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EXECUTIVE SUMMARY 
 
 
Information security is today emerging as a crucial dimension for new classes of HPC and Big Data 
applications, which increasingly involve massive amounts of privacy-sensitive data handled by the computing 
facilities.  
Flagship 4 has been expressly targeted to innovative technological solutions enabling multi-tenancy 
HPC/Cloud platforms with strong security and data privacy guarantees. As its main activities, the flagship 
involves several multi-faceted research challenges and technical objectives, ranging from hardware-level 
security primitives and the definition of a reference architecture for a RISC-V based trusted execution 
environment, up to security protocols, software support and tool flows, provisioning infrastructures, multi-
tenancy support in HPC/Cloud environments. as well as key software technologies like trustworthy AI and 
Federated Learning (FL), a promising approach for improved AI systems that do not compromise the privacy 
of final users and the legitimate interests of private companies. 
This deliverable addresses the evaluation of state-of-the-art approaches and the gap analysis for 
trustworthiness, security, privacy in HPC and Big Data environments. 
In particular, we have identified the key areas of interest in the state of the art, which are instrumental to the 
survey of existing approaches and the gap analysis due at Month 8 as part of Milestone 4. These areas include:  

 RISC-V Trusted Execution Environments, 
 accelerator (FPGA) oriented TEE support, 
 secure virtualization, 
 Federated Learning, 
 trustworthy AI, 
 social media data analysis, 
 numerical analysis, 
 trusted distributed workflows, and 
 stochastics models. 

As an outcome of the above review, the participants identified a precise list of technological gaps that need to 
be addressed to effectively reach the objectives of the Flagship. 
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2Università degli Studi di Napoli Federico II, { acilardo, cotroneo,

luigi.desimone, roberto.pietrantuono }@unina.it
3Università degli Studi di Torino, { iacopo.colonnelli,

alessandra.derossi, roberto.esposito, mirko.polato, laura.sacerdote,
cristina.zucca }@unito.it

April 2023

1 Introduction

Information security is today emerging as a crucial dimension for new classes of
HPC and Big Data applications, which increasingly involve massive amounts of
privacy-sensitive data handled by the computing facilities. Flagship 4 has been
expressly targeted to innovative technological solutions enabling multi-tenancy
HPC/Cloud platforms with strong security and data privacy guarantees. As its
main activities, the flagship involves several multi-faceted research challenges
and technical objectives, ranging from hardware-level security primitives and
the definition of a reference architecture for a RISC-V based trusted execution
environment, up to security protocols, software support and tool flows, provi-
sioning infrastructures, multi-tenancy support in HPC/Cloud environments. as
well as key software technologies like trustworthy AI and Federated Learning
(FL), a promising approach for improved AI systems that do not compromise
the privacy of final users and the legitimate interests of private companies. The
objectives that have been identified for this flagship will be evaluated in several
application domains, from privacy-preserving data analytics to Internet and so-
cial media data analysis. As one of the objectives that we set for this flagship
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project, we will extend the FL paradigm and allow it to work in a black-box
setting, where the federated model is built by ensembling local models. These
techniques will be applied to real-world settings, including the analysis of large-
scale dataset like those typically derived from social media measurements and
networks. The participants have already identified a range of industrial players
potentially benefiting from the flagship results. Some of the large companies in
the CN have expressed their interest in the activities related to the flagship, in-
volving resource optimization, federated learning, fault recovery, and on-premise
and on-cloud resource management, as well as hardware/software-level security
primitives for trustworthy computing, security algorithms and protocols for con-
fidentiality and attestation.

In particular, we have identified the key areas of interest in the state of the
art, which are instrumental to the survey of existing approaches and the gap
analysis due at Month 8 as part of Milestone 4. The key areas for FL4 include
RISC-V Trusted Execution Environments, accelerator (FPGA) oriented TEE
support, secure virtualization, Federated Learning, trustworthy AI, social media
data analysis, numerical analysis, trusted distributed workflows, and stochastics
models.

2 RISC-V Trusted Execution Environments

As a first research line addressed by Flagship 4, we will investigate the low-level
architectural building blocks enabling trustworthy computing. In the spirit of
Spoke 1, the Flagship is particularly interested in exploring solutions based on
the open hardware philosophy, particularly the RISC-V royalty-free processor
specification. We will start by first reviewing and understanding security-related
aspects related to low-end RISC-V cores. In fact, the pervasive role of the smart
and connected devices is making the dependability of the entire technology stack,
from the electronics up to user interfaces, crucial for a growing spectrum of
scenarios, from industrial applications to automotive and transports, domotics,
and even defense. In these domains, security aspects of embedded and industrial
systems are potentially very critical, as a successful attack can lead to a loss
of safety and possibly catastrophic consequences, such as an airplane crash,
plant controller subversion [108], unreported voltage or temperature overshoots.
Clearly, the trustworthiness of the underlying compute devices is of paramount
importance in all of the above application scenarios.

While established design techniques for the above types of systems, from
simple circuits to complex multi-core processors, effectively address aspects like
power consumption, working frequency, and area occupancy, security is often ig-
nored or seen as an add-on feature. Security measures are usually implemented
in software after the physical design is closed, providing few to no hardware de-
fense mechanisms. Such an approach can be justified by several factors, mainly
the ease of access and development of software over hardware as well as the man-
ufacturer’s intellectual property rights over their proprietary architectures and
implementations. On the other hand, extending conventional design methodolo-
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gies with security-aware processes can lead to products that are more resilient
to attacks, providing native protection mechanisms capable of effectively miti-
gating or even eliminating system vulnerabilities, hence reducing damages and
recovery costs. This integration is naturally enabled by open hardware solutions
and encouraged by the growing awareness of security issues.

Developing ad-hoc system implementations with built-in protection mecha-
nisms for confidentiality, integrity, and isolation can both enable shielding from
physical attacks (e.g., bus tampering, peripheral attacks, power analysis/side
channels [104, 75]) and enable new types of software defenses based on ded-
icated hardware-level architectural extensions. The Flagship will address the
latter opportunity, relying on the non-proprietary RISC-V Instruction Set Ar-
chitecture (ISA) specification. In this context, we are particularly interested in
microcontroller-class RISC-V implementations. Specifically, we aim at introduc-
ing integrated defense mechanisms serving as a baseline for establishing Trusted
Execution Environments (TEEs), which are suitable for resource-constrained
microcontroller-class systems. TEEs are increasingly becoming a pillar in cur-
rent security architectures, ranging from server-class facilities to embedded sys-
tems, with Intel SGX and ARM TrustZone being the most prominent examples
of proprietary TEE solutions. They provide an isolated execution environment
based upon the paradigm of trusted computing.

2.1 RISC-V specification

In this subsection we shortly review a few relevant aspects of the RISC-V open-
source instruction set architecture. The RISC-V specification, based on the
Reduced Instruction Set Computer (RISC) paradigm, has been very success-
ful recently, because it fundamentally extends the open-source concept to the
hardware domain, enhancing cooperation, sharing and cost reduction, granting
at the same time flexibility for user implementations. RISC-V comes with its
own specification [214, 215], which defines processor registers, exception model
and operation codes, without going any further into specific implementations.
A number of cores have already been implemented and tested, including the
CVA6 64-bit application processor [231], and various embedded 32-bit cores,
e.g. CV32E40P, Ibex and the SiFive Essential family. A core generator, named
Rocket core, was also introduced [111]. Furthermore, RISC-V includes several
extensions. Some are mandatory (e.g. Integer extension), while others can be
supported only if necessary. Additional custom extensions can be developed for
specific purposes, such as flow control and bit manipulation, e.g. [51, 105].

RISC-V hardware threads (harts) always run at a certain privilege level used
to provide protection between different components of the software stack. All
implementations must provide Machine mode (M mode), as this is the only mode
that has unrestricted access to the whole machine. Microcontroller-class RISC-
V cores suitable for deeply embedded applications may provide only M-mode,
although this choice cannot natively provide any protection against malicious
application code. Therefore, implementations targeted at embedded systems
typically support User mode (U Mode) as well. Application-class cores tar-
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geted at complex systems also support Supervisor mode (S Mode), reserved for
privileged kernel code.

RISC-V resources can be accessed by means of processor control and status
registers (CSRs). Some of these registers can only be accessed by M-mode
programs (memory protection, interrupt, hart information) while a subset of
them can be made available to S mode as well.

2.2 RISC-V memory isolation mechanisms

Enhancing isolation properties in computing systems can lead to attack surface
reduction, so that compromising a portion of the system does not break the
entire system. Therefore, RISC-V provides native support for physical mem-
ory isolation in order to allow processes with machine privilege level (Machine
mode) to properly manage memory resources. The physical memory is hence
partitioned in memory regions allocated to specific User/Supervisor mode pro-
cesses. The privileged software in charge of dynamically splitting the memory
and assigning region permissions is usually referred to as a System Software.

