar
to the classical OpenMP pattern, or a “map” pattern, expressing the very
same kind of parallel computation in a way the data parallel computation

may be used as parameter of other patterns (e.g., as a pipeline stage or as
a farm worker). In both cases, the computation to be implemented in the
single iteration (parallel for) or onto all the items of the input collection
(map) is to be provided as a function business logic parameter. Figure 29
outlines the typical work�ow relative to the development of a FastFlow
parallel application.

Figure 29: FastFlow application design

As such, FastFlow does not allow to express arbitrary DAGs of parallel
computations with dependencies, but only those DAGs deriving from the
composition of the DAGs of the di-erent patterns used in the composition
expressing the parallel application.
Several optimizations are implemented in FastFlow, that make the
e�ciency and performance achieved in the execution of parallel
applications comparable or even better than the e�ciency achieved when
using more classical parallel programming frameworks.
In [163] FastFlow has been used to re-implement the ParSec benchmark
suite and two distinct results are shown:
 Expressive power provided by the availability of parallel patterns is

much better than the one provided by other classical parallel
programming environments (less lines of code, especially in the case of
complex parallel patterns, suitable to be modelled by compositions of
primitive parallel forms).

 Performances achieved are close and, in some cases, better than those
achieved using the other benchmarks implementations (e.g., using TBB,
OpenMP or plain Posix threads, see �gure 30).

Figure 30: Best execution times normalized with respect to the PARSEC reference (from [163])

Accelerators have been included since the very beginning in the FastFlow
environment.

First of all, FastFlow provides ways to use (compositions of) parallel
patterns as an accelerator on a single shared memory, multicore
architecture, in all those cases the application does not use all the
computing engines (cores) available. In this case, computations can be
o]oaded to a pattern (or a composition of patterns) through a classical
mechanism providing calls to seamlessly send the input data items to the
accelerator and retrieve the results without any other intervention from
the programmer, but the functional expression of the parallel accelerator
expressed through a parallel pattern (composition).
FastFlow also manages to o]oad tasks to classical accelerators. GPUs are
targeted with di-erent, specialized versions of patterns, targeting GP-
GPUs either using OpenCL or CUDA. The specialized patterns provided
look like classical FastFlow data parallel patterns, but in addition the
application programmer must somehow provide a vector of addresses
and lengths of all the data items (input and output) needed to run the GP-
GPU kernel(s) through o]oading. Although not being completely
transparent, the FastFlow GP-GPU o]oading code is de�nitely higher
level than the code usually needed to program and execute kernels on
the GP-GPUs.

As far as FPGAs are concerned, FastFlow has been extended in two
di-erent ways during two di-erent EU funded research projects. In
REPARA (late ‘2010s), a mechanism like the one used to o]oad tasks to
the GPUs has been used to o]oad computations to kernels (di-erent
kernels and possibly with multiple instances) implemented on the FPGA
through classic FPGA programming frameworks (Xilinx Vivado, at that
time). More recently, in the EU HPC TextaROSSA project, FastFlow has
been extended with a particular “sequential” pattern (that can be used as
component of other parallel patterns) to seamlessly o]oad computation
to pre-compiled FPGA kernels on the available FPGA boards [165]. The
FPGA kernels are compiled using XILINX/AMD Vitis HLS toolchain, in this
case. Figure 31 outlines how the FPGA o]oading node has been
implemented in FastFlow.

Figure 31: FastFlow FPGA offloading node

Finally, FastFlow has been recently extended to target clusters [164]. The
back end has been rewritten and extended in such a way that the
components of the application pattern composition may be executed of
di-erent nodes of a cluster (or workstation network). Two di-erent
backends have been implemented, one using plain TCP/IP and the other
one using MPI to implement distributed synchronizations and
communications. The application programmer is only asked to add a few
lines of code in an application already running on a single shared memory
machine, adding components to di-erent “groups” and then to provide,
outside the application, a JSON �le with hints on the distribution of the
groups onto the available cluster nodes (this second part is going to be
made transparent to user, indeed).
The possibility to write programs using the MPI subsystem to implement
intra node communications and synchronizations de facto implements yet
another MPI+X programming model where indeed the “MPI” part is only
managed by FastFlow and both the distributed and shared memory parts

of the application code are indeed programmed uniformly using the
FastFlow patterns and parallel programming abstractions.

2.10.4 Prototype evolution and implementation

Within the FL3 activities distinct activities are planned with FastFlow:
 Consolidation of the distributed (COW/NOW) support
 Cloud/HPC integration through FaaS o]oading
 HPC continuum o]oading support
 Support to the parallelisation of �agship demonstration that will be

outlined in the following sections.

Consolidation of the distributed (COW/NOW) support

The currently available distributed implementation of FastFlow targeting
COW/NOW will be further re�ned and engineered. In particular, we aim at
re�ning methods and tools to automatically support the distribution of
groups of components of the FastFlow application onto the available
cluster nodes. This activity will mainly be implemented at UNIPI, with the
support of UNITO.

Cloud/HPC integration through FaaS o]oading

In [166] we already experimented with the possibility to o]oad
computations from a shared memory multicore to cloud from within a
FastFlow application. Within FL3 activities, we will investigate the
possibility to use the FaaS framework described in section 2.6 as o]oading
target, and in particular to assess:
 The possibilities o-ered by the elastic management of FaaS

infrastructure in those cases where FastFlow faces the problem to
tackle phases with substantially di-erent computation power
requirements which must be alternatively dealt with variation of the
number of instances of the FastFlow pattern components that may be
not easy to implement e�ciently.

 The possibilities o-ered by the orchestrated coordination of HPC and
cloud resources, in the aim of the original goals of this Flagship 3. This
means that, even in case of non-varying computation requirements,
cloud and cluster resources may be orchestrated to achieve the overall
computation performance and e�ciency goals. This opportunity will
also be investigated taking into account power consumption, in addition
to performance.

This task will be implemented by UNIPI interacting with ROMATOV
a�liates.

HPC continuum o]oading support

The possibilities o-ered by FastFlow to o]oad computations to di-erent
kind of accelerators will be further investigated by UNIPI and UNINA. The
multispectral image classi�cation developed at UNINA (see D4.FL3 section
2.2.8) will be considered as possible application to be implemented in
FastFlow, with part of the parallelism exploited on shared memory
multicore hw and part on a GP-GPU. Several versions of the application will
be considered targeting embedded systems (e.g. NVidia Jetson nano style)

to classical HPC systems (shared memory multicore clusters) to evaluate
the possibilities o-ered in the HPC continuum perspective.

Support to the parallelisation of �agship demonstration

Within the demonstrator of section 2.1, aimed at providing HPC
compression of huge collections of programs, the possibilities o-ered by
FastFlow to a) implement parallel versions of the compression algorithm(s)
on standard CPUs and b) orchestrate o]oading of relevant part of the
compression algorithm(s) to accelerators will be investigated. This activity
involves UNIPI (di-erent research groups) ENEA (the �nal user of the
compression algorithms) and UNITO. In addition, INRIA (F) will be the
source of the huge amount of data to be compressed.

2.10.5 Final validation tests

We plan to validate the activities related to FastFlow development and
exploitation by:

 Being able to demonstrate the e�ciency of the enhanced COW/NOW
targeting support comparing the results achieved on HPC clusters by a
FastFlow port of some microbenchmark application and those obtained by
the original application developed using standard programming
environments.

 Being able to o]oad computations to FaaS frameworks and to measure
the di-erences in performance in beetween FaaS o]oading and FastFlow
only implementations.

 Being able to support and orchestrate parallel execution of di-erent
chunks of sequential business logic code in both the “compression”
prototype of section 2.1, and in the execution of the multispectral image
classi�cation algorithm on stream of images in cooperation with UNINA
[167,168]

2.11 Anomalous subgroup characterization with DivExplorer

2.11.1 Introduction

The rise in data availability and the prevalence of high-performance
computing (HPC) have accelerated the advancement of machine learning
(ML) and arti�cial intelligence (AI) models. ML models rely on substantial
data and computing power for their training and optimization. The advent
of HPC and big data technologies has enabled researchers and
practitioners to process, store, analyze, deploy, and develop ML models
with greater e�ciency and e-ectiveness.
Nevertheless, with the increasing adoption of AI models, it is imperative to
evaluate and ensure their quality and reliability.
The evaluation of ML model behavior generally focuses on overall
performance, estimated over all the data. However, the overall estimation
provides no indication if di-erences in the model behavior exist across
subsets of data.
Models may perform di-erently on di-erent data subgroups. The
identi�cation of these critical data subgroups plays an important role in
many applications, for example, model validation and testing, model
comparison, error analysis, or evaluation of model fairness.

When evaluating a model's performance, it is essential to understand its
behavior across di-erent subsets of data. By examining subgroup-speci�c
performance, we can identify if the model's accuracy varies signi�cantly
across di-erent demographic groups, conditions, or other relevant factors.
This analysis helps ensure that the model is reliable and e-ective for all
subgroups, not just the overall population.
Moreover, examining model behavior in subgroups helps in understanding
the causes of errors or discrepancies in predictions. By identifying
subgroups where the model consistently performs poorly, we can gain
insights into the speci�c challenges or limitations faced by the model in
those cases. This information can guide improvements in the model design
or training process.

Typically, domain expert help is required to identify relevant (or sensitive)
subgroups. Recent advances in ML model performance and analysis have
recently proposed to address this task automatically [177,178,179,180].
The automation of the subgroup identi�cation allows to e�ciently explore
and analyze subgroup performance. Among the pioneers in this line of
work, we proposed DivExplorer [177], an automatic approach to explore
datasets and �nd subgroups of data for which a model behaves in an
anomalous manner. The notion of divergence is introduced to estimate the
di-erent classi�cation behavior in data subgroups with respect to the
overall behavior. Subgroups are characterized via patterns, de�ned as a
set of attribute value, making the subgroups directly interpretable.

We envision a comprehensive framework to analyze the behavior of ML
models, focusing on peculiarities at the subgroup level. The project, having
as it cores component the DivExplorer approach, will cover multiple
directions: (i) handling Big Data and Big Data models, (ii) generalize to
multiple tasks and models, (iii) proposing novel methodologies for model
comparison and selection, (iv) leverage subgroup analysis for model
improvement and (iv) integration of subgroup analysis into interactive
frameworks enabling access to computational data on a HPC system.