The Physical Memory Protection (PMP) unit is the hardware component
responsible for the enforcement of such isolation mechanisms. The System Soft-
ware interacts with the Machine mode Control and Status registers (MCSRs)
associated with the PMP unit, namely PMP configuration registers (pmpcfgx)
and PMP address registers (pmpaddrx, with x ranging from 0 to 15). RISC-V
32-bit profile includes sixteen 8-bit configuration registers and sixteen 32-bit ad-
dress registers. The pmpcfgx-pmpaddrx pair distinctively defines a PMP entry,
or rule, which basically specifies an isolated portion of physical memory called
region. The address register contains an encoded address space for such a region,
which is decoded by the PMP unit itself every time an access/write/read opera-
tion is performed in that address space by any running hart. Field Address (A)
in the pmpcfgx register indicates the specific encoding (None, NA4, NAPOT,
TOR) for the pmpaddrx register. If None encoding is selected, the PMP entry is
considered disabled or empty. Bits W, R, X in the pmpcfgx register respectively
stand for write, read, and execution permissions. Any write/read operation
on that region must match the right permissions in order not to raise an access
fault exception. The PMP unit is capable of isolating Supervisor and User mode
processes from Machine mode processes (e.g. System Software). In higher-end
systems, we expect the System Software to be the only one running in Ma-
chine mode. However, there are computing systems (e.g. microcontroller-class
systems-on-chip) where multiple Machine mode processes could coexist, mak-
ing it highly desirable to also enforce isolation among Machine mode defined
regions. In order to enforce PMP rules to M-mode processes, RISC-V includes
the Locked (L) bit in the pmpcfgx register. If this bit is asserted, the PMP entry
is valid for the M-mode code as well. For security reasons, this also implies that
the pmpcfgx-pmpaddrx register pair will not be modified until the next hard
reset.

PMP also provides a priority system: a PMP entry always overwrites an
overlapping pmpcfgx-pmpaddrx pair having a larger index. Some Trusted Exe-
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cution frameworks, like Keystone, allocate the last entry for the main operating
system and the first one for the System Software (Secure Monitor).

LowRISC group contributed to the native RISC-V isolation mechanism by
introducing bijective isolation among differently privileged processes. They en-
hanced the PMP unit [106] (ePMP) in their deeply embedded core [122] by
means of a new MCSR called mseccfg. The register only defines three new bits
used to change the PMP behaviour:

• The Rule Locking Bypass (RLB) bit, if asserted, allows the Locked PMP
entries to be deleted or edited.

• The Machine Mode Whitelist Policy (MMWP) bit is a sticky bit, meaning
that once asserted it cannot be reset anymore. If this is the case, an M-
mode code will not be able to access memory regions which are not covered
by any PMP entry.

• The Machine Mode Lockdown (MML) bit, if asserted, makes it possible
to define shared memory regions, S/U-mode only-access regions, and M-
mode only access regions.

2.3 TEE technologies

Trusted Computing refers to computer systems for which an entity –either a
human user, or a local or remote program– has some level of assurance that the
computer system is behaving as expected [135]. It typically relies on the defini-
tion of an appropriate trusted computing base (TCB), i.e. the set of protection
mechanisms within the computer system, including hardware, firmware, and/or
software one must rely upon for the assurance guarantees to hold [77, 158].
Trusted computing is relevant for a plethora of application fields, from biomet-
rics [39] to peer-to-peer networks [179]. Trusted computing mechanisms directly
support the establishment of trusted execution environments (TEEs). A TEE
is an inherently trusted environment containing a small running kernel which
provides a reduced interface to the main untrusted operating system (denoted
Rich Execution Environment, REE) and to other untrusted processes. Hav-
ing a small running system in the TEE reduces the attack surface, making the
TEE suitable for running security-critical applications, providing secure I/O,
and enforcing isolation, integrity, and confidentiality for both code and data.

Memory isolation mechanisms can be exploited as a support for implement-
ing TEEs, possibly complemented by security measures at the electronic design
level [68, 196, 126, 169], which are orthogonal to TEEs. Below we give a short
overview of several solutions and implementations applied on various architec-
tures which are relevant for the scope of this deliverable.

A prominent example of TEEs is Intel Software Guard Extensions (SGX),
an Intel ISA extension aiming to provide security guarantees in terms of confi-
dentiality and integrity in untrusted environments for high-end processors [45].
Intel implements its TCB almost entirely in hardware (Page Walkers, Fault
Handlers, TLBs) and microcode, partially delegating some features to trusted

5



software and partitioning the memory in a non-trusted memory and a trusted
memory (Processor Reserved Memory) used to host secure applications. Intel
introduced the popular concept of enclaves, which is basically a safe container in
which a high-level security-critical software is loaded along with its data. Every
enclave grants confidentiality and integrity to its application, defending it from
external environments, including a potentially untrusted Operating System.

Another popular TEE in IoT and embedded systems is ARM TrustZone [164,
163], a collection of hardware modules that can be used to partition system
resources between a secure world, which hosts a secure container, and a nor-
mal world, which runs an untrusted software stack [46]. An ARM processor
core can switch between the normal world and the secure world when execut-
ing code. Furthermore, it has to implement an additional memory protection
unit called Security Attribution Unit, which takes a CPU address and estab-
lishes if that address is safe or not, similarly to the RISC-V PMP. The ARM
TrustZone high-end solution provides a system software module called Secure
Monitor responsible for mediating between secure and non-secure worlds. On
the other hand, TrustZone-compliant microcontroller-class systems provide ad-
hoc instructions to switch from a world to another and allow communication
between secure and non-secure world, reducing the software overhead incurred
by the Secure Monitor.

Open-source architectures, like RISC-V, are also being extended with TEE
support. MultiZone [184] is a TEE targeted at RISC-V relying on a generaliza-
tion of the ARM TrustZone philosophy. Instead of having two worlds, MultiZone
introduces multiple worlds, or zones, which can isolate specific portion of run-
ning code and data, like libraries in a similar way to SGX secure containers.
A strong point in MultiZone is flexibility, as its TCB consists of a nanokernel
and some communication and scheduling modules, implying decoupling from
hardware solution, making MultiZone extremely portable. While MultiZone is
a commercial solution, noncommercial TEEs are under development for RISC-
V. Keystone [110] is an open-source TEE framework for RISC-V, supporting
32-bit and 64-bit architectures and requiring all three privilege modes (M, S,
U) in order to support dynamic isolation. Keystone is inspired by SGX and
Sanctum [47], another high-end processor TEE framework designed for RISC-V
before the introduction of PMP.

Keystone inherits the concept of enclave from SGX and implements it in
a simple and effective way by means of the PMP native mechanisms, but in-
stead of relying on microcode it provides a Secure Monitor, inspired both by
Sanctum and TrustZone. This means that the Keystone TCB is completely
software, therefore no physical and virtual memory protection is integrated on
chip. Moreover, the design choices made by Keystone allow the Secure Monitor
to be written in C and easily verified, as long as its footprint stays limited. It
is the only Machine mode software running and it is responsible for PMP con-
figuration, and hence for process isolation and enclave lifecycle management.
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Identified gaps. As highlighted above, our aim in this particular branch of
the Flagship activity is to explore TEE support, most notably effective memory
isolation mechanisms, for resource-constrained RISC-V implementations. Based
on the review we conducted, despite enabling isolation for User mode processes,
the improvements brought by the ePMP concept are not enough to support
trusted execution in microcontroller-based systems which do not support a Su-
pervisor Mode. Since we are interested in complex systems, possibly running
multiple privileged software components (e.g. drivers, embedded Operating Sys-
tems, Real-Time Operating Systems [229, 123, 14, 81]), which would all run in
Machine mode, we see here a technological gap to be filled. In fact, simply
locking entries in the PMP ensures strict isolation, but it reduces the System
Software’s capability of creating and deleting new PMP entries, preventing the
dynamic management of the trusted environment. In the project we will address
these gaps by introducing new mechanisms allowing a more versatile Machine
mode PMP region management, while keeping the attack surface restrained.

3 Accelerator oriented TEE support

Accelerator-based and special-purpose machines, e.g. based on Graphics Pro-
cessing Unit (GPU) and Field-Programmable Gate Array (FPGA) technologies,
can play a key role in sustaining the evolution of high-performance computing
technologies, compared to standard platforms like general-purpose processors.
In fact, accelerators have proved to provide substantial speedups in HPC appli-
cation domains ranging from bioinformatics to financial computing, from storage
to artificial intelligence.

In terms of security and privacy, this trend poses however a crucial challenge,
as user data inherently need to leave the main processor units within the system
and move to peripheral devices, which act as a black box in security terms as
seen from the system integrator’s and user’s perspective. This is particularly
true of distributed, cloud-oriented infrastructures. That poses a crucial hurdle,
since exposure of sensitive data raises privacy concerns which may discourage
users of accelerated HPC platforms because of their opaque setting.

A mostly theoretical solution is provided by pure cryptography-based ap-
proaches, like homomorphic encryption [76] and garbled circuits [224]. They
completely remove any hardware component from the trust compute base (TCB),
but unfortunately they only fit special types of operations and have prohibitive
compute/communication requirements for many practical tasks [40, 94]. In par-
ticular, their use for complex workloads such as Machine Learning algorithms
is out of question in the current state of the art.

On the other hand, Trusted Execution Environments (TEEs) may play a
role in addressing the above limitations as a pragmatic solution, still requiring a
third party in the system TCB, but limiting the trust assumption to the proces-
sor manufacturer. In particular, the commercial solution for privacy-preserving
computing introduced by Intel, based on the notion of secure SGX enclaves,
only includes Intel processors in the TCB and allows critical data and compu-
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tation to be securely offloaded to cloud services in untrusted settings, as long as
Intel processors are considered trusted. AMD Secure Encrypted Virtualization
(SEV) provides another solution from the other major general-purpose processor
manufacturer. However, CPU-based solutions suffer from inherent limitations,
especially when targeting high-performance applications. For example, Intel
SGX enclaves are essentially not meant for high-performance computing, with
the basic form of enclave offering only 256MB of memory in the early versions
of SGX. Most importantly, with processor-based TEE dedicated accelerators,
like GPU or FPGA devices, are completely excluded by the secure perimeter of
CPU-side enclaves. Just a few academic works have recently addressed these
limitations [209, 230]. In a sense, the crucial requirement for user’s data privacy
seems to inherently clashes with the need for special-purpose acceleration and
dedicated machines in HPC environments.

Identified gaps. We see two main gaps to be addressed in the area of trust-
worthy HPC:

• CPU-based TEE solutions are not a good fit for the requirements of
HPC/big data applications;

• no commercial solutions exist for accelerator-based trustworthy HPC, e.g.
based on FPGA technologies.

4 Secure virtualization

The role of virtualization technology is widening today, from cloud computing
systems to critical industrial systems in several domains (e.g., railways, avionic,
automotive) [44], due to its ability to reduce SWaP-C factors (size, weight,
power, and cost) by consolidating multiple software stacks on the same system-
on-a-chip (SoC)[44, 1].

In cloud computing, virtualization allows distinct customers to hire online
computing resources for their own purposes. By doing so, specific applica-
tions (Software as a Service—SaaS), development platforms (Platform as a Ser-
vice—PaaS), or complete virtual machines with networking components and
storage capabilities (Infrastructure as a Service—IaaS) can be requested from
the cloud operator on a pay-per-use basis. In this scenario, the allocation of
the hardware resources changes at run-time, taking into consideration several
factors such as the user demand (i.e., the utilization) and the plan paid by the
user.

Similarly, in the industrial domain, isolation properties of virtualization are
appealing for functional safety standards (e.g., DO178C for avionic [176], ISO
26262 for automotive [91], etc.), which recommend providing evidence on tem-
poral, memory, and fault isolation among applications, sharing the same com-
puting infrastructure. In this context, predictability is preferred over utilization,
thereby the resources are often allocated statically.
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Virtualization is also considered one of the most promising technologies to
streamline the adoption of MPSoCs (Multi-Processor Systems on Chip) [43,
15, 220, 99, 137]. These SoCs are characterized by heterogeneous hardware
components such as APUs for general-purpose computation, FPGAs (Field
Programmable Gate Array) for high-performance computing (HPC), RPUs for
real-time and safety computation, and GPUs (Graphic Processing Units) for
parallel and graphical computations. The heterogeneity of these SoCs guar-
antees high performance, scalability, and reconfigurability, but their inherent
complexity makes them not easy to use. In order to improve the predictability
and usability of heterogeneous hardware, virtualization is therefore seen as a
key technology.

More recently, a growing interest sees the adoption of cloud technologies in
Industry 4.0, offering to host critical applications as a service. EU initiatives
and projects such as Digitale Schiene Deutschland [148, 199] and SECREDAS
[70] have looked into cloud computing for hosting safety-relevant railway appli-
cations. TransVital [198] and DS3 [190] are up-comping platforms from Thales
and Siemens to support safety-critical railway applications, such as interlocking
and radio block centre, in a SIL4 Cloud [82].

The widening adoption of virtualization makes its security extremely impor-
tant, especially in an industrial domain where the violation of isolation proper-
ties can lead to catastrophic consequences [112].

4.1 Hardware virtualization

Hardware virtualization provides an abstraction of physical hardware resources
in multiple virtualized hardware resources to increase utilization and reduce run-
ning costs. Today, hardware virtualization is linked to the possibility of running
multiple Operating Systems (OS) on the same hardware platform, which means
virtualizing all the hardware resources (i.e., Virtual Machine (VM)) necessary
for an OS to run. Although, hardware virtualization also includes virtualizing
access to existing devices (e.g., GPU or FPGA) and emulating new devices.
More specifically, the first case is generally adopted to multiplex the access
to the same physical resource, such as network or disk storage. In contrast,
the second case opens the possibility of interfacing with peripherals that are
not available in the hardware platform. It is worth noting that the emulation
in HPC platforms can be faster than the operational frequency of real physical
devices opening new opportunities in cloud computing and software testing [37].

In the software stack of hardware virtualization, the hypervisor is the priv-
ileged software component that setups, manages, and abstracts the hardware
resources. For that purpose, the hypervisor uses hardware extensions available
in modern CPUs [140, 6] dedicated to virtualization, which introduces a novel
(and higher) level of privilege for the hypervisor, new features to support hard-
ware virtualization (e.g., a new level of translation in the page table), and a
configurable structure to setup which guest conditions and instructions are sen-
sitive for the hypervisor and thereby might call hypervisor intervention (i.e.,
trap and emulate).
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The adoption of such virtualization technology is known in the literature as
hardware-assisted virtualization, which takes advantage of CPU virtualization
technologies (e.g., Intel VT-x [141], AMD-V [10], ARM VHE [50]) to implement
full virtualization, i.e., emulating a complete machine to run unmodified guests.

The following sections are structured as follows.

• Section 4.2 introduces virtualization technology, taking ARM VHE and
Intel VT-X as example.

• Section 4.3 shows an overview of real-time embedded virtualization chal-
lenges and state-of-the-art approaches.

• Section 4.4 shows the current threat model and attack vectors identified
over the hypervisor.

• Section 4.5 provides an overview about hypervisor detection.

• Section 4.6 provides the current state of the art regarding the discovery
of hypervisor vulnerabilities.

• Section 4.7 provides a gap analysis given the above discussion.

4.2 Intro to virtualization technology

In order to run VMs with unmodified guest OSes, several CPU vendors (e.g., In-
tel, AMD, ARM) develop hardware virtualization extensions to reduce overhead
and improve the performance of virtualization.

More specifically, ARM introduces, from ARMv8, a new privileged execution
mode called EL2 (Exception Level 2) in addition to the kernel (EL1 ) and user
(EL0 ) modes. To guarantee the isolation of VMs, the hypervisor runs in EL2
mode, having complete control of the hardware, while the VMs software (guest
OS and user applications) runs in EL1 and EL0 modes. To limit virtualization
overhead, VMs run without hypervisor intervention as far as possible, until some
particular conditions occur. In the latter case, a hardware trap is activated and
the hypervisor starts taking control of the hardware and eventually return to
the VM after emulating the behavior expected by the VM. By doing so, the
software running in EL1 works exactly as it would run without virtualization
extensions. It is worth noting that if virtualization features are disabled in EL2,
then processes running in EL1 have direct control of the hardware, regardless of
any virtualization support, thus being transparent to non-virtualized executions.
To enhance the security features of their processors, ARM developed TrustZone
technology [159, 160]. The main idea is to improve the isolation capabilities
by enabling two worlds, the secure world, where a small trusted OS runs in
isolation, and a normal world where everything else runs. These worlds allow
operating on dedicated memory regions with different privileges, and a secure
monitor is responsible for switching between secure and non-secure execution.

Intel VT-x [90] is the target technology of several works over security, as
they continue to represent the largest CPU family used in the server segment
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Figure 1: Workflow of a virtual machine in VTX

worldwide. For this reason, we choose to provide an overview of the hardware
extensions and of the VM life cycle in Intel technology to make easier the com-
prehension of the threat model.

Intel VT-x and VM Life-cycle Once the virtualization is enabled (VMXON
instruction), two operating modes are active. The hypervisor (VMM ) operates
in root mode, while the guest VM s run in non-root mode. The latter modes are
orthogonal to traditional execution modes (long, protected, and real modes) and
to privilege levels (i.e., rings). Running a new VM in non-root mode requires al-
locating and initializing in memory a particular control structure, called Virtual
Machine Control Structure (VMCS), linked to a specific vCPU. The VMCS,
except for its first eight bytes, must be read and written by executing dedicated
VMX instructions called VMREAD and VMWRITE, otherwise unpredictable failure
modes can occur (see Section 24.11.1 in [90]). The VMCS consists of the follow-
ing areas: guest-state, host-state, control fields, and VM exit information. The
first two are the most important in the context of our framework and include,
respectively, the processor state when the VM is suspended and resumed. Specif-
ically, they include special-purpose registers (e.g., control registers, instruction
pointers, etc.).

Fig. 1 depicts the VM lifecycle. The VMCS is initialized (VMCLEAR instruc-
tion, step 1 in Fig. 1) during the VM startup and subsequently loaded (VMPTRLD
instruction, step 2 in Fig. 1). When the VMCS is loaded, its internal hardware
state becomes Active Current Clear. In this state, the hypervisor can set up
the VM, for example, by defining the events and instructions in non-root mode
that will cause a switch to the root mode (i.e., a VM exit). Once the setup
is completed, the hypervisor can launch the VM (VMLAUNCH instruction, step 3
in Fig. 1). Once this instruction is complete, the VMCS state becomes Active
Current Launched and the Guest VM can run, after switching to non-root mode
(called VM entry).

During the execution of the VM, the control can pass to the hypervisor every
time a VM exit occurs, requiring a context switch from non-root to root mode.
VM exits can occur for different reasons. Currently, Intel x86 architecture
support 69 VM exit reasons (Appendix C, Table 1-c [90]). Most of them are
due to the execution of sensitive instructions by the VM, such as RDMSR, WRMSR,
or CRx ACCESS. Others include VM events or conditions to be handled by the
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hypervisor, such as triple fault, interrupts, and I/O port access. Finally, the
hypervisor can decide to trap some VM conditions to follow the VM evolution
(e.g., VM introspection [84]) or to take scheduling and resource-sharing decisions
(e.g., memory deduplication [127]).