2.11.2 Related works

Subgroup analysis often rely on domain experts to identify the relevant (or
sensitive) subgroups of interest. TensorFlow Model Analysis [181] and
MLCube [182] belongs to this category. These approach enables
interactive explorations and visualization, requiring the user to specify the
subgroups of interests.
For fairness assessment, the diagnosis concentrates on evaluating if
results are dependent on certain sensitive or protected attributes (e.g.,
gender, ethnicity, sexual orientation) [183,184].
Leveraging known or user-de�ned subgroups however requires human
expertise and hinders the identi�cation of unexpected and previously
unknown critical subgroups.
Only recently, automatic subgroup detection techniques have been
proposed to automatically identify subgroups with peculiar behavior.
Works as Fairvis [185] adopt clustering techniques. However, the identi�ed
clusters are not directly interpretable, limiting the actionable
understanding. Approaches as SliceLine e SliceFinder [179,180] leverage
instead the notion of pattern as a conjunction of attribute-value pairs to
slice the dataset. This allows a direct understanding of the conditions
associated with a peculiar behavior. However, existing solutions adopt

heuristics to prune the search [179] or are optimized only to derive
subgroups with lower performance than the average [180], not allowing for
a complete understanding of the model behavior.
Existing approaches generally focus on discovering problematic subgroups
in terms of classi�cation or regression performance. We aim to propose a
comprehensive framework that can be adopted to inspect the data and
model behavior for generic functions, not limited to performance.
Moreover, a relevant component for understanding model behavior is the
interactivity of subgroup analysis tool and the e-ective visualization of its
results. Existing approaches address this requisite by proposing interactive
web applications [178]. We plan an integration of the proposed subgroup
exploration tool with the Interactive Computing Service (IAC)
framework of CINECA partner, described in the DL5.FL3 section 2.1.4.

2.11.3 Actual prototype description and maturity level

The envisioned framework has as core component the DivExplorer
approach. DivExplorer is currently at TRL 3 - Proof-of-Concept
Demonstrated, Analytically and/or Experimentally.

a. Prototype modelization, structure and functional description

DivExplorer is an automatic approach to explore datasets and �nd
subgroups of data for which a model behaves in an anomalous manner.
The notion of divergence is introduced to estimate the di-erent
classi�cation behavior in data subgroups with respect to the overall
behavior. Subgroups are characterized via patterns, de�ned as a set of
attribute values.
The approach algorithm is based on the e-ective integration of
performance and divergence into the exploration process, leveraging
frequent pattern mining algorithms. This enables DivExplorer to e�ciently
explore all subgroups with adequate representation in the dataset.
Moreover, the use of the Shapley value and its generalization to analyze
the contribution of the attribute value to the divergence has been
introduced. The former allows understanding locally the contribution of
each attribute value to the divergence of a speci�c subgroup. The latter
allows understanding globally how much each attribute value contributes
to the divergence of the model.
Di-erently from existing approaches, in this case e�cient exploration of
all subgroups with adequate representation in the dataset is allowed. As a
result, the model behavior can be fully characterized. Furthermore, the
proposed approach is model agnostic. Hence, it treats the classi�cation
model as a black box, without knowledge of its internal working.

b. Actual implementation

The subgroup analysis of DivExplorer is currently available in two
versions: (i) python package of the pypi repository and (ii) web app.
The source code of DivExplorer is available as a python package. The
core library it leverages are numpy, pandas, sklearn, numpy and
mlextend for the exploration of subgroup.
The web app can be deployed don any cloud that provides services for
running containerized web services. Currently, our hosting relies on
Google Appengine. The back-end, which implements the data access

layers and analysis algorithms, is written in Python, and relies on the
py4web web framework [186].
The analytical operations leverages the DivExplorer library, the Pandas
library for dataset processing, and the scikit-learn library for data mining
[9]. The front-end is written using the vue.js Javascript framework, which
enables dynamic visualizations and explorations of the dataset. Data is
stored in a cloud SQL database. In particular, we currently use Google
Cloud Mysql and Google Cloud Storage.

c. Validation tests and results

The library can support any structured dataset. Domain experts and
general users can use its open-source implementation to analyze the
classi�cation performance of generic machine-learning models for such
data.
The current version of DivExplorer has been successfully applied to
understand the behavior of ML classi�ers on small- and large-scale data.
The results are available in [177].
Moreover, the web app version of DivExplorer was demonstrated and
discussed in paper [178].

2.11.4 Prototype evolution and implementation

a. Prototype evolution direction

The prototype evolution will cover the following directions.

Big data context. The e�cient exploration of DivExplorer is suitable for
parallel and distributed implementation, allowing its adoption in a Big
Data context. The aim is to enhance it for understanding Big Data
models. We aim to release a new implementation to allow its adoption in
the Big Data context as a future work. We plan to release a new version
to support running on Apache Hadoop/Spark clusters.

Task and model generalization. The current prototype has been
successfully applied to understand the behavior of ML classi�ers based on
the sklearn library and tabular data. We plan to extend it and evaluate it
to multiple tasks as regression, ranking, intent classi�cation, automatic
speech recognition and tasks and model architectures and
implementations.
Model comparison and selection. The current prototype is adopted to
understand the behavior of an individual ML model. We will extend the
methodology to allow for the comparison of models at the subgroup level
and the selection of the most suitable ones for the context under
analysis.

Model improvement and iteration. The subgroup analysis allows gaining
insight on problematic subgroup and could be a tool for model
improvement. This may involve retraining the model with more diverse
data, adjusting the model's algorithms or parameters, or implementing
fairness-enhancing techniques. The iterative nature of the framework will
allow for continuous improvement of the model's behavior in subgroups.

Interactive and accessible framework. A relevant aspect of the envision
prototype is an easy and e-ortless interaction with end users. The
prototype should easily integrate with a wide range of analysis and ML
libraries, such as Pandas, NumPy, Scikit-learn, and PyTorch. Users should
easily specify the data and the model to analyze and directly focus on the
subgroup analysis enabled by our framework. We envision the integration
of subgroup analysis into interactive frameworks enabling access to
computational data on a HPC system. This would enable a seamless
work�ow, streamlining the analysis process and eliminating the need for
switching between di-erent tools or platforms.

b. Prototype evolution structure and description

The evolution of the prototype will cover the envisioned directions.
Speci�cally, priority will be given to all the steps that would enable the
integration (and its analysis of feasibility �rst) with the tools of other
partners identi�ed as relevant for the framework development.

c. Prototype Implementation and involved tools

We will investigate the integration and involvement into the proposed
framework of the following tools: aMLLibrary (POLIMI), Interactive
Computing Service – IAC (CINECA) provides and ParSoDA (UNICAL).

aMLLibrary. We will investigate the integration of DivExplorer subgroup
analysis into the autoML solution of aMLLibrary (POLIMI). aMLLibrary is a
Python package implements an autoML solution to train multiple
regression models and automatically select the most accurate one based
on the validation metric chosen. The analysis of performance at the
subgroup could be a relevant component for the validation and the choice
of the best regression model. The integration of DivExplorer and
aMLLibrary would enable a comprehensive model comparison and
selection for the regression task. See DL4.FL3 section 2.1.8

Interactive Computing Service – IAC. A relevant aspect of the envision
prototype is a seamless work�ow and an easy interaction with end users.
We envision the integration of DivExplorer into the Interactive Computing
Service – IAC of CINECA. ICA would enable access to computational data
on a HPC system. This would enable a seamless work�ow, streamlining
the analysis process. The subgroup analysis functionality would be
directly accessible in the Jupyter launcher of the IAC interface. By
accessing the subgroup analysis capabilities via IAC, users can easily
access and analyze relevant data, build ML models, and explore
subgroup-speci�c behavior in a uni�ed and cohesive manner.

ParSoDA. ParSoDA (Parallel Social Data Analytics) is a library that
simpli�es the development of parallel data mining applications executed
on HPC systems. It provides a set of functions for processing and
analyzing data. We will explore the integration of the BigData
implementation of DivExplorer and ParSoDA (UNICAL) library for data
analysis applications

2.11.5 Final validation tests

We will evaluate the prototype on a wide range on datasets, varying the
dimensionality and cardinality. We will also test the approach on a wide
range of tasks and architectures.
The evaluation will be based on qualitative evaluation and synthetic tests
to evaluate the ability of the approach to capture model behavior at the
subgroup level. Moreover, we will also consider user studies to evaluate
the ability of the approach to provide insight into the model behavior and
its interactivity level.

2.12 Compilation �ow and deployment strategy targeting RISC-V
accelerators for HPC computing

2.12.1 Introduction

In recent years, HPC and Cloud computing architectures are becoming
increasingly complex since the growing demand for performance and
energy e�ciency has favored the proliferation of heterogeneous systems
coupling standard processors with specialized accelerators [187,188].
Generating e�cient executable code for these systems is one of the most
complex tasks for software engineers, and compilation toolchains play a
crucial role in providing techniques and methodologies to achieve optimal
workload mapping. However, this scenario poses a severe challenge for
e�cient compiler design.

Figure 32: Main blocks composing a standard compiler toolchain

Figure 32 depicts the high level structure of a standard compiler toolchain
[189], including three main stages: front-end, middle-end, and back-end.
The front-end stage recognizes legal programs and produces an
intermediate representation (IR) with an abstraction level suitable for the
following transformations. Middle-end and back-end optimization passes
transform an input program representation into an equivalent one
optimized for a target metric (e.g., speed, size, or safety), and the design
of the IR language must simplify this goal, adopting machine-independent
or machine-speci�c knowledge, respectively. Even if this design is
widespread and successfully applied in many application contexts, it is not
�exible enough to target the heterogeneous scenario envisioned above.
In recent years, compiler researchers and companies have explored an
approach base on multi-level intermediate representation (MLIR) [190].
Middle-end optimizations are generic by construction; for this reason, they
cannot fully exploit the constraints provided by speci�c application
domains. Conversely, back-end optimizations are fully focused on the
features and peculiarities of the target machine. MLIR introduces a set of
domain-speci�c middle-end representations (called dialects) geared toward
domain-speci�c optimizations, allowing di-erent levels of abstraction to co-
exist freely using a uniform IR grammar.

Figure 33: Integration of MLIR features into a compiler toolchain

Figure 33 shows the integration of MLIR capabilities into a compiler
toolchain. The MLIR tools intercept high-level program constructs with the
aim to lower them progressively down to a low-level intermediate
representation (usually the one used in the middle-end). This use case
aims to demonstrate the MLIR �ow into an HPC environment, providing
support for high-level workloads targeting experimental RISC-V
accelerators.

2.12.2 Related works

MLIR-enabled toolchains aim to lower the program progressively down to
machine code, and are typically with a traditional compiler toolchain that
performs the lowest-level transformations.

Figure 34: A graph depicting the current available MLIR dialects[194]

An optimization tool base on MLIR must schedule a set of transformation
passes based on the available dialects [190]. A dialect is an IR language
de�ning attributes, operations, and types; dialects are the most
fundamental aspects of MLIR and can be used to model a variety of
di-erent abstractions (from arithmetic properties to pattern matching).
Figure 34 shows a graph of the relations among the publicly available

dialects. It is noteworthy that all low-level dialects directly map on LLVM IR
to ensure interoperability with the LLVM toolchain MLIR-based tools must
schedule a path starting from the top (domain-speci�c dialects) down to
the bottom (machine-speci�c dialects).
In recent years, many research contributions have focused on high-level
dialects and have yet to provide an end-to-end solution[191, 192]. One of
the most mature tools is TinyIREE [193], an MLIR-based toolchain to lower
machine learning programs to mobile and edge devices. In our work, we
want to realize a tool targeting HPC systems with a broader perspective,
with no restriction to a single application domain and the possibility to
investigate multiple lowering strategies. Moreover, we will add support to
RISC-V accelerators speci�cally designed for HPC.

2.12.3 Actual prototype description and maturity level

The tool prototype is at an early development stage (TRL 2). We completed
the speci�cation and initial design of MLIR abstractions for a RISC-V
accelerator for HPC computing, considering on a research prototype
available as an open-source project[195].

a. Prototype modelization, structure and functional description

As discussed in the previous sections, the main goal of MLIR is to enable
the lowering of high-level programs to low-level representations.

Figure 35: A compilation flow based on MLIR dialects (squares) and related transformations (circles).

Figure 35 shows a set of steps inside an MLIR optimization �ow. The
square shapes represent an intermediate program representation during
the transformation �ow, while the circles are transformations. The
starting point is a single dialect at the highest level of abstraction (e.g.,
tensor); as a �rst step, it is translated into a new intermediate
representation composed of a set of high-level dialects (HL-IRi), each one
representing a di-erent abstraction (e.g., math operations, loops, control
�ow). The last transformation is a lowering step from low-level dialects
(LL-IRi) to the LLVM IR, which can be injected into an LLVM toolchain
providing support for the target platforms.
Our tool will provide the implementation of the low-level dialects required
to target a RISC-V accelerator and the related transformations from high-
level dialects down to LLVM IR. It will also manage the orchestration of
the optimization �ow.

b. Actual implementation

We have completed the speci�cation and started the design of the MLIR
abstractions for RISC-V to map the hardware features in the ISA
extensions supported by RISC-V accelerators, mainly hardware loops and
auto-incremental data pointers. These low-level dialects are required to
enable the adoption of these features in the MLIR optimization toolchain,
whose upper levels are platform-agnostic thanks to these abstractions.

c. Validation tests and results

At the current development stage, we have tested the lowering of a
generalized matrix multiplication kernel (GEMM) from the high-level
representation down to the low-level dialects that we have designed, and
we have started testing its integration with the LLVM environment.

2.12.4 Prototype evolution and implementation

At the end of the project, we plan to reach a TRL equal to 5. The key
performance indicators (KPIs) that we will consider for the prototype
evaluation are the following:
 Lines of code and level of abstraction of the input program.
 Performance of the compiled program compared to hand-tuned code.
 Ease of use for the programmer compared to a standard compiler

toolchain

a. Prototype evolution direction

The prototype evolution will follow an iterative development approach,
with the aim to integrate multiple tools into an MLIR-based compilation
�ow and demonstrate the approach on a RISC-V accelerator using a
simulation environment.

b. Prototype evolution structure and description

The prototype evolution will follow these steps:
1. Integration of the low-level dialects with the LLVM [196] toolchain.
2. Adoption of a tool to generate the highest-level dialect from a widely-

used programming language (e.g., Python).
3. De�nition of a set of work�ows for at least two relevant scenarios

(deep neural networks and linear algebra workloads).
4. Adoption of a work�ow management tool to orchestrate the MLIR

transformation steps and explore di-erent solutions.

c. Prototype Implementation and involved tools

Following the prototype evolution stages, we plan to integrate three main
tools:
 mlir-opt (distributed as a component of the LLVM compilation

toolchain): This tool will manage transformation between MLIR dialects
and produces an intermediate format for the LLVM toolchain (LLVM
IR). The MLIR based approach is one of the contributions described in
DF4.FL3 section 2.5.1.

 xDSL: https://github.com/xdslproject/xdsl This tool generates MLIR
from high-level code (Python) and simply�es the description of high-
level dialects/transformations.

 StreamFlow (UNITO): This tool will orchestrate the transformations
steps by invoking mlir-opt with di-erent parameters. This tool in
introduced in DF4.FL3 section 2.1.6

2.12.5 Final validation tests

https://github.com/xdslproject/xdsl

As �nal validation tests, we will evaluate our prototype in a large-scale
multi-cloud environment to verify the feasibility of the approach on real-
world case studies. As part of this validation, we would like to show how
the desired prototype can implement continuous re-allocation of
computing resources in many computing clusters and to adapt to the
current workload or environmental conditions.

2.13 National Federated Cloud/HPC Infrastructure

2.13.1 Introduction

Current open-source orchestrators for cloud/HPC infrastructures (e.g.,
Kubernetes in its multiple �avors, OpenStack) handle each infrastructure
as a multitude of (connected) isolated silos instead of a unique virtual
space. This leads to a sub-optimal fragmented view of the overall available
resources, preventing the seamless deployment of fully distributed
applications, or the usage of existing applications installed in another
cluster, but operating on remote data present in the current cluster (i.e.,
data-gravity approach).
Current federated approaches represent a partial solution to this problem
because the federation among participating clusters has to be established
a-priori and it is rigid in its nature, hence di�cult to extend/resize
dynamically. Furthermore, most of the existing approaches still partition
the whole federation in multiple sites (i.e., the clusters contributing to the
federation), with little (or no) primitives facilitating the communication
among distributed applications.
Liqo o-ers a possible answer to this problem, enabling (1) highly dynamic
federation mechanisms, which (2) can be set up/torn down in a matter of
seconds, and (3) provides services, networking and storage transparency
to all the applications running in any of the federated clusters, hence
transforming any multi-cluster deployment into a single (virtual) cluster
one.
The current project aims at creating a dynamic federation among
participating Italian actors (e.g., Universities, research organizations),
using Liqo.io, enabling the sharing of computing and storage resources,
applications and services, as well as data, among all the involved
organization.

2.13.2 Related works

The most common approach to cloud federation, as far as Kubernetes is
concerned, is the KubeFed [197] project, which creates a federation among
Kubernetes cluster. However, this approach is rigid, and it has been
considered not appropriated even from the Kubernetes community itself. A
potential successor is the Karmada project [198], funded by a group of
Chinese companies, but it is not compatible with Vanilla Kubernetes and it
requires users to rely on a new API to control the cluster.
Other approaches, such as Submariner [199] or Cilium Mesh [200] are
limited to networking transparency, hence providing full connectivity
among clusters but lacking services and data transparency across the
federated cluster. It is worth nothing that those approaches are compatible
with the latest versions of Liqo, hence enabling a mixed solution in which
Liqo takes care of handling Kubernetes resources (pods, services,

volumes), while the network connectivity is provided by the former
projects.
Finally, other approaches such as SUSE Rancher Fleet [201] or KubeEdge
[202] provide an overarching infrastructure to control multiple clusters
from a single pane of glass, but without the transparency (computing,
storage, services) that is required for seamless deployment of multi-cluster
applications.
With respect to OpenStack [203], this software o-ers federation primitives
though proper extensions, but this should be considered more as a
collection of di-erent clusters controlled by a single entity than a
geographical (transparent) infrastructure.
In a nutshell, Liqo is the only project that provides full transparency with
respect to computing, networking and storage resources, as well as
Kubernetes services and primitives, among all the entities participating in
the virtual cluster. However, Liqo has been designed to operate in
Kubernetes environments and currently it does not provide support for
“legacy” virtualization primitives such as VMs.

2.13.3 Actual prototype description and maturity level

Liqo is an open-source project that enables dynamic and seamless
Kubernetes multi-cluster topologies, supporting heterogeneous on-
premises, cloud and edge infrastructures, providing the following features:

 Peering: Automatic peer-to-peer establishment of resource and service
consumption relationships between independent and heterogeneous
clusters, with an automatic and transparent VPN between involved
clusters.

 OCoading: Seamless workloads o]oading to remote clusters, without
requiring any modi�cation to Kubernetes or the applications
themselves. Multi-cluster is made native and transparent, hence
enabling to collapse an entire remote cluster to a virtual node that is
compliant with standard Kubernetes approaches and tools.

 Network Fabric: A transparent network fabric, enabling multi-cluster
pod-to-pod and pod-to-service connectivity, regardless of the
underlying con�gurations and networking plugins. Users can natively
access the services exported by remote clusters, and spread
interconnected application components across multiple infrastructures,
with all cross-cluster tra�c �owing through secured network tunnels.

 Storage Fabric: A native storage fabric, supporting the remote
execution of stateful workloads according to the data gravity approach.
It enables the seamless extension of standard (e.g., database) high
availability deployment techniques to the multi-cluster scenarios, for
increased guarantees, without the complexity of managing multiple
independent cluster and application replicas.

An example of Liqo running on a real site (through its minimal dashboard)
is available at [204].
The current maturity level of the software is TRL 5, with the software
already being in production (although experimental) at Politecnico di
Torino, as described in this blog post [205] and being under testing by
independent partners, such as the Dutch Gaia-X community, as described
in this press news[206].

a. Prototype modelization, structure and functional description

Liqo does not introduce any modi�cation in standard Kubernetes APIs for
application deployment and well-established management work�ows, as
well as to support a wide range of common infrastructures, with no
constraints in terms of cluster type (i.e., on-premises or hosted by a cloud
provider) and networking con�gurations (i.e., network providers and IP
addresses).
Liqo leverages the virtual node concept to masquerade the resources
shared by each remote cluster. This solution allows the transparent
extension of the local cluster, with the new capabilities seamlessly taken
into account by the vanilla Kubernetes scheduler when selecting the best
place for the workload’s execution. The virtual node abstraction is
implemented through an extended version of the Virtual Kubelet project
(https://github.com/virtual-kubelet/virtualkubelet). In Kubernetes, the
kubelet is the primary node agent, responsible for registering the node
with the control plane and handling the lifecycle of the pods (i.e., the
minimum scheduling unit, composed of one or many containers sharing
the same network namespace) assigned to that node. The virtual kubelet
(VK) replaces a traditional kubelet when the controlled entity is not a
physical node, allowing to control arbitrary objects through standard
Kubernetes APIs. Hence, it enables custom logic to handle the lifecycle of
both the node itself and the pods therein hosted.
A simple overview of the Liqo architecture is depicted in �gure 36.