The VM exit is a key operation since it can be exploited to compromise the
isolation properties of the hypervisor. Hence, we use it as the mean to submit
a seed to the hypervisor and to test its operation. Let us analyze in detail the
steps occurring from the VM exit up to the successive VM entry (VM resume),
including the execution of the VM exit handler in the hypervisor (steps 4 and
5 in Fig. 1). The VM exit requires a hardware context switch from non-root to
root mode, that entails: (i) to save the physical processor state in the guest-
state area of the VMCS (except for general purpose registers (GPRs), saved in
the hypervisor data structure), (ii) to load the new root mode processor state
from the host-state area of the VMCS, including also the instruction pointer
register (RIP), containing the start address of the VM exit handler. After the
context switch, the VM exit handler identifies, from the VMCS, the cause of the
exit and appropriately resolves it. More importantly, during the execution, the
VM exit handler can access the entire VMCS (VMREAD, step 4 in Fig. 1), hence
its control flow depends on VMCS fields. Additionally, the VM exit handler
can change the VM state in the VMCS (guest-state area) (VMWRITE, step 4 in
Fig. 1). Once the VM is resumed (VMRESUME instruction, step 5 in Fig. 1), the
new VM state becomes operational on the physical CPU. The VMRESUME
performs a new (inverse) hardware context switch, where the processor state is
loaded from the guest-state area of the VMCS.

Basic Hypervisor Virtualization components. In hardware-assisted
virtualization, the processor supports the virtualization at hardware level by
dedicated hardware extensions (e.g., EPT, VT-d, SR-IO...). For instance, the
Extended Page Table (EPT) allows the hypervisor to map the physical memory
of the single VMs to the real physical memory without calling its intervention.
We call Virtualization via Hardware (VH) the virtualization implemented via
hardware extensions configured to not call hypervisor intervention (i.e., no soft-
ware intervention). Belong to VH also the pass-through of devices (i.e., when
the peripherals are allocated to the single VMs). However, even the support
of hardware to virtualization, the software emulation (trap and emulate) is
still present and supported in hardware-assisted virtualization for several rea-
sons (Virtualization via Software (VS)). The current version of the architecture
manual specifies 69 (Appendix C, table 1-c [90]) different codes for “basic VM
exit reasons”. Table 1 groups the exit reasons by the high-level context in
which they occur 1. Most of them are due to the lack of hardware support.
For instance, VMX has limited support for nested virtualization, thereby the
hypervisor has to emulate VMX instructions to enable nested virtualization.
Again, the APIC does not allow the hypervisor to limit what CPUs a VM can
interrupt via inter-processor interrupts (IPI), thereby the hypervisor needs to
emulate the APIC accesses. Other CPU instructions can be intercepted and

1The exits reasons can belong to a more high-level context
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emulated (e.g. CRx, GDTR, LDTR and MSR). Memory virtualization is vir-
tualized via software in a few cases like Populate-On-Demand [218] where the
hypervisor allows a VM to have a physical memory bigger than the real physical
memory. Device virtualization and emulation are the other important reason
to intercept the VM execution. Indeed, as also we mentioned in the previous
sections, device emulation has surprising performance capabilities and has the
power to emulate also not available devices. The interactions of devices are
trapped by the hypervisor via memory (MMIO) and via IO ports (PIO).

However, the hypervisor intercepts the VM not only for emulation and virtu-
alization. The hypervisor can decide to trap some VM conditions to follow the
VM evolution (e.g., VM introspection [84]) or to take scheduling and resource-
sharing decisions (e.g., memory deduplication [127]).

Table 1: Exit reasons in Intel VT-x

Context Exit reasons
Exception or NMI (0, 8, 45);

INIT signal (3); SIPI (4); SMI(5,6);
CPU virtualization CPU Instructions (9-17,28-29,

31-32, 36, 39, 40, 46,
47, 51, 54, 55, 57, 58-68);

APIC(43, 44, 56)
External interrupt (1);

I/O virtualization/emulation IO Instruction (30);
Interrupt Window (7);

EPT (48, 49)
Memory virtualization EPT (48, 49)

Triple fault (2);
VT-x Exceptions VM-entry failure (33, 34, 41);

Monitor Trap Flag (37);
Preemption timer (52)

Nested virtualization VTX instructions (19-27, 50, 53)
Hypercall VMCALL (18); VMFUNC(59)

4.3 Hypervisor for resource-constrained systems

Recently, there has been a great deal of commitment to developing new hyper-
visors for embedded systems and for real-time and isolation purposes [129, 115,
128, 124, 166, 3].

While the objective is almost identical in most cases, the approaches used are
quite distinct. Some of these solutions are built on micro-kernel or separation
kernel architectures with the aim of reducing the complexity of the hypervi-
sor and simplifying the certification process. These are specially intended for

13



IoT/embedded context and, among these, we found seL4 [59, 103], NOVA [195],
and PikeOS [103].

Other lightweight approaches are those based on partitioning techniques,
such as Jailhouse [166], Bao [128], and Xtratum [129]. These tiny hypervisors
are designed to statically partition the hardware resource to the guest VMs
minimizing the hardware interference bearing the cost of less efficient use of
resources.

A completely different but equally interesting approach is to modify an al-
ready existing and widely used general-purpose hypervisor to guarantee real-
time requirements. This strategy enables the reuse of knowledge and the ex-
ploitation of strong communities to accelerate the use of virtualization in em-
bedded systems. KVM and Xen are two examples [3].

Another solution adopted in the literature is to rely on hardware security
mechanisms like ARM Trustzone [159], which guarantee strict isolation between
two environments, the secure and non-secure worlds. LTZvisor and RTZVisor
are ARM TrustZone-based solutions that leverage the hardware-based mecha-
nism to implement dual-guest OS and also multi-guest OS virtualization, re-
spectively.

4.3.1 MPSoC Hypervisors

There are some recent works that have been proposing techniques to virtual-
ize heterogeneous platforms such as MPSoCs, featuring a programmable logic
(FPGA) as well as heterogeneous processors, to realize reliable mixed-criticality
systems where the isolation is guaranteed for each VM.

CHIPS-AHOy is a predictable holistic hypervisor [138] that aims to satisfy
temporal predictability and high-performance requirements of software running
over MPSoCs while simultaneously handling energy efficiency, thermal bound,
and system lifetime. The authors’ goal is to address the most relevant source of
unpredictability in MPSoCs such as the memory hierarchy, the I/O subsystem,
and the hardware variability by using techniques such as cache coloring, and
I/O throttling. Therefore, they try to leverage platform-specific hardware such
as PMUs and physical sensors to predict the effect of actuation actions in the
system in order to improve the predictability of the following actions: real-time
scheduler, cache coloring, I/O throttling, and reliability management.

Biondi et al. present the SPHERE project [20], an integrated framework to
abstract the hardware complexity of MPSoCs and simplify the management of
heterogeneous hardware. The idea is to extend the functionality of a hypervi-
sor (SPHERE supports CLARE and Jailhouse hypervisors) for next-generation
cyber-physical systems with real-time guarantees. The authors focus on a multi-
soc scenario where the hypervisor is able to manage time-sensitive networks in
presence of traffic flow with different temporal constraints. An interesting part
of the work explores the possibility of using the dynamic function exchange
capabilities of the FPGA (also known as dynamic partial reconfiguration) to
provide efficient implementations for cryptography modules, as well as hard-
ware acceleration for deep neural networks.
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4.3.2 Deterministic I/O

I/O can be a strong source of non-determinism, especially in virtualized MP-
SoCs which are characterized by many peripherals usually used simultaneously.
This issue can also impact the security of virtualized systems. For this reason,
companies provide hardware support for I/O virtualization: i.e. Intel VT-d [4]
allows assigning I/O devices to VMs while providing VM routing for device in-
terrupts, and SR-IOV improves the management of PCIe devices. Furthermore,
there is a strong commitment in literature to find a solution to I/O virtualization
in real-time environment [28, 2, 178, 102, 96].

Despite all this effort, the heterogeneity of new approaches and solutions,
and the plethora of papers about isolation in virtual environments, accelerator
support is still immature, as shown in [43].

4.3.3 Accelerators Virtualization

There are many techniques to virtualize the GPU and the FPGA in server
environment, such as fixed pass-through, device emulation, or hardware support
virtualization, but in all these cases the solutions do not focus on isolation
and minimal impact, but rather on performance. Therefore, porting it to an
embedded system with real-time requirements requires effort.

Virtualizing GPUs is a relatively new area of study, and although there are
several proposed solutions [87, 156], it remains an open challenge. This is not
only due to the heterogeneity of the GPU’s architectures but also because GPU
drivers are not open for modification due to intellectual property protection.
All these motivations make conventional virtualization techniques not directly
applicable for GPU virtualization.

Virtualization of FPGAs is also a very complex area of research. There are
several surveys that attempt to describe the current state of the art in FPGA
virtualization [205, 217, 21]. It is possible to distinguish two directions to FPGA
virtualization in the literature: the FPGA used as a shared hardware accelerator
resource between VMs [211, 219], and the FPGA used to improve the features of
the hypervisor [95, 92]. Following the latter approach, several papers focus on
increasing the predictability of the hypervisor leveraging FPGA for real-time
purposes. For example, in [171] the authors propose a hardware component
to allow interconnecting hardware accelerators to the same bus while ensuring
isolation and predictability. In [175] and [174] FPGA is used to control the
memory hierarchy reducing memory access latency and increasing predictability
and isolation of the software. FPGA is also used to profile the memory demand
of CPUs and accelerators in order to predict the temporal behavior of deployed
workload[193].