Figure 36: overview of the Liqo architecture

b. Actual implementation

The current implementation (available at [207]) supports multiple
Kubernetes implementations and �avors (Kubernetes vanilla, OpenShift,
KinD, K3s), including the ones running on major cloud providers (Amazon
EKS, Azure AKS, Google GKE), and the major CNI network providers (e.g.,
Calico, Flannel, Cilium). The software is entirely developed in Golang, with
an easy-to-setup install, and it also includes a minimal dashboard to
control the peering process, i.e., the procedure required to establish a
sharing resource session between two clusters.
More details about the current implementation and internals are available
on the o�cial documentation page[208].

c. Validation tests and results

The current implementation has been proved not to introduce no
noticeable penalty compared to vanilla Kubernetes, even in novel multi-
cluster and multi-cloud contexts. In other words, Liqo introduces the
support for Kubernetes to operate in new deployment scenarios, without
any performance penalty. Detailed results are presented in the paper
[209].
In addition, this software has been used to provide production-quality
services in several real environments, such as in Politecnico di Torino and
TNO. More details on the Liqo blog page [210].

2.13.4 Prototype evolution and implementation

a. Prototype evolution direction

The current prototype has been used mainly either in cloud-to-cloud
scenarios, or on on-premises-to-cloud. In both cases, a single actor can be
considered the owner of the entire infrastructure. This leaves several
options for the future directions of the prototype.
 Security and multi-tenancy: they represent fundamental features

when the clusters that share resources together belong to di-erent
actors. In this case, well-de�ned boundaries must be created that
separate the jobs of the two actors, even running on the same cluster.
In addition, primitives for secure execution of workloads (e.g., no
tampering) are needed to provide better guarantees that running
workloads cannot be inspected by the cluster owner.

 Scalability: When the network infrastructure becomes bigger, e.g.,
including the resources of several federated clusters, new scalability
levels should be achieved that go beyond the well-known scalability
properties of a Kubernetes cluster.

 Edge clusters: this novel deployment scenario, consisting in one (or
more, for redundancy reasons) master cluster coordinating the
operations of a multitude of geographically dispersed clusters, running
at the edge of the network, represents a new, challenging deployment
scenario. This includes the necessity to address severe scalability
constraints, as well as geographical limitations (e.g., network
bandwidth, latency, resource heterogeneity).

The current prototype, running at TRL-5, will be extended with the
features targeting the above directions, with a �nal outcome over the
course of the project that targets TRL 6, including the new features.

b. Prototype evolution structure and description

The planned evolution of the prototype is oriented to the creation of a
vibrant community of enthusiast cloud managers who are willing to share
computing resources and data across Italian institutions. The biggest
e-ort planned in this activity is to gather interests of the potential
involved actors in order to create, on a voluntary base, the consensus for
an highly-dynamic nationwide federation of cloud and HPC resources,
available on-demand, which is (a) able to challenge major cloud
hyperscalers in terms of available resources and software services, which
are speci�cally designed for academic/scienti�c experimentation, and (b)

contributes to lower the actual cost of massive scienti�c computing-based
experiments due to the resource sharing among involved partners.
A possible example of an initial federation of cloud resources is available
at [8].

c. Prototype Implementation and involved tools

One of the biggest challenges in the above vision is the necessity to
integrate, with the Liqo technology, tools and methodologies that can
complement its features, in particular (a) the capability to predict the
performance of the federated infrastructure, and (b) the capability to
control infrastructures that are not fully cloud-native (e.g., Kubernetes).
For this reasons, two tools are considered the best options:
 BDMaaS+ (UNIFE): it implements Digital Twin methodologies to

enable an accurate representation of applications operating in multi-
cloud and cloud continuum scenarios. For creating this virtual
representation, BDMaaS+ makes use of input static description of an
application (TOSCA blueprint) and the state of resources available
across the multi-cloud. By capturing the state of an existing HPC
application through a virtual representation of the HPC application it
would be possible to run simulation-based accelerated timescale
analysis and to select a proper deployment description. See D4.FL3
section 2.1.1.

 INDIGO(UNIBO): it is able to �nd the most appropriate set of
computing resources considering the application requirements,
application provider de�ned policies (pricing, latency), and the current
availability of resources among the multi-cloud, and it can translate
high-level intents (e.g., TOSCA) into proper infrastructure-based
commands that can be used to drive the actual Liqo federation and
the actual resources to be used in a speci�c deployment. See D4.FL3
section 2.3.2.

2.13.5 Final validation tests

We plan to test the tool with at least two applications in the domains of
deep neural networks and linear algebra. Since the target hardware
platforms are experimental and not available as commercial solutions, we
will target a simulator on a Docker environment. Our goal is to start from
high-level code and obtain performance results comparable to hand-tuned
applications (at least 90% of the maximum performance achievable).

3 References

[1] T. Hey, S. Tansley, J. Gray, and K. Tolle, “The fourth paradigm: data-intensive
scienti�c discovery.”, Microsoft research, 2009

[2] V. Springel, N. Yoshida, and S. D. M. White, “GADGET: a code for collisionless
and gasdynamical cosmological simulations.”, New Astronomy, p. 79-117,
2001

[3] P. E. Dewdney, P. J. Hall, R. T. Schilizzi, and T. J. L. Lazio, “The square
kilometre array.”, in Proceedings of the IEEE, vol. 97, no. 8, p. 1482-1496,
2009

[4] E. Sciacca and et al., "An integrated visualization environment for the virtual
observatory: Current status and future directions.", Astronomy and

Computing, vol. 11, p. 146-154, 2015
[5] VisIVOLab GitHub repository, “VisIVO Server”, [Online]. Available:

https://github.com/VisIVOLab/VisIVOServer

[6] VisIVOLab GitHub repository, “ViaLactea Visual Analytics”, [Online].
Available: https://github.com/VisIVOLab/ViaLacteaVisualAnalytics

[7] F. Vitello and et al., “Vialactea visual analytics tool for star formation studies
of the galactic plane.”, Publications of the Astronomical Society of the Paci�c,
vol. 130, no. 990, 2018

[8] Kitware, “The Visualization Toolkit (VTK)”, [Online]. Available: https://vtk.org/

[9] E. Sciacca and et al., “Scienti�c Visualization on the Cloud: the NEANIAS
Services towards EOSC Integration.”, Journal of Grid Computing, vol. 20, no.
7, 2022

[10] OpenACC Organization, “OpenACC”, [Online]. Available:
https://www.openacc.org/

[11] K. Moreland, C. Sewell, W. Usher, L. T. Lo, J. Meredith and et al., “Vtk-m:
Accelerating the visualization toolkit for massively threaded architectures.”,
IEEE computer graphics and applications, p. 48-58, 2016

[12] CWL Project, “Common Work�ow Language (CWL)”, [Online]. Available:
https://www.commonwl.org/

[13] The University of Manchester UK and HITS gGmbH, “Work�ow Hub”, [Online].
Available: https://work�owhub.eu/

[14] University of Technology Sydney, The University of Manchester UK and RO-
Crate contributors, “RO-CRATE”, [Online]. Available:
https://www.researchobject.org/ro-crate/

[15] The Galaxy Community, “Galaxy”, [Online]. Available:
https://galaxyproject.org/

[16] The Apache Software Foundation, “Air�ow”, [Online]. Available:
https://air�ow.apache.org/

[17] L. Franke and D. Haehn, “Modern scienti�c visualizations on the web”,
Informatics, 2020

[18] M. Raji, A. Hota, T. Hobson and J. Huang, “Scienti�c visualization as a
microservice.”, IEEE Transaction on Visualization and Computer Graphics, vol.
26, no. 4, p. 1760–1774, 2018

[19] J. Ahrens, B. Geveci and C. Law, “Paraview: An end-user tool for large data
visualization.” The Visualization Handbook, 2005

[20] T. Goodale, G Allen, G. Lanfermann, J. Masso, T. Radke, E. Seidel and J. Shalf,
“The cactus framework and toolkit: Design and applications.”, Proceedings of
the 5th international conference on High performance computing for
computational science, p. 197–227, 2002

[21] Y. Zhou, R. M. Weiss, E. McArthur, D. Sanchez, X. Yao, D. Yuen, M. R. Knox
and W. W. Czech, “Webviz: A web-based collaborative interactive
visualization system for large-scale data sets”, GPU Solutions to Multi-scale
Problems in Science and Engineering. Lecture Notes in Earth System
Sciences, p. 587–606, 2013

[22] U. Becciani, E. Sciacca, A. Costa, P. Massimino, C. Pistagna and et al.,
“Science gateway technologies for the astrophysics community.”
Concurrency and Computation: Practice and Experience, vol. 27, no. 2, p.
306–327, 2015

https://airflow.apache.org/
https://galaxyproject.org/
https://www.researchobject.org/ro-crate/
https://workflowhub.eu/
http://www.h-its.org/
http://www.manchester.ac.uk/
https://www.commonwl.org/
https://www.openacc.org/
https://vtk.org/
https://github.com/VisIVOLab/ViaLacteaVisualAnalytics
https://github.com/VisIVOLab/VisIVOServer

[23] VisIVO Team, “VisIVO”, [Online]. Available: https://visivo.readthedocs.io/

[24] Z. Ahmed, “Practicing precision medicine with intelligently integrative clinical
and multi-omics data analysis.”, Human Genomics, vol. 14, no. 1, p. 35, 2020

[25] S. Goodwin, J. D. McPherson, and W. R. McCombie, “Coming of age: ten years
of next-generation sequencing technologies,” Nature Reviews Genetics, vol.
17, no. 6, p. 333–351, 2016

[26] Y. Wang, Y. Zhao, A. Bollas, Y. Wang, and K. F. Au, “Nanopore sequencing
technology, bioinformatics and applications,” Nature Biotechnology, vol. 39,
no. 11, p. 1348–1365, 2021

[27] H. Li et al., “The Sequence Alignment/Map format and SAMtools,”
Bioinformatics, vol. 25, no. 16, pp. 2078–2079, 2009

[28] A. McKenna et al., “The Genome Analysis Toolkit: a MapReduce framework
for analyzing next-generation DNA sequencing data.,” Genome Res, vol. 20,
no. 9, pp. 1297–1303, 2010.

[29] R. Poplin et al., “A universal SNP and small-indel variant caller using deep
neural networks,” Nature Biotechnology, vol. 36, no. 10, pp. 983–987, 2018

[30] Kyle A. O’Connell et al., “Accelerating genomic work�ows using NVIDIA
Parabricks,” bioRxiv, 2022

[31] P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja, E. Palumbo, and C.
Notredame, “Next�ow enables reproducible computational work�ows,”
Nature Biotechnology, vol. 35, no. 4, pp. 316–319, 2017.

[32] P. Cingolani et al., “A program for annotating and predicting the e-ects of
single nucleotide polymorphisms, SnpE-,” Fly, vol. 6, no. 2, pp. 80–92, 2012

[33] K. Wang, M. Li, and H. Hakonarson, “ANNOVAR: functional annotation of
genetic variants from high-throughput sequencing data,” Nucleic Acids
Research, vol. 38, no. 16, pp. e164–e164, 2010

[34] J. G. Tate et al., “COSMIC: the Catalogue Of Somatic Mutations In Cancer,”
Nucleic Acids Research, vol. 47, no. D1, pp. D941–D947, 2019

[35] Q. Li and K. Wang, “InterVar: Clinical Interpretation of Genetic Variants by
the 2015 ACMG-AMP Guidelines,” The American Journal of Human Genetics,
vol. 100, no. 2, pp. 267–280, 2017

[36] M. J. Landrum et al., “ClinVar: public archive of relationships among
sequence variation and human phenotype,” Nucleic Acids Research, vol. 42,
no. D1, pp. D980–D985, 2014

[37] I. Colonnelli, B. Cantalupo, R. Esposito, M. Pennisi, C. Spampinato, and M.
Aldinucci, “HPC Application Cloudi�cation: The StreamFlow Toolkit,” in Open
Access Series in Informatics (OASIcs), p. 5:1-5:13, 2021

[38] D. Lan, R. Tobler, Y. Souilmi, and B. Llamas, “Genozip: a universal extensible
genomic data compressor,” Bioinformatics, vol. 37, no. 16, pp. 2225–2230,
2021

[39] S. Deorowicz, A. Danek, and M. Kokot, “VCFShark: how to squeeze a VCF
�le,” Bioinformatics, vol. 37, no. 19, pp. 3358–3360, 2021,

[40] F. H. Cabrini, F. Valiante Filho, P. Rito, A. Barros Filho, S. Sargento, A.
Venancio Neto and S. T. Kofuji, “Enabling the industrial internet of things to
cloud continuum in a real city environment”, Sensors 21, 2021

[41] P. Beckman, J. Dongarra, N. Ferrier, G. Fox, T. Moore, D. Reed and M. Beck,
“Harnessing the computing continuum for programming our world”, Fog
Computing: Theory and Practice, p. 215–230, 2020

https://visivo.readthedocs.io/

[42] D. Balouek-Thomert, E. G. Renart, A. R. Zamani, A. Simonet and M. Parashar,
“Towards a computing continuum: Enabling edge-to-cloud integration for
data-driven work�ows”, The International Journal of High Performance
Computing Applications, no. 33, p. 1159–1174, 2019

[43] M. AbdelBaky, M. Zou, A. R. Zamani, E. Renart, J. Diaz-Montes and M.
Parashar, “Computing in the continuum: Combining pervasive devices and
services to support data-driven applications” in Proceedings of IEEE 37th
International Conference on Distributed Computing Systems, pp. 1815–1824,
2017

[44] S. Risco, G. Molt´o, D. M. Naranjo and I. Blanquer, “Serverless work�ows for
containerised applications in the cloud continuum”, Journal of Grid
Computing, no. 19, p. 1–18, 2021

[45] H. Sha�ei, A. Khonsari and P. Mousavi, “Serverless computing: a survey of
opportunities, challenges, and applications”, ACM Computing Surveys, no. 54,
p. 1–32, 2022

[46] J. Menetrey, M. Pasin, P. Felber and V. Schiavoni, “Webassembly as a
common layer for the cloud-edge continuum”, in Proceedings of the 2nd
Workshop on Flexible Resource and Application Management on the Edge, p.
3–8, 2022

[47] The Linux Foundation, “Kubernetes”, [Online]. Available:
https://kubernetes.io/

[48] A. Haas, A. Rossberg, D. L. Schu-, B. L. Titzer, M. Holman, D. Gohman, L.
Wagner, A. Zakai and J. Bastien, “Bringing the web up to speed with
webassembly”, in Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, p. 185–200, 2017

[49] T. Lynn, J. G. Mooney, B. Lee and P. T. Endo, “The cloud-to-thing continuum:
opportunities and challenges in cloud, fog and edge computing”, Springer
Nature, 2020.

[50] J. Santos, T. Wauters, B. Volckaert and F. De Turck, “Towards low-latency
service delivery in a continuum of virtual resources: State-of-the-art and
research directions”, IEEE Communications Surveys & Tutorials, no. 23, p.
2557–2589, 2021

[51] L. Bittencourt, R. Immich, R. Sakellariou, N. Fonseca, E. Madeira, M. Curado,
L. Villas, L. DaSilva, C. Lee and O. Rana, “The internet of things, fog and cloud
continuum: Integration and challenges”, Internet of Things, no. 3-4, p. 134–
155, 2018

[52] HiPEAC, “Vision 2021”, [Online]. Available:
https://www.hipeac.net/vision/#/latest/articles/?q=continuum, 2021.

[53] S. Latre, J. Famaey, F. De Turck and P. Demeester, “The �uid internet:
service-centric management of a virtualized future internet”, IEEE
Communications Magazine, no. 52, p. 140–148, 2014

[54] M. Villari, M. Fazio, S. Dustdar, O. Rana and R. Ranjan, “Osmotic computing: A
new paradigm for edge/cloud integration”, IEEE Cloud Computing, no. 3, p.
76–83, 2016.

[55] A. Camero and E. Alba, “Smart city and information technology: A review”,
Cities, no. 93 , p. 84–94, 2019

[56] B. Neha, S. K. Panda, P. K. Sahu, K. S. Sahoo and A. H. Gandomi, “A
systematic review on osmotic computing”, ACM Transactions on Internet of
Things, no. 3, p. 1–30, 2022

https://www.hipeac.net/vision/#/latest/articles/?q=continuum
https://kubernetes.io/

[57] P. K. Gadepalli, S. McBride, G. Peach, L. Cherkasova and G. Parmer, “Sledge:
a serverless-�rst, light-weight wasm runtime for the edge”, in Proceedings of
the 21st International Middleware Conference, p. 265–279, 2020

[58] A. Hall and U. Ramachandran, “An execution model for serverless functions
at the edge”, in Proceedings of the International Conference on Internet of
Things Design and Implementation, p. 225–236, 2019

[59] S. Shillaker and P. Pietzuch, “Faasm: lightweight isolation for e�cient stateful
serverless computing”, in 2020 {USENIX} Annual Technical Conference, p.
419–433, 2020

[60] M. Malawski, A. Gajek, A. Zima, B. Balis and K. Figiela, “Serverless execution
of scienti�c work�ows: Experiments with hyper�ow, AWS lambda and Google
Cloud functions”, Future Generation Computer Systems, no. 110, p. 502–514,
2020

[61] P. Bellavista and A. Zanni, “Feasibility of fog computing deployment based on
docker containerization over Raspberrypi”, in Proceedings of the 18th
international conference on distributed computing and networking, p. 1–10,
2017

[62] R. Fielding, “Representational state transfer (REST)”, [Online]. Available:
https://www.ics.uci.edu/~�elding/pubs/dissertation/rest_arch_style.htm,
2000.

[63] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang, F.
Kouranov, I. Swett, J. Iyengar, et al., “The Quic transport protocol: Design and
internet-scale deployment”, in Proceedings of the conference of the ACM
special interest group on data communication, p. 183–196, 2017

[64] Cloud Foundry, “Open service broker”, [Online]. Available:
https://www.openservicebrokerapi.org/, 2016.

[65] C. Bormann, A. P. Castellani and Z. Shelby, “Coap: An application protocol for
billions of tiny internet nodes”, IEEE Internet Computing, no. 16, p. 62–67,
2012

[66] Deis Labs, “Akri”, [Online]. Available: https://github.com/deislabs/akri, 2021

[67] AWS Open Source Blog, “Why AWS loves Rust and how we’d like to help”,
[Online]. Available: https://aws.amazon.com/blogs/opensource/why-aws-
loves-rust-and-how-wed-like-to-help/, 2020

[68] M. Jacobsson and J. Willen, “Virtual machine execution for wearables based
on webassembly”, in Proceeding of 13th EAI International Conference on
Body Area Networks,, pp. 381–389, 2020

[69] G. Peach, R. Pan, Z. Wu, G. Parmer, C. Haster and L. Cherkasova, “ewasm:
Practical software fault isolation for reliable embedded devices”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
no. 39, p. 3492–3505, 2020

[70] Bytecode Alliance, “wasmtime”, [Online]. Available:
https://github.com/bytecodealliance/wasmtime, 2021.

[71] wasm3, “wasm3 performance”, [Online].
Available:https://github.com/wasm3/wasm3/blob/main/docs/Performance.md,
2021.

[72] OCI, “Artifacts”,[Online]. Available:
https://github.com/opencontainers/artifacts/blob/main/artifact-authors.md,
2022.

[73] T. Yuki, “Understanding polybench/c 3.2 kernels”, in International workshop

https://github.com/opencontainers/artifacts/blob/main/artifact-authors.md
https://github.com/wasm3/wasm3/blob/main/docs/Performance.md
https://github.com/bytecodealliance/wasmtime
https://aws.amazon.com/blogs/opensource/why-aws-loves-rust-and-how-wed-like-to-help/
https://aws.amazon.com/blogs/opensource/why-aws-loves-rust-and-how-wed-like-to-help/
https://github.com/deislabs/akri
https://www.openservicebrokerapi.org/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

on Polyhedral Compilation Techniques (IMPACT), pp. 1–5, 2014
[74] Parity, “wasmi”, [Online]. Available: https://github.com/paritytech/wasmi,

2021.
[75] Deis Labs, “Krustlet”, [Online]. Available:

https://github.com/deislabs/krustlet, 2021.
[76] Rancher, k3s, [Online]. Available: https://k3s.io/, 2021.

[77] Node.js, “The node.js event loop”, [Online]. Available:
https://nodejs.dev/learn/the-nodejs-event-loop, 2021

[78] Deislabs, “wasi-experimental-http”, [Online]. Available:
https://github.com/deislabs/experimental-http, 2022

[79] U. Manber, "Finding Similar Files in a Large File System," in USENIX Winter
1994 Technical Conference, 1994.

[80] N. Heintze, "Scalable Document Fingerprinting," in USENIX Workshop on
Electronic Commerce, 1996, 1996.

[81] A. Z. Broder, "On the resemblance and containment of documents," in
Proceedings of Compression and Complexity of SEQUENCES, 1997.

[82] M. Charikar, "Similarity estimation techniques from rounding algorithms," in
Proceedings of ACM Symposium on Theory of Computing, 2002.

[83] M. Frobe and alii, "CopyCat: Near-Duplicates Within and Between the
ClueWeb and the Common Crawl," in Proceedings of the ACM SIGIR
Conference on Research and Development in Information Retrieval, 2021.

[84] G. Singh Manku, A. Jain and A. Das Sarma, "Detecting near-duplicates for web
crawling," in Proceedings of the International Conference on World Wide
Web, 2007.

[85] M. R. Henzinger, "Finding near-duplicate web pages: a large-scale evaluation
of algorithms," in Proceedings of the ACM SIGIR Conference on Research and
Development in Information Retrieval, 2003.