4.4 Threat model and attack vectors to hypervisor

We consider the following threat models:
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• a malicious VM with the aim of compromising confidentiality, integrity,
and availability of the hypervisor or other VMs.

• a malicious VM with the aim of identifying the presence and version of
the behind virtualization

• a malicious hypervisor (i.e., Virtual-machine base rootkits (VMBR)) that
would transparently trace the actions of its VM victims

4.5 Hypervisor detection and fingerprinting

Virtualization detection techniques can reveal the presence of virtualized envi-
ronments, which instead should remain transparent. Generally, these techniques
infer the presence of virtualization through the timing deviations of specific ma-
chine instructions or by looking for artifacts/fingerprints left either by the VMM
or the VM itself.

The interest in virtualization detection spiked up when many VM-based mal-
ware rootkits were introduced, as the detection of the VMBR (Virtual-machine
base rootkits (VMBR)) might save the VM from further spying of data [23].
Moreover, the detection of virtualized environments is often the first step car-
ried out by many attackers to narrow down and fine-tune their attack strategies
on cloud infrastructure [71].

Logic of machine instructions The famous Red Pill test for identifying
a VM on x86 architectures was introduced by Rutkowska, which relied on using
the SIDT machine instruction to identify the differences in the Interrupt De-
scriptor Table (IDT) addresses in the guest and host machines. The CPUID, a
machine instruction on x86 and x86 64 CPUs, can reveal the presence of VMMs
[23]. Other approaches have been devised to detect virtualization through VMM
fingerprints, as the system’s BIOS data [48] or virtualized drivers [120] can re-
veal the presence of different hypervisors.

Timing attacks for virtualization detection Timing attacks for virtu-
alization detection usually rely on measuring the overhead involved in the VM
Exit operation [23], which is present only in the case of virtualized environ-
ments. The approach involves measuring the time taken for specific instruction
executions or specific operations inside a VM and comparing it against the val-
ues obtained on a host machine. The CPUID machine instruction [90] is usually
used for performing such a timing analysis, as this instruction is always known
to result in a VM Exit. This instruction can be executed from the user space
itself and is thus a good candidate for performing the check from a normal guest
account on the machine.

Other timing-based approaches use the CPU’s Return Stack Buffer (RSB),
Timing analysis on the Translation Lookaside Buffer (TLB) [23], or the usage
of memory virtualization features by the processor [71].
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4.6 Hypervisor Vulnerabilities

The hypervisor runs with an elevated privilege on the host machines. Owing to
its importance, the hypervisor becomes a preferred target among the attackers
of the cloud infrastructures. Vulnerabilities in this layer can lead to an attacker
running as a malicious guest user, to break into the higher privileges of the
hypervisor or cause a denial of service from the host [144, 143, 142], which
might be running multiple VMs owned by different cloud users.

Verifiability of the hypervisors becomes a challenge with the large and grow-
ing codebase of the hypervisors.

Below, we split the approaches of vulnerability discovery into two categories,
as they target two distinct interfaces asking a different knowledge for testing.

CPU Virtualization testing. Amit et al. [11] propose to apply the
testing environment of CPU vendors to hypervisors, however, they need an
intimate awareness of x86 architecture to generate comprehensive test cases.
PokeEMU [221] generates CPU test cases for virtual CPU implementations
applying symbolic execution exclusively to an executable specification, with-
out considering the implementation. However, its main targets are hypervisor
with no hardware-assisted virtualization. Similarly, MultiNyx [69] generates test
cases focusing on hardware-assisted virtualization, by applying dynamic sym-
bolic execution. However, MultiNyx records multiple traces between VM and
VMM context incurring a high performance overhead. HyperFuzzer [72] is a
hybrid fuzzer for virtual CPUs. Both HyperFuzzer and MultiNyx are snapshot-
based fuzzer. Its main difference from [69, 221] is that it avoids the overhead of
a full hypervisor execution track, relying on instrumentation. Instead, it only
records the program’s control flow by using commodity hardware tracing. These
studies construct the initial fuzzing seeds manually based on expert knowledge.
In addition, they do not focus on I/O device virtualization behaviors.

Device Virtualization testing. The following studies do not mutate the
VM’s architectural state. This can limit their testing coverage, as the hypervisor
depends on the VM’s architectural state when emulating an operation. Schu-
milio et al. [182] first discover the available hypervisor interfaces via a custom
OS, then they test such interfaces through a black-box fuzzer based on a custom
bytecode interpreter which accelerates the input generation phase. Once again,
the fuzzing seeds are built manually. Nyx [183] tests the hypervisor target via
nested virtualization using KVM. In addition, Nyx uses grammar rules to specify
the structure of the target emulated devices. Relying on manual input gram-
mars per device requires manual work to specify grammar rules [139], thereby
several studies record the interactions between the guest operating system and
the device [139, 85, 149, 26]. Henderson et al. [85] selectively instrument the
code of a given virtual device, and perform a record and replay of the only
memory-mapped I/O (MMIO) activity of the virtual device in QEMU. VShut-
lle, Morphuzz, and MundoFuzz [149, 26, 139] fuzz the entire emulated device
input interface including DMA interactions. Contrary to MMIO and PIO inter-
actions that call the hypervisor intervention interrupting the VM (VM exit), the
DMA does not interrupt the VM. Indeed, both the work [149, 26] instrument
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the DMA API of the Hypervisor to target the dynamic memory regions where
the DMA is working. Instead, MundoFuzz [139] collects IO instructions and
DMA operations within the guest operating system without hypervisor instru-
mentation. MundoFuzz [139] fuzz the hypervisor with grammar-awareness using
automatic grammar inference. Hypervisor grammars have hidden input seman-
tics, and MundoFuzz finds the causal relationships between the inputs through
experiments (statistical learning). Additionally, the recorded inputs could be
interleaved from asynchronous events (e.g., the timer interrupts) that generate
coverage noises. MundoFuzz deletes this noise through differential learning.

Record and replay. In fuzzing, the record and replay is an effective way
to learn the grammar of the target system [139, 85, 149, 189]. However, record
and replay are also adopted in security to analyze and debug execution traces.
Record and deterministic Replay (RnR) is a popular architectural technique
[24, 56, 41, 57, 186, 212]. The RnR injects the recorded events at the correct
times, enforcing a deterministic execution (Replay). RnR is used for several
reasons. For instance, when the system adopts no precise events to detect
possible exploits and violations, the replay is used to verify if those events are
false positives [186]. It is also used to analyze time-of-check to time-of-use race
conditions [57] or to determine if systems were previously exploited once zero-
day attacks are discovered [97]. RnR can be done at different abstraction layers,
however, to the best of our knowledge we are the first to record and replay the
VMM history in hardware-assisted virtualization solutions.

4.7 Identified gaps

• RPU Virtualization Both GPU and FPGA virtualization techniques
are not suitable for virtualizing the RPU (Real-Time Processing Unit)
since both are very hardware specific. Furthermore, GPU virtualization
techniques are used to accelerate calculations in order to achieve higher
performance while FPGA virtualization is used both to achieve higher
performance and to expand the hypervisor features. On the other hand,
the RPU is used to increase the determinism of the task that runs on it. It
is therefore essential to develop virtualization techniques that focus on the
requirements of predictability, security and isolation, taking into account
the strengths and limitations of the RPU architecture.

• Hypervisor misbehavior detection. The hypervisor, as shown in
Fig.1, takes some actions during a VM exit before returning the control
flow to the VM. These actions include the update (i.e., VMWRITEs oper-
ations over the VMCS in Fig.1) of the guest physical CPU state (e.g., the
program counter, control registers), as the emulation traps the sensitive
guest instruction before its execution and returns the guest control flow
as the instruction was executed (i.e., emulated).

To be transparent, these actions should faithfully emulate a CPU physi-
cal behavior, as any misbehavior could be a way to detect virtualization
or, worse, it could be an alarm of a possible exploitable bug. However,
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there are no proposed solutions to test the correctness of these actions in
hardware-assisted virtualization, as the current solutions are more focused
on testing emulators like QEMU.

• Discovery of CPU virtualization bugs. The test case generation in
CPU virtualization asks for a deep knowledge of the underlying hardware,
as the test case includes the setting of both the mode of the physical CPU
and the guest instruction or condition that will be the reason for a VM
exit. Today, the most efficient approach to running a test case seems to be
the reverting of a VM snapshot appositely crafted ad-hoc, which support
testing and fuzzing techniques. This way, both the state of the guest
physical CPU and the next instruction to run can be set. However, (1)
the programming of a snapshot is not easy, as the next instruction to run
depends on the specific guest CPU state (e.g., the program counter, the
page table), so it asks a golden starting seed to be effective. Second, (2) the
snapshot mechanism is not supported in industrial embedded hypervisors
like Jailhouse [191] or Bao [13], as it demands big capabilities of storage,
i.e., memory and disk.

• Failure modes. Currently, the failure modes detected and thereby found
during testing are generally host crashes, as they indicate a bug presence.

However, the failure modes that can occur in a hypervisor are many, as
different and complicated isolation properties should be guaranteed to
the virtual machines of the guests. In ARM KVM, the first efforts were
made to detect bugs in memory hierarchy management with the risk of
impacting VM privacy and confidentiality.

Hence, new efforts could be made to devise bug detectors for specific
isolation properties, to be applied orthogonally to the generation of the
test cases, also accepting a percentage of false positives and negatives.

5 Federated Learning

The deployment of AI and ML methods throughout many industries has been
a welcome innovation that generated newfound concerns about the fairness of
the results and the privacy of the involved data. Indeed, recent legislation in,
e.g., Europe [79], United States [151] and China [38] have been enacted to
strengthen the protection of user data used by AI and ML systems. On the
other hand, companies tend to consider collected data as competing advantages
and therefore are unwilling to share the data outside (sometimes even within
different parts of) the organization. As a result, it is often the case that data is
dispersed into many isolated islands, and ML practitioners are forbidden by laws
and by legitimate owners from collecting, fusing, and ultimately using the data
to improve their systems. Protecting the privacy of users and the competing
advantages of companies is arguably a fair objective; nonetheless, these choices
hamper the development of learning models that, by leveraging all the available
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data, could make a difference in the quality of life of many people who are
subjected to the decisions made using AI systems.

FL is a form of distributed learning that has been proposed by McMahan
et al. [132] as a way out of this conundrum, i.e., as a way to develop better
AI systems without compromising the privacy of final users and the legitimate
interests of private companies. Initially deployed by Google for predicting text
input on mobile devices, FL has been adopted by many other industries, such
as mechanical engineering and health care [116].

FL is a learning paradigm where multiple parties (e.g., clients) collaborate in
solving a machine learning task using their private data under the coordination
of an aggregator (a.k.a. server or coordinator). Each client’s local data is not
exchanged or transferred to any participant. The learning happens in rounds
where model updates are computed by clients in insulation using local and
private data, then aggregated on the server, then broadcast to the clients for
the next round. Although this centralized structure is by far the most used
in practice, other decentralized approaches are actively being researched (for
example, Swarm Learning [213]), each one with different pros and cons about
performance and security [201].

There are two main federated settings: cross-device and cross-silo [98]. In
cross-device FL [222], the parties can be edge devices (e.g., smart devices and
laptops); they can be numerous (order of thousands or even millions). Parties
are considered not reliable and with limited computational power. In the cross-
silo FL setting [89], the involved parties are instead organizations; the number
of parties is limited, usually in the range [2, 100]. Given the nature of the
parties, it can also be assumed that communication and computation are no
real bottlenecks.

FL scenarios can also be categorized according to the type of data held by
each federation client. We have horizontal FL when the parties share a similar
schema of features, but each one possesses different data samples; otherwise, we
talk about vertical FL when each client possesses different information about the
same individuals [228]. This nomenclature derives from the visual representation
of how a data table would be split among the parties (the samples or individuals
are the rows, and the features are the columns).

From an ML point of view, the vast majority of the FL research and indus-
trial deployments are based on DNNs; this is due mainly to the very nature of
these models, being representable as tensors, making them easy to aggregate (in
simple cases an arithmetic mean is sufficient), but also for their high learning
performance. However, DNNs are not the passe-partout of all ML problems,
and despite their effectiveness, new approaches aiming to generalize FL to any
ML model are currently being researched [161].

Federated Learning is currently a very hot research topic being deployed
in a variety of settings including emerging platforms (e.g., RISC-V based sys-
tems [136]). Indeed, a number of advancements are being proposed at a very
high pace. Among those, we distinguish between attempt to solve problems
that are general to ML (e.g., trying to force the models to converge to fair
ones [225]), and those that are specific to FL. A problem that is specific to FL
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is the possibility that data are not distributed in a IID way between the clients.
Indeed, Data non-IID is a huge problem in FL and many commonly employed
algorithms are designed under the assumption that the data is IID among the
participants of the federation, but that is usually not true. Non-IIDness may
affect several aspects of the data, mainly: the quantity available to each client,
the distribution of feature values, and the distribution of the labels. To over-
come the issues related to non-IID distributions, a number of approaches have
been proposed: in [101] control variates (variance reduction) are exploited to
correct for the client-drift in its local updates; in [119] the client-drift is con-
trolled via additional layers of batch normalization (only in local models); the
key idea in [117] is to utilize the similarity between model representations to
correct the local training of individual parties, i.e., conducting contrastive learn-
ing in model-level; in [118] a regularization term is added to the loss used by
the clients forcing the model to be not too dissimilar to the global one; [210]
proposes a general theoretical framework that allows heterogeneous number of
local updates, non-IID local datasets as well as different local solvers such as
GD, SGD, SGD with proximal gradients, gradient tracking, adaptive learning
rates, momentum, etc..

Identified gaps. Federated Learning is mainly studied in the context of gra-
dient descent based optimization of the training parameters. Many interest-
ing models, ones that sports higher interpretability (e.g., decision trees), more
established ways of guaranteeing fairness (e.g., SVMs), and more efficiency in
learning and/or inference are, thus, not readily available for federation. In [161],
a novel approach based on using AdaBoost for building the federation has been
proposed, but the techniques presented therein are tailored for cross-silos feder-
ated learning and would not scale to cross-device FL due to high communication
costs. More communication-efficient algorithms would be highly welcome in this
space.

From a privacy stand point, FL alone is not sufficient to provide perfect
protection. Model inversion attacks [74], for instance, have been proposed that
allow the attacker to re-construct with high accuracy part of the datasets. Also,
from the high privacy requirement in FL excludes shared infrastructures for
model training, such as public cloud and HPC facilities, which creates new
challenges in the deployment of the necessary HW/SW infrastructure.

6 Trustworthy AI

The increasing availability of data and widespread high-performance computing
(HPC) have promoted the development of machine learning (ML) and artificial
intelligence (AI) models. Machine learning models, in fact, typically require
large amounts of data and computing resources for their training and optimiza-
tion. Thanks to HPC and big data technologies, researchers and practitioners
can more efficiently and effectively process, store, and analyze data and de-
ploy and develop ML models. However, as the use of AI models becomes more
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widespread, it is critical to assess and enforce their trustworthiness and relia-
bility. Trustworthy AI research aims to develop AI systems that are reliable,
ethical, and transparent, making AI trustworthy [113]. The critical requirements
of Trustworthy AI research are explainability and transparency, robustness, fair-
ness and diversity, and privacy. In the following, we introduce these notions,
describe current approaches for their assessment and enabling, and analyze the
gaps to address. We first focus on the first three requirement and then we focus
on the privacy one. We first address the first three requirements (Section 6.1)
and then focus on the privacy one (Sections 6.2).

6.1 Assessing and ensuring AI trustworthiness: explain-
ability, robustness, and fairness

Given the efficiency of high-performance computing (HPC) and the increasing
Big data availability, Artificial Intelligence (AI) models have increasingly higher
performances. The high performance allowed their widespread adoption in mul-
tiple domains, such as medicine, law, autonomous driving, and IoT solutions.
However, as AI models become increasingly pervasive, there is a growing con-
cern about their potential negative impacts. Trustworthy AI research addresses
these concerns [113]. As also highlighted by the independent High-Level Expert
Group on Artificial Intelligence (AI HLEG) established by the European Com-
mission, key requirements of Trustworthy AI are, among others, explainability
and transparency, robustness and fairness and diversity. In the following, we
describe current strategies to assess and enforce these requirements.

Explainability and transparency. One of the critical challenges in devel-
oping trustworthy AI is explainability. Explainable AI (XAI) refers to a set
of methodologies and techniques to enable human users to understand the out-
comes AI models. The task is to provide a clear and understandable explanation
of how a model arrived at a particular decision or recommendation. With ex-
plainability, users can understand why the model made a decision, allowing them
to decide if they trust it. However, most high-performing models are considered
black boxes, not allowing the direct interpretation of their results. XAI research
addresses these challenges by proposing post hoc explainability techniques that
explain black box models. We can categorize explainability methods by their
target, i.e., if they provide (i) global or (ii) local explanations of the model be-
havior [80]. Global explanations provide a global understanding of the model
behavior. A common approach is to convert a black-box model into a global
surrogate one that is directly interpretable [49]. Local explanations explain the
motivation behind individual predictions [152, 125, 172]. Moreover, recently re-
searchers addressed the problem from the (iii) subgroup perspective by analyzing
the behavior and performance of ML models in data subgroups [42, 154, 153].

Robustness. Another key aspect of trustworthy AI is robustness. Robustness
refers to the ability of an AI model to perform well under different conditions
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and in the face of potential adversarial attacks or input perturbations [113]. AI
models should be able to adapt to changing environments and circumstances.
A relevant line of research focuses on the robustness of AI at the data level.
AI models are increasingly adopted in diverse settings. They should be able
to adapt to diverse data domains and distributions. Evaluating an AI model’s
robustness is essential to avoid disparate behavior among the data and vulnera-
bilities and control risks. Several techniques have been proposed for robustness
test [113]. Specifically, these techniques focus on evaluating system performance
along various dimensions. Recently, novel approaches have been proposed to
identify data subgroups for which a model performs in an anomalous man-
ner [42, 177, 154, 153]. For example, the methods proposed in [177, 154, 153]
allow practitioners to identify the subgroups of the data for which a model
performs differently than overall data. Practitioners can understand for which
subgroups the model underperforms and take actions to improve the robustness
and reliability of the models.