[86] S. Schleimer, D. Shawcross Wilkerson and A. Aiken, "Winnowing: Local
Algorithms for Document Fingerprinting," in Proceedings of the ACM SIGMOD
Conference on Management of Data, 2003.

[87] P. Ferragina and G. Manzini, "On compressing the textual web," in
Proceedings of the International Conference on Web Search and Web Data
Mining, 2010.

[88] M.A. Zaharia, A. Ghodsi, R. Xin, and M. Armbrust. “Lakehouse: A new
generation of open platforms that unify data ware-housing and advanced
analytics”. In Proceedings of the Conference on Innovative Data Systems
Research, 2021.

[89] Inria, “Software Heritage Archive”, [Online]. Available:
https://www.softwareheritage.org/

[90] L. Belcastro, F. Marozzo, D. Talia and P. Trun�o, "ParSoDA: High-Level Parallel
Programming for Social Data Mining". Social Network Analysis and Mining,
vol. 9, no. 1, 2019

[91] Jupyter consortium ,“Project Jupyter”, [Online]. Available: https://jupyter.org/

[92] Red Hat Inc., “Ansible”, [Online]. Available: https://www.ansible.com/

[93] Anaconda Inc., “Anaconda”, [Online]. Available: https://www.anaconda.com/
[94] QuantStack, “Mamba package manager”, [Online]. Available:

https://github.com/mamba-org/mamba

https://github.com/mamba-org/mamba
https://www.anaconda.com/
https://www.ansible.com/
https://jupyter.org/
https://www.softwareheritage.org/
https://github.com/deislabs/experimental-http
https://nodejs.dev/learn/the-nodejs-event-loop
https://k3s.io/
https://github.com/deislabs/krustlet
https://github.com/paritytech/wasmi

[95] Jupyter consortium, “Jupyter server proxy”, [Online].
Available:https://github.com/jupyterhub/jupyter-server-proxy

[96] Jupyter consortium, “Jupyter xeus”, [Online]. Available:
https://github.com/jupyter-xeus/xeus

[97] Julia consortium, “Julia programming language”, [Online].
Available:https://julialang.org/

[98] R foundation, “R project ”, [Online]. Available: https://www.r-project.org/

[99] Microsoft Inc., “Visual Studio”, [Online].
Available:https://code.visualstudio.com/

[10
0]

E4 COMPUTER ENGINEERING S.p.A, “E4 computer engineering”, [Online].
Available:https://www.e4company.com/

[10
1]

E4 COMPUTER ENGINEERING S.p.A, “GAIA: GPU Appliance per l’Intelligenza
Arti�ciale”, [Online]. Available:https://www.e4company.com/intelligenza-
arti�ciale-e-gpu-appliance/

[10
2]

Fenix Research infrastructure, “Interactive Computing E-Infrastructure for the
Human Brain Project”, [Online].
Available:https://cordis.europa.eu/project/id/800858

[10
4]

The VirtualGL Project, “TurboVNC”, [Online].
Available:https://www.turbovnc.org

[10
5]

Jupyter consortium, “Jupyter Xpra”, [Online]. Available:https://github.com/FZJ-
JSC/jupyter-xprahtml5-proxy

[10
6]

R foundation, “R Studio”, [Online]. Available: https://www.r-studio.com/

[10
7]

GNU, “Octave programming language”, [Online]. Available:https://octave.org/

[10
8]

CINECA, “Leonardo super computer”, [Online]. Available:https://leonardo-
supercomputer.cineca.eu/

[10
9]

OpenFaaS Limited, “OpenFaaS”, [Online].
Available:https://www.openfaas.com, 2023.

[11
0]

Apache foundation, “Apache OpenWhisk”, [Online].
Available:https://openwhisk.apache.org, 2023.

[11
1]

S. Shillaker and P. Pietzuch, "Faasm: Lightweight isolation for e�cient
stateful serverless computing", Proc. of 2020 USENIX Annual Technical Conf.
(ATC ’20), 2020

[11
2]

P. K. Gadepalli, S. McBride, G. Peach, L. Cherkasova, G. Parmer, "Sledge: A
serverless-�rst, light-weight wasm runtime for the edge", Proc. of Middleware
'20, 2020.

[11
3]

X. Lyu, L. Cherkasova, R. Aitken, G. Parmer, T. Wood, "Towards e�cient
processing of latency-sensitive serverless DAGs at the edge", Proc. of 5th
ACM Int’l Workshop on Edge Systems, Analytics and Networking (EdgeSys
'22), 2022.

[11
4]

F. Lordan, D. Lezzi, R. M. Badia, "Colony: Parallel functions as a service on the
cloud-edge continuum", Proc. of Euro-Par ’21, 2021.

[11
5]

T. Pfandzelter, D. Bermbach, "tinyfaas: A lightweight faas platform for edge
environments", Proc. of 2020 IEEE Int’l Conf. on Fog Computing (ICFC ’20),
2020.

[11 A. Das, A. Leaf, C. A. Varela, S. Patterson, "Skedulix: Hybrid cloud scheduling

https://openwhisk.apache.org/
https://www.openfaas.com/
https://leonardo-supercomputer.cineca.eu/
https://leonardo-supercomputer.cineca.eu/
https://octave.org/
https://www.r-studio.com/
https://github.com/FZJ-JSC/jupyter-xprahtml5-proxy
https://github.com/FZJ-JSC/jupyter-xprahtml5-proxy
https://www.turbovnc.org/
https://cordis.europa.eu/project/id/800858
https://www.e4company.com/intelligenza-artificiale-e-gpu-appliance/
https://www.e4company.com/intelligenza-artificiale-e-gpu-appliance/
https://www.e4company.com/
https://code.visualstudio.com/
https://www.r-project.org/
https://julialang.org/
https://github.com/jupyter-xeus/xeus
https://github.com/jupyterhub/jupyter-server-proxy

6] for cost-e�cient execution of serverless applications", Proc. of IEEE CLOUD
’20, 2020.

[11
7]

M. Ciavotta, D. Motterlini, M. Savi, A. Tundo, "DFaaS: Decentralized function-
as-a-service for federated edge computing", Proc. of CloudNet ’21, 2021.

[11
8]

C. Cicconetti, M. Conti, A. Passarella, "A decentralized framework for
serverless edge computing in the Internet of Things", IEEE Trans. Netw. Serv.
Manag., 2021.

[11
9]

S. Ristov, S. Pedratscher, T. Fahringer, "AFCL: An Abstract Function
Choreography Language for serverless work�ow speci�cation", Future
Generation Computer Systems, 2021.

[12
0]

M. S. Aslanpour, A. N. Toosi, M. A. Cheema, R. Gaire, "Energy- aware resource
scheduling for serverless edge computing", Proc. of CCGrid ’22, 2022.

[12
1]

G. Russo Russo, “Serverledge”, [Online].
Available:https://github.com/grussorusso/serverledge

[12
2]

Cloud Native Computing foundation, “Wasmedge”, [Online].
Available:https://wasmedge.org

[12
3]

The Unikraft Authors, “Unikraft”, [Online]. Available:https://unikraft.org/

[12
4]

G. Russo Russo, V. Cardellini, F. Lo Presti, T. Mannucci, "Serverledge:
Decentralized Function-as-a-Service for the edge-cloud continuum", Proc. of
21st Int’l Conf. on Pervasive Computing and Communications (PerCom 2023),
pp. 131-140, 2023.

[12
5]

The Linux Foundation, “Prometheus”, [Online].
Available:https://prometheus.io

[12
6]

J. Arnowitz, M. Arent and N. Berger, “E-ective prototyping for software
makers”, 2010

[12
7]

M. Carr and j. Verner, “Prototyping and software development approaches”,
Department of Information Systems, City University of Hong Kong, pp. 319-
338, 1997

[12
8]

L. Conforti, C. Pulia�to, A. Virdis and E. Mingozzi, "Server-side QUIC
connection migration to support microservice deployment at the edge,"
Pervasive and Mobile Computing, 2022

[12
9]

Divexplorer project, “Divexplorer”, [Online].
Available:https://github.com/elianap/divexplorer/tree/main/notebooks

[13
0]

T. Klyver et al., “Jupyter Notebooks-a publishing format for reproducible
computational work�ows”, In Positioning and Power in Academic Publishing:
Players, Agents and Agendas, pp. 87-90, 2016

[13
1]

A.B. Yoo, M. A. Jiette, M. Grondona, “Slurm: Simple linux utility for resource
management”, In Job Scheduling Strategies for Parallel Processing: 9th
International Workshop, pp. 44-60, 2003

[13
2]

Jupyter consortium, “Jupyter Xpra”, [Online].
Available:https://github.com/jupyterhub/batchspawner

[13
3]

CINECA, “ADA cloud infrastructure user guide”, [Online].
Available:https://wiki.u-gov.it/con�uence/display/SCAIUS/UG3.5%3A+ADA+Cl
oud+UserGuide

[13
4]

CINECA, “Galileo 100 cluster user guide”, [Online]. Available:https://wiki.u-
gov.it/con�uence/display/SCAIUS/UG3.3%3A+GALILEO100+UserGuide

[13 B. Fryxell et al., “FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling

https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%3A+GALILEO100+UserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%3A+GALILEO100+UserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.5%3A+ADA+Cloud+UserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.5%3A+ADA+Cloud+UserGuide
https://github.com/jupyterhub/batchspawner
https://github.com/elianap/divexplorer/tree/main/notebooks
https://prometheus.io/
https://unikraft.org/
https://wasmedge.org/
https://github.com/grussorusso/serverledge

5] Astrophysical Thermonuclear Flashes”, Astroph. J. Supp. vol 131, no 273,
2000

[13
6]

R.W. Hockney and J.W. Eastwood, Computer simulations using particles,
Hilger, 1988

[13
7]

Q. Kang et al., “Improving All-to-Many Personalized Communication in Two-
Phase I/O”, in SC20 Proceedings of the 2020 ACM/IEEE Conference on
Supercomputing, 2021

[13
8]

Latham et al , “A case study for scienti�c I/O: improving the FLASH
astrophysics code”, Comput. Sci. Discov. no 5, 2012

[13
9]

C. Ritter et al., “SYGMA: Stellar yields for galactic modeling applications“,
Astroph. J. Suppl. vol 237, no 42, 2018

[14
0]

Flash Center Code Group, “Flash code”, [Online].
Available:https://�ash.rochester.edu/site/index.shtml

[14
1]

R. Y. Cavana, B. C. Danger�eld, O. V. Pavlov, M. J. Radzicki, and I. D. Wheat,
“Feedback Economics : Economic Modeling with System Dynamics”, System
dynamics Review, 2021.