Fairness. AI models can perpetuate or exacerbate existing biases and inequal-
ities in society. Hence, they must be designed and trained in a fair and unbiased
way. Fairness in AI addresses this task from multiple perspectives [133]. From
the data and training perspective, practitioners must ensure that the data used
to train the system is diverse and representative. Researchers have proposed
good practices for data construction and their use, such as data documenta-
tion and datasheets to report information on data creation, its characterization,
and motivation [17, 16, 73]. From the algorithmic perspective, novel techniques
have been proposed for designing algorithms that mitigate the risk of bias or
discrimination (e.g., [7, 8, 58]). Another line of research focuses on assessing the
fairness of ML models, proposing measures of fairness and bias and methods for
their assessment (e.g., [83, 208, 58, 107]).

Identified gaps. Despite the recent significant steps, several gaps still need
to be addressed to ensure the trustworthiness of AI. Specifically, we identified
the following gaps that we aim to fill.

The first gap is benchmarking explainability methods. Given the relevance
of explainability (XAI) in trustworthy AI, as outlined in Section 6.1, multi-
ple approaches have been proposed to explain model outcomes in a human-
understandable way. However, there is still a lack of easy access to using and
comparing XAI explanation methods. Specifically, it is relevant to assess the
quality of provided explanations, compared to their adherence to the model be-
havior and human reasoning. Benchmarking XAI approaches is also particularly
crucial in high-risk applications such as medicine and law and social-impactful
applications such as hate speech. We aim to propose novel frameworks and
methodologies to benchmark XAI approaches, evaluating them in such critical
applications.

The second gap is assessing and ensuring trustworthy AI in human-impactful
applications such as ranking systems and law. Big Data and HPC applications
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have enabled the adoption of ML models in these critical fields. Automated
ranking systems are increasingly adopted for a wide range of targets, from job
marketing to university applications. Ensuring these systems are reliable, ethi-
cal, and aligned with societal values is crucial. Similar considerations apply to
the legal domain, which, given the advances of AI, has increased the adoption
of ML decision-making support systems. We envision assessing and ensuring
AI trustworthiness in these application domains, proposing ad-hoc solutions
depending on the application context.

The third gap addresses the generalization of Trustworthy AI methodology
to unstructured and heterogenous data as speech. Multiple of the reviewed
existing techniques are specifically designed for structured (or tabular) data.
The recent advantages of HPC, machine learning research, and data availability
have widespread the adoption of ML models for other types of data as speech
data and multi-modality. We will study and propose techniques for this context.

6.2 Models for privacy assessment in internet data

From the dawn of the Web, behavioural advertising has been a pillar of the
ecosystem and entailed the collection of personal information through web track-
ing. Fueled by the easiness of collecting data on the Internet, behavioural ad-
vertising is built on the ability to collect and process a humongous amount of
data about Internet users. Most of the technologies behind the big data and
the machine learning revolution have been indeed designed to cope with the
need to collect, store and process the data that internet companies have at their
disposal.

This phenomenon has triggered debate and tension about data monetization
and end-user privacy. Several studies measured the spread data collection [134,
60] or dug into its technical operations put in place by the companies involved [5,
173, 150]. On the other side, the implications of web tracking on users’ privacy
have become more and more debated by the industry [65] and by the research
community [192, 130, 63]. In a nutshell, the so called web-trackers monitors and
collect information about each single user (identified by means of third-party
cookies) when they visit any website. This allows web-trackers to build the
list of websites and webpages each user visits, and from this to extract their
interests and build a single profile for each user [22]. Companies can the use
this information to provide personalized ads and content in general thanks to
the mechanisms of the real time bidding [226].

This fostered the birth of anti-tracking tools (i.e., the Ad and Tracker Block-
ers [165]), spurred the exploration of more user-friendly Personal Information
Management Systems (PIMS) [93], and encouraged the legislator to issue privacy-
related regulations, such as the US CCPA [27] or the European GDPR [64].

More recently, some technical solutions have appeared with the goal to bal-
ance and trade data collection and privacy. Among these, the Federated Learn-
ing of Cohorts (FLoC) has been the first public effort to go beyond the classical
web tracking based on third-party cookies [168]. Proposed by Google, in FLoC
users were grouped in cohorts according to the interests inferred by each one’s
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browser. When asking for information about a user visiting a website, third
parties were offered the user’s cohort, from which they could have information
about the user’s interests. In the intention of the proposal, FLoC provided an
acceptable utility for the advertisers, while hiding the user (and thus, her iden-
tity) behind a group of peers [62]. However, criticism arose around the easiness
for first- and third-party cookies to follow the user over time exploiting the se-
quence of cohorts to which she belongs to isolate and thus identify her [170]. The
attack can exploit browser fingerprint to further improve its effectiveness [18].
FLoC’s privacy anonymity properties can be broken in several ways [204]. As a
response to the critics towards FLoC, Google retired the proposal and conceived
the Topics API.

More recently, Google proposed the Topics API as a second proposal to
mitigate the data collection while still letting behavioural advertisement. Topics
API revolves around the concept of topics. Each item in a user’s browsing
history is mapped to a specific topic. In the current proposal, the user’s browser
keeps in memory the 5 most visited topics of the week, for the previous three
weeks. When the user visits a website served by an advertiser, the advertiser
can receive three topics from the user, one for each of the last three weeks,
chosen at random among the 5 in browser’s memory. In this way, the advertiser
can obtain some information about the user to show her the most appropriate
advertising. In a nutshell, Topics API expose users’ profiles in terms of topics
of interest to the websites and advertising platforms. Past works demonstrated
that profiling users based on their browsing activity can present severe risks to
the privacy of the users [63]. They can be identified with high probability based
on the sequence of visited websites [147, 86, 207]. Mitigation such as the browser
partitioned storage has been put in place to limit the risk, but ways to bypass
them exist [167]. Specifically to the Topics API, a re-identification threat has
already been identified by Epasto et al. [61] from Google. The authors carry out
an information theory analysis and conclude that the attack is hardly feasible.
Thomson et al. [200] from Mozilla have further elaborated on the conclusions
by Epasto et al. [61], again using analytical models, and raised severe concerns
on the offered privacy guarantees.

Given this scenario, we believe that studying and investigating new mech-
anisms for allowing users to control the information they share with online
services is a perfect candidate and use case for understanding how to trade user
privacy and utility of data, in a big data context, with cloud computing as the
key enabling infrastructure, where computational requirement can easily grow
very high.

Identified gaps. We identified some potential research gaps and open ques-
tions in the understanding of privacy and internet data:

• Balance between users’ privacy and data utility: What is the trade-off
between users data collection and processing and data utility? How to
measure this balance?
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• Understanding of privacy friendly proposals: How to validate the new
proposals and FLoC or Topics API? Which eventual privacy threat can
be identified? How to create analytical models that allow to gauge this
trade-off?

• Data privacy and ethical concerns: How can researchers ensure they are
not violating the privacy of internet users in their data collection and
analysis? How can they address ethical concerns related to studying user-
generated content?

• Real-time analysis: How can researchers perform real-time analysis of
internet data to collect and process data? What are the technical and
organizational challenges associated with this approach?

7 Social media data analysis

Social media (such as Facebook, LinkedIn, and Twitter) and instant messaging
applications (such as Telegram and Whatsapp) are major forums for people to
express their opinions and information, thanks to posts, groups and channels.
By interacting with such applications, users build complex networks that favor
the dissemination of information [9].

Social media analysis has advanced significantly in recent years, with a range
of techniques and tools available for data collection and analysis from various
social media platforms. Overall, the ability to collect and analyze social media
data at a large scale provides valuable insights across various aspects of society.

In terms of scalable data collection from social media platforms, one ap-
proach is to use Application Programming Interfaces (APIs) provided by plat-
forms like Twitter and Facebook to extract data [121]. However, some limita-
tions exist with these APIs, including limited access and restrictions on data
collection, making it challenging to collect data at a large scale. Another com-
mon approach to scalable data collection is to use web scraping techniques that
collect data directly from the publicly available web pages of social media plat-
forms [55]. Whereas this method presents some challenges, such as ethical and
legal considerations, it allows the researcher to collect large volumes of data.

Regarding the analysis of large amounts of collected social media data in a
scalable way, techniques have been developed for various social media platforms
such as Facebook, Twitter, and LinkedIn (e.g., [100, 206]). In recent years, the
development of graph databases and distributed systems has enabled researchers
to analyze large social media graphs efficiently [155, 78].

Several academic studies have explored various methods of analyzing social
media data, including network analysis [78], content analysis [187], sentiment
analysis [162], and machine learning techniques [12]. These methods have been
used in diverse fields, such as marketing [223, 19], politics [203], healthcare [114],
and cyber-security [180].
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Identified gaps. We identified some potential research gaps and open ques-
tions in scalable social media data collection and analysis:

• Quality control: How can researchers ensure the accuracy, completeness,
and validity of large-scale social media data sets? How can they avoid
biases in their data collection and analysis?

• Data privacy and ethical concerns: How can researchers ensure they are
not violating the privacy of social media users in their data collection
and analysis? How can they address ethical concerns related to studying
user-generated content?

• Machine learning and AI: How can researchers leverage machine learning
and AI algorithms to analyze social media data at scale? What are the
limitations and challenges associated with these approaches?

• Cross-platform analysis: How can researchers integrate data from multiple
social media platforms to gain a comprehensive understanding of user
behavior and influence across different networks?

• Real-time analysis: How can researchers perform real-time analysis of
social media data to capture events as they unfold? What are the technical
and organizational challenges associated with this approach?