[14
2]

D. L Meadows, W. W. Behrens, D. H. Meadows, R. F. Naill, J. Randers, and E.
Zahn. Dynamics of growth in a �nite world. Wright-Allen Press Cambridge,
1974

[14
3]

D. H.. Meadows, J. Randers, and D. L. Meadows. Limits to Growth : The 30-
Year Update. Chelsea Green Publishing, 2004

[14
4]

M. J. Du Plessix. Analyse du modèle World3: sensibilité, dynamique, et pistes
d’évolution. HAL, INSA Lyon, 2019.

[14
5]

H. F. Drake, R. L. Rivest, A. Edelman and J. Deutch, “A simple model for
assessing climate control trade-o-s and responding to unanticipated climate
outcomes”, Environmental Research Letters, vol 16, no 10, 2021

[14
6]

A. Hay, “Jay Forrester’s World2 from 1971 Recreated in C++”, [Online].
Available:https://github.com/anthay/World2/, 2021

[14
7]

A. Mignan, “World2 model, from DYNAMO to R”, [Online].
Available:https://towardsdatascience.com/world2-model-from-dynamo-to-r-
2e44fdbd0975, 2020

[14
8]

, F. C. Moore, J. Rising, N. Lollo, C. Springer, V. Vasquez, A. Dolginow, C. Hope,
D. Antho-. “Mimi-PAGE, an open-source implementation of the PAGE09
integrated assessment model”, Scienti�c Data, vol 5, no 1, 2018

[14
9]

C. Vanwynsberghe, “Exploring the Limits to Growth with Python”, World Bank
Open Data https://towardsdatascience.com/exploring-the-limits-to-growth-
with-python-674133874eed, 2021

[15
0]

The World Bank, “World Bank Open Data”, [Online].
Available:https://data.worldbank.org/?intcid=ecr_hp_BeltD_en_ext

[15
1]

J. Martensen, C. Rackauckas et al, “DataDrivenDi-Eq.jl code”, [Online].
Available:https://github.com/SciML/DataDrivenDi-Eq.jl

[15
2]

 P. Crescenzi, H. Lesfari, E. Natale, A. Rossi, P. B. Sera�m "Un framework
open-source écrit en Julia pour la modélisation d’évaluation globale
intégrée". ROADEF 2023, 2023

[15
3]

P. Crescenzi, E. Natale, P. B. Sera�m. “WordDynamics.jl code“,[Online].
Available:https://github.com/worlddynamics/WorldDynamics.jl

[15
4]

A. Gholami, K. Rao et al, “ROMA: Resource Orchestration for Microservices-
based 5G Applications”, In Proceedings of the NOMS 2022-2022 IEEE/IFIP

https://github.com/worlddynamics/WorldDynamics.jl
https://github.com/SciML/DataDrivenDiffEq.jl
https://data.worldbank.org/?intcid=ecr_hp_BeltD_en_ext
https://towardsdatascience.com/exploring-the-limits-to-growth-with-python-674133874eed
https://towardsdatascience.com/exploring-the-limits-to-growth-with-python-674133874eed
https://towardsdatascience.com/world2-model-from-dynamo-to-r-2e44fdbd0975
https://towardsdatascience.com/world2-model-from-dynamo-to-r-2e44fdbd0975
https://github.com/anthay/World2/
https://flash.rochester.edu/site/index.shtml
https://iopscience.iop.org/article/10.3847/1538-4365/aad691/meta

Network Operations and Management Symposium, 662, pp. 1–9, 2022
[15
5]

P. Pereira, C. Melo et al, “Availability model for edge-fog-cloud continuum: an
evaluation of an end-to-end infrastructure of intelligent tra�c management
service”, The Journal of Supercomputing, vol 78, no 665, pp 4421–4448, 2021

[15
6]

H. Song, R. Dautov et al, “Model-based �eet deployment in the IoT–edge–
cloud continuum”, Software and Systems Modeling, vol 21, pp. 1931 – 1956,
2022

[15
7]

W. Cerroni, L. Foschini, G. Y. Grabarnik, F. Poltronieri, L. Shwartz, C.
Stefanelli, M. Tortonesi, "BDMaaS+: Business-Driven and Simulation-Based
Optimization of IT Services in the Hybrid Cloud," in IEEE Transactions on
Network and Service Management, vol. 19, no. 1, pp. 322-337, 2022

[15
8]

G. Nardini and G. Stea, “Using network simulators as digital twins of 5G/B5G
mobile networks,” in IEEE 23rd International Symposium on a World of
Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 584–589, 2022

[15
9]

D. Van Huynh, V.-D. Nguyen, V. Sharma, O. A. Dobre, and T. Q. Duong,
“Digital twin empowered ultra-reliable and low-latency communications-
based edge networks in industrial iot environment,” in ICC - IEEE
International Conference on Communications, pp. 5651–5656, 2022

[16
0]

M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati, “FastFlow: high-
level and e�cient streaming on multi-core,” in Programming Multi-core and
Many-core Computing Systems, 2014

[16
1]

H. Kuchen and C. Murray, “The integration of task and data parallel
skeletons”, Parallel Processing Letters, vol 12, no 2, pp. 141-155, 2002

[16
2]

C. Murray, “Bringing skeletons out of the closet: a pragmatic manifesto for
skeletal parallel programming”, Parallel computing, vol 30, no 3, pp. 389-406,
2004

[16
3]

D. De Sensi, T. De Matteis, M. Torquati, G. Mencagli and M. Danelutto.
“Bringing Parallel Patterns out of the Corner: the P3ARSEC Benchmark Suite”.
ACM Transactions on Architecture and Code Optimization (TACO), vol 14, no
4, 2017

[16
4]

N. Tonci, M. Torquati, G. Mencagli, M. Danelutto. “Distributed-memory
FastFlow Building Blocks”, International Journal of Parallel Programming
(IJPP), Special Issue, 2023,

[16
5]

M. Danelutto, G. Mencagli, A. Ottimo, F. Iannone, P. Palazzari, “FastFlow
targeting FPGAs”, in 31st Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP), 2023

[16
6]

S. Campa, M. Danelutto, M. Goli, H. Gonzalez-Vélez et al., “Parallel patterns
for heterogeneous CPU/GPU architectures: Structured parallelism from cluster
to cloud”, Future Generation Computing Systems, vol 37, pp. 354-366, 2014

[16
7]

G. De Lucia, M. Lapegna, and D. Romano, “A GPU Accelerated Hyperspectral
3D Convolutional Neural Network Classi�cation at the Edge with Principal
Component Analysis Preprocessing”, In Parallel Processing and Applied
Mathematics, Lecture Notes In computer Science vol 13827, pp. 127-138,
2023

[16
8]

G. De Lucia, M. Lapegna, and D. Romano, “Unlocking the potential of edge
computing for hyperspectral image classi�cation: An e�cient low-energy
strategy”, Future Generation Computer Systems, accepted, in press, 2023

[16
9]

S. Ernsting, H. Kuchen, “Algorithmic skeletons for multi-core, multi-GPU
systems and clusters”, Int. J. High Perform. Comput. Network, vol 7, no 2, pp.

129–138, 2012
[17
0]

K. Emoto, K. Matsuzaki, “An automatic fusion mechanism for variable-length
list skeletons in
SkeTo”, Int. J. Parallel Program., vol 42, no 4, pp. 546–563, 2014

[17
1]

N. Javed, F. Loulergue, “A formal programming model of Orleans skeleton
library”, In PaCT’11, pp. 40–52, 2011

[17
2]

A. Ernstsson, L. Li and C. Kessler, “SkePU 2: Flexible and Type-Safe Skeleton
Programming for Heterogeneous Parallel Systems”, Int J Parallel Prog 46, 62–
80, 2018

[17
3]

M. Cole, “Bringing skeletons out of the closet: a pragmatic manifesto for
skeletal parallel programming”, Parallel Computing, vol 30, no3, pp. 389–406,
2004

[17
4]

T. Mattson, B. Sanders, B. Massingill, “Patterns for Parallel Programming”,
Addison-Wesley Professional, 2004

[17
5]

Reinders, J.: Intel Threading Building Blocks, 1st edn. O’Reilly & Associates,
Inc., Sebastopol (2007)

[17
6]

C. Campbell, R. Johnson, A. Miller, S. Toub, ”Parallel Programming with
Microsoft.NET: Design Patterns for Decomposition and Coordination on
Multicore Architectures”, Microsoft Press, 2010

[17
7]

E. Pastor, L. De Alfaro, and E. Baralis. "Looking for trouble: Analyzing
classi�er behavior via pattern divergence." Proceedings of the 2021
International Conference on Management of Data, 2021.

[17
8]

E. Pastor et al. "How divergent is your data?." Proceedings of the VLDB
Endowment, vol 14, no 12, pp. 2835-2838, 2021

[17
9]

S. Sagadeeva, M. Boehm. "Sliceline: Fast, linear-algebra-based slice �nding
for ml model debugging.", Proceedings of the 2021 International Conference
on Management of Data, 2021

[18
0]

Y. Chung et al. "Slice �nder: Automated data slicing for model validation."
IEEE 35th International Conference on Data Engineering (ICDE), 2019

[18
1]

TensorFlow Model Analysis, “Introducing TensorFlow Model Analysis:
Scaleable, Sliced, and Full-Pass Metrics” [Online].
Available:https://medium.com/tensor�ow/introducing-tensor�ow-model-
analysis-scaleable-sliced-and-full-passmetrics-5cde7baf0b7b

[18
2]

D. Baylor, E. Breck et al, “TFX: A TensorFlow-Based Production-Scale Machine
Learning Platform”, In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2017

[18
3]

R. K. E. Bellamy, .l Dey, M. Hind et al., “AI Fairness 360: An extensible toolkit
for detecting and mitigating algorithmic bias”, IBM Journal of Research and
Development, vol 63, pp. 4:1–4:15, 2019

[18
4]

P. Saleiro, B. Kuester, A. Stevens et al, “Aequitas: A Bias and Fairness Audit
Toolkit”, arXiv preprint arXiv:1811.05577, 2018

[18
5]

A. A. Cabrera, W. Epperson et al., “FairVis: Visual analytics for discovering
intersectional bias in machine learning”, In IEEE Conference on Visual
Analytics Science and Technology (VAST), pp. 46–56, 2019

[18
6]

M. Di Pierro, “Py4Web”, [Online]. Available:https://py4web.com

[18
7]

M. Hussain, L.-F. Wei, A. Lakhan, S. Wali, S. Ali, and A. Hussain, “Energy and
performance-e�cient task scheduling in heterogeneous virtualized cloud

https://py4web.com/
https://medium.com/tensorflow/introducing-tensorflow-model-analysis-scaleable-sliced-and-full-passmetrics-5cde7baf0b7b
https://medium.com/tensorflow/introducing-tensorflow-model-analysis-scaleable-sliced-and-full-passmetrics-5cde7baf0b7b

computing,” Sustainable Computing: Informatics and Systems, vol. 30, p.
100-517, 2021.

[18
8]

S. S. Roy, F. Turan, K. Jarvinen, F. Vercauteren, and I. Verbauwhede, “FPGA-
based high-performance parallel architecture for homomorphic computing on
encrypted data,” in 2019 IEEE International symposium on high performance
computer architecture (HPCA), 2019, pp. 387–398

[18
9]

A. V Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: principles,
techniques and tools. 2020.

[19
0]

C. Lattner et al., “MLIR: Scaling compiler infrastructure for domain speci�c
computation,” in 2021 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), pp. 2–14. 2021

[19
1]

A. Bik, P. Koanantakool, T. Shpeisman, N. Vasilache, B. Zheng, and F.
Kjolstad, “Compiler support for sparse tensor computations in MLIR,” ACM
Transactions on Architecture and Code Optimization (TACO), vol. 19, no. 4,
pp. 1–25, 2022

[19
2]

W. S. Moses, L. Chelini, R. Zhao, and O. Zinenko, “Polygeist: Raising C to
polyhedral MLIR,” in 2021 30th International Conference on Parallel
Architectures and Compilation Techniques (PACT), pp. 45–59, 2021

[19
3]

H.-I. C. Liu, M. Brehler, M. Ravishankar, N. Vasilache, B. Vanik, and S.
Laurenzo, “TinyIREE: An ML Execution Environment for Embedded Systems
from Compilation to Deployment,” arXiv preprint arXiv:2205.14479, 2022

[19
4]

LLVM community ,“MLIR dialects”, [Online].
Available:https://discourse.llvm.org/t/rfc-updated-mlir-dialect-overview-
diagram/64266

[19
5]

“MLIR abstraction for a RISC-V architecture”, [Online].
Available:https://github.com/pulp-platform/snitch

[19
6]

LLVM community, “LLVM compiler”, [Online].
Available:https://github.com/llvm

[19
7]

Kubernetes community, “Kubernetes Cluster Federation”, [Online].
Available:https://github.com/kubernetes-retired/kubefed

[19
8]

The Linux foundation, “Karmada: Open, Multi-Cloud, Multi-Cluster Kubernetes
Orchestration”, [Online]. Available:https://karmada.io/

[19
9]

The Linux foundation , “Submariner”, [Online].
Available:https://submariner.io/

[20
0]

Isovalent Inc, “Cilium Mesh”, [Online].
Available:https://isovalent.com/blog/post/introducing-cilium-mesh/

[20
1]

SUSE Rancher, “Fleet”, [Online]. Available:https://�eet.rancher.io/

[20
2]

The Linux foundation , “KubeEdge”, [Online]. Available: https://kubeedge.io/

[20
3]

OpenInfra foundation, “OpenStack”, [Online].
Available:https://www.openstack.org/

[20
4]

Politecnico di Torino, “Liqo running dashboard example”, [Online].
Available:https://liqo-dashboard.crownlabs.polito.it/

[20
5]

Politecnico di Torino , “Liqo blog post”, [Online].
Available:https://medium.com/the-liqo-blog/liqo-in-production-at-turin-
polytechnic-20ed71dca475

[20 Amsterdam Internet Exchange, “Gaia-X test environment”, [Online].

https://medium.com/the-liqo-blog/liqo-in-production-at-turin-polytechnic-20ed71dca475
https://medium.com/the-liqo-blog/liqo-in-production-at-turin-polytechnic-20ed71dca475
https://liqo-dashboard.crownlabs.polito.it/
https://www.openstack.org/
https://kubeedge.io/
https://fleet.rancher.io/
https://isovalent.com/blog/post/introducing-cilium-mesh/
https://submariner.io/
https://karmada.io/
https://github.com/kubernetes-retired/kubefed
https://github.com/llvm
https://github.com/pulp-platform/snitch
https://discourse.llvm.org/t/rfc-updated-mlir-dialect-overview-diagram/64266
https://discourse.llvm.org/t/rfc-updated-mlir-dialect-overview-diagram/64266

6] Available:https://www.ams-ix.net/ams/news/dutch-gaia-x-hub-builds-gaia-x-
test-environment

[20
7]

Politecnico di Torino, “Liqo project”, [Online].
Available:https://github.com/liqotech/liqo

[20
8]

Politecnico di Torino, “Liqo documentation”, [Online].
Available:https://docs.liqo.io

[20
9]

M. Iorio, F. Risso, A. Palesandro, L. Camiciotti and A. Manzalini, "Computing
Without Borders: The Way Towards Liquid Computing," in IEEE Transactions
on Cloud Computing, 2022

[21
0]

Politecnico di Torino, “The Liqo Blog”, [Online].
Available:https://medium.com/the-liqo-blog

https://medium.com/the-liqo-blog
https://docs.liqo.io/
https://github.com/liqotech/liqo
https://www.ams-ix.net/ams/news/dutch-gaia-x-hub-builds-gaia-x-test-environment
https://www.ams-ix.net/ams/news/dutch-gaia-x-hub-builds-gaia-x-test-environment

	1 Introduction
	2 Candidate prototypes
	2.1 Compression of peta-scale collections of textual and source-code files
	2.1.1 Introduction
	2.1.2 Related works
	2.1.3 Actual prototype description and maturity level
	2.1.4 Prototype evolution and implementation
	2.1.5 Final validation tests

	2.2 Astrophysics data analysis and visualization
	2.2.1 Introduction
	2.2.2 Related works
	2.2.3 Actual prototype description and maturity level
	a. Prototype modelization, structure and functional description
	b. Actual implementation
	c. Validation tests and results

	2.2.4 Prototype evolution and implementation
	a. Prototype evolution direction
	b. Prototype evolution structure and description
	c. Prototype implementation and involved tools

	2.2.5 Final validation tests

	2.3 Genomic variant calling pipeline
	2.3.1 Introduction
	2.3.2 Related works
	2.3.3 Actual prototype description and maturity level
	a. Prototype modelization, structure and functional description
	b. Actual implementation
	Alignment & Variant Calling
	Annotation
	Prioritization

	c. Validation tests and results

	2.3.4 Prototype evolution and implementation
	a. Prototype evolution direction
	b. Prototype evolution structure and description
	c. Prototype Implementation and involved tools

	2.3.5 Final validation tests

	2.4 Edge-Cloud continuum federation infrastructure
	2.4.1 Introduction
	2.4.2 Related works
	2.4.3 Actual prototype description and maturity level
	a. Prototype modelization, structure and functional description
	b. Actual implementation
	Service orientation
	Orchestration
	Virtualisation, interoperability and portability
	Overall view

	c. Validation tests and results
	Assessing the fitness of WebAssembly for the Continuum infrastructure
	Axis 1: Wasm for IoT devices
	Axis 2: Wasm as an interpreter
	Wasm on the Cloud

	2.4.4 Prototype evolution and implementation
	a. Prototype evolution direction
	b. Prototype evolution structure and description
	c. Prototype Implementation and involved tools

	2.4.5 Final validation tests

	2.5 Interactive Computing Service
	2.5.1 Introduction
	2.5.2 Related works
	2.5.3 Actual prototype description and maturity level
	a. Prototype modelization, structure and functional description
	b. Actual implementation
	c. Validation tests and results

	2.5.4 Prototype evolution and implementation
	a. Prototype evolution direction
	b. Prototype evolution structure and description
	c. Prototype Implementation and involved tools

	2.5.5 Final validation tests

	2.6 Serverledge: QoS-Aware Function-as-a-Service in the Edge-Cloud Continuum
	2.6.1 Introduction
	2.6.2 Related works
	2.6.3 Actual prototype description and maturity level
	2.6.4 Prototype evolution and implementation
	2.6.5 Final validation tests

	2.7 Improving I/O phases in computational modelling of Galaxy Formation
	2.7.1 Introduction
	2.7.2 Related works
	2.7.3 Actual prototype description and maturity level
	a. Prototype modelization, structure and functional description
	b. Actual implementation
	c. Validation tests and results

	2.7.4 Prototype evolution and implementation
	a. Prototype evolution direction
	b. Prototype Implementation and involved tools

	2.7.5 Final validation tests

	2.8 WorldDynamics.jl
	2.8.1 Introduction
	2.8.2 Related works
	2.8.3 Actual prototype description and maturity level
	a. Prototype modelization, structure and functional description
	b. Actual implementation
	c. Validation tests and results

	2.8.4 Prototype evolution and implementationCompleto
	a. Prototype evolution direction
	b. Prototype Implementation and involved tools

	2.8.5 Final validation tests

	2.9 Optimized deployment of cloud-native applications over multi-cloud and cloud continuum scenarios
	2.9.1 Introduction
	2.9.2 Related works
	2.9.3 Actual prototype description and maturity level
	a. Prototype modelization, structure and functional description
	b. Actual implementation
	c. Validation tests and results

	2.9.4 Prototype evolution and implementation
	a. Prototype evolution direction
	b. Prototype evolution structure and description
	c. Prototype Implementation and involved tools

	2.9.5 Final validation tests

	2.10 FastFlow: an alternative programming model for HPC applications
	2.10.1 Introduction
	2.10.2 Related works
	2.10.3 Actual prototype description and maturity level
	2.10.4 Prototype evolution and implementation
	Consolidation of the distributed (COW/NOW) support
	Cloud/HPC integration through FaaS offloading
	HPC continuum offloading support
	Support to the parallelisation of flagship demonstration

	2.10.5 Final validation tests

	2.11 Anomalous subgroup characterization with DivExplorer
	2.11.1 Introduction
	2.11.2 Related works
	2.11.3 Actual prototype description and maturity level
	a. Prototype modelization, structure and functional description
	b. Actual implementation
	c. Validation tests and results

	2.11.4 Prototype evolution and implementation
	a. Prototype evolution direction
	b. Prototype evolution structure and description
	c. Prototype Implementation and involved tools

	2.11.5 Final validation tests

	2.12 Compilation flow and deployment strategy targeting RISC-V accelerators for HPC computing
	2.12.1 Introduction
	2.12.2 Related works
	2.12.3 Actual prototype description and maturity level
	a. Prototype modelization, structure and functional description
	b. Actual implementation
	c. Validation tests and results

	2.12.4 Prototype evolution and implementation
	a. Prototype evolution direction
	b. Prototype evolution structure and description
	c. Prototype Implementation and involved tools

	2.12.5 Final validation tests

	2.13 National Federated Cloud/HPC Infrastructure
	2.13.1 Introduction
	2.13.2 Related works
	2.13.3 Actual prototype description and maturity level
	a. Prototype modelization, structure and functional description
	b. Actual implementation
	c. Validation tests and results

	2.13.4 Prototype evolution and implementation
	a. Prototype evolution direction
	b. Prototype evolution structure and description
	c. Prototype Implementation and involved tools

	2.13.5 Final validation tests

	3 References