8 Numerical Analysis

Kernel-based schemes are popular methods used in many applied fields, such as
scattered data interpolation, regression and Machine Learning. Their success
both in Approximation Theory [216] and Artificial Intelligence [181] is due to
the fact that they are meshfree and easy to implement in any dimension. For a
complete review on the topic, we refer the reader to e.g. [25, 66, 53].

8.1 Efficient numerical software for approximation in Big
Data

One of the main disadvantages of kernel-based interpolation schemes is that
the matrices generated by imposing the interpolation conditions, are typically
full and hence, their complexity cost is not affordable when a large number of
data is available. In this setting the so-called Partition of Unity (PU) method
is nowadays a well-established and efficient kernel-based interpolation scheme.
First introduced in the mid 1990s, the PU method produces a global approx-
imant by gluing together, via the use of compactly supported weights, many
local fits. In recent years, PUMs have been successfully combined with a mul-
titude of different computational methods. In particular in the approximation
with radial basis functions (RBFs), the combination of RBFs with PUMs yields
significantly sparser system matrices in collocation or interpolation problems,
and, therefore, a considerable speed-up of calculations. Such a scheme is also
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rather popular for researchers working on local collocation schemes for PDEs;
refer e.g. to [33, 109].

The PU method organizes the initial set of scattered data, that lay on a
multivariate domain, into several subdomains, also known as patches. Then, for
each of those patches it solves a small interpolation problem. A key step in its
implementation is thus the one of efficiently distributing the scattered data into
the different patches. For obtaining a fast and efficient algorithm, an effective
Matlab implementation of the PU scheme based on what was called the integer-
based routines was proposed [29, 32]. Motivated by the growing interest of the
kernel community towards Python packages for Machine Learning, a Python
implementation of the PU scheme was also developed, the codes are available
at https://github.com/sandro-lancellotti/PU.

Identified gaps When the local approximants in the PU scheme are radial
basis functions (RBFs), several parameters have to be considered: the shape
parameter in RBF, the number of patches and the radius of the subdomains in
PUM. As we will see in the following, an application of PUM to the interpola-
tion and classification of signals on graphs, has been considered and also in this
context the determination of optimal parameters plays a fundamental role. In
some previous papers the problem was considered from a deterministic point of
view, see for instance [35, 34]. Now the goal is to exploit cross validation and
likelihood estimation techniques in combination with strategies of univariate
global optimization with pessimistic or optimistic improvements. Moreover, we
will assume a statistical approach which can be useful also in Machine Learning
and Big Data, for example considering Bayesian Optimization of the hyperpa-
rameters. In particular, Bayesian Optimisation can be used to simultaneously
search the optimal values of the shape parameter and the radius in RBF in-
terpolation together with the PUM. Since the idea is to use the algorithms in
Machine Learning and Big Data applications, a parallel implementation is in
progress.

8.2 Approximation and classification software for signal
processing on large graphs

Very recently PUMs were combined with a local graph basis function (GBF)
approximation method in order to obtain low-cost global interpolation in an
efficient way on graphs. Graph signal processing is a cutting-edge research
field for the study of graph signals in which mathematical processing tools as
filtering, compression, noise removal,sampling, or decomposition methods are
investigated [157, 194]. Graph structures appear naturally in a multitude of
modern applications, as in social networks, traffic maps or biological networks.
In general, these networks exhibit a large number of vertices and a highly irreg-
ular edge structure. In order to be able to deal with signals on such irregular
graphs, efficient and fast processing tools are necessary. Many algorithms in
graph signal processing as, for instance, the calculation of the graph Fourier
transform get computationally infeasable if the size of the graph is too large or
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the topological structure of the network is not sparse. PUMs allow, in an efficient
way, to perform operations as signal reconstruction from samples,classification
of nodes, or signal filtering locally on smaller portions of the graph, and,then,
to rebuild the global signal from the local ones. This makes a PUM to an ideal
auxiliary tool also if more adaptivity is required and processing steps have to
be individualized to local spatial prerequisites on the graph. In fact, the split
and merge procedure leads generally to a considerably lower computational cost
than applying a signal processing scheme on a global scale.

In a previous paper [30], we investigated how a partition of unity can be gen-
erated efficiently on graphs and how a PUM can be combined with a local graph
basis function approximation in order to obtain a low-cost global interpolation or
approximation scheme. Then in [31] we presented the MATLAB package GBF-
PUM that was developed and implemented to test the new scheme. In particu-
lar, we describe how the functions of the package can be used to generate a par-
tition of unity on a graph and how signal approximation and interpolation with
GBFs are implemented and combined with PUMs. This software is free and can
be downloaded from the GitHub repository https://github.com/WolfgangErb/-
GBFPUM. It can be useful in Graph Machine Learning applications.

Identified gaps Future work consists in providing a more adaptive tech-
nique for the selection of the partitions on the graph than the one presented in
the previous papers. In particular, by using a process that automatically find
an optimal number of communities based on their modularity and on the under-
lying graph structure, we would not need the desired number of subgraphs as
an input for the GBF-PUM algorithm. Moreover, the scope is also to improve
efficiency and accuracy of the scheme, by then extending its use to very large
graphs and in a classification Machine Learning framework. This target will
be finalized to the production of open-source software usable by the scientific
community.

All the numerical experiments and tests are carried out on the infrastructure
for high performance computing MathHPC, virtual cloud server of the struc-
ture HPC4AI (High-Performance Computing for Artificial Intelligence) at the
University of Torino.

9 Trusted Distributed Workflows

Data management is a crucial aspect of scientific workflow orchestration. Non-
functional requirements like performance optimization, privacy preservation,
and security enforcement pass through a careful data management process.

Adopting the data locality principle, i.e., moving computation where the
data reside, is the strategy adopted by many modern programming paradigms
for Big Data analysis (e.g., MapReduce [52] and Resilient Distributed Datasets
[227]) and the foundation of the federated learning approach [131]. Avoiding
data transfers means removing related communication overhead and security
risks and guaranteeing data privacy and integrity without trusting third-party
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computational resources.
Nevertheless, in some cases, data transfers are worth or even unavoidable.

Modern deep neural networks, large-scale genomics, and high-fidelity digital
twins are all examples of computations that require computing power and com-
munication speed that only the largest High-Performance Computing centers
in the world can offer. However, they also need input datasets commonly gen-
erated, analyzed, and pre-processed elsewhere, from cloud resources to edge
devices. Also, directly uploading such data to a shared HPC resource is often
impossible, either because they are sensitive data protected by privacy rights or
because they constitute a strategic value for the data owner.

Therefore, an educated application of the privacy-by-design and security-by-
design principles is a fundamental requirement for scientific workflows. However,
leaving this responsibility entirely in the hands of the users is not an option, as
effectively dealing with security-related aspects is not trivial for domain experts
without a strong Computer Science background. A better approach is to move
security and privacy implementation at the workflow management system level,
requiring users to define trust perimeters and security levels in the information
flow [54, 88].

Developing portable solutions for end-to-end trust in distributed workflows
is a pivotal research field. One of the most critical aspects is to guarantee data
security and privacy at rest, i.e., when they are persisted in remote untrusted
storage, in a completely transparent way to the host application. A possible
strategy is to combine a secure key generation mechanism with a file system
encryption library.

The Laniakea workflow platform [197] uses the PBKDF2 key derivation func-
tion to generate a master key for each user automatically and stores it in a
Hashicorp® Vault2 instance. Each data volume is then encrypted using the
Linux Unified Key Setup (LUKS) library and a volume-specific encryption key
stored in Vault and bound to the user’s master key through a one-time authen-
tication token.

Secure HPC [145, 146] relies on asymmetric key pairs for integrity checks and
encryption, Vault as a key management system, and a combination of LUKS
and Singularity containers for data encryption. Plus, it uses advanced features
of the Intel® OmniPath to partition the compute nodes at the network level,
enforcing multi-tenancy.

The WfExS-backend [67] relies on Crypt4GH [185] to exchange the encryp-
tion key of a FUSE encrypted storage (EncFS3 or gocryptfs4). Using FUSE
enhances portability, as it does not require kernel-level support.

Identified gaps. All these approaches can protect data at rest from other
users of remote computing resources, but privileged users and infrastructure
administrators are always included in the trust perimeter. Indeed, all the data

2https://www.vaultproject.io/
3https://vgough.github.io/encfs/
4https://nuetzlich.net/gocryptfs/
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live in the process memory in unencrypted form during computation, allowing
privileged users to access private information.

Enabling zero-trust distributed workflows is the natural evolution of these
approaches. Secure enclaves and remote attestation mechanisms built on top
of them are promising approaches to end-to-end trusted workflows. They can
implement a fully protected key exchange mechanism for data encryption at rest
and prevent data disclosure during execution.

A direct interaction between application code and enclave APIs guarantees
the best performance vs security trade-off, as the enclave can protect only code
sections that deal with sensitive data. Still, this approach requires detailed
knowledge of the application’s information flow and the enclave’s internal de-
tails, increases complexity, and hinders the portability and maintainability of
the application code.

Library operating systems, such as Gramine [202] and Occlum [188], can ex-
ecute unmodified applications under complete enclave protection. Moreover, by
wrapping and checking system calls, they shield the application from additional
classes of attacks, such as Iago attacks [36]. Users must configure some enclave
parameters in an external, declarative manifest file. Still, a proper configura-
tion of these manifests is non-trivial for domain experts, and both security and
performance tend to be very sensitive to misconfigurations.

10 Stochastics Models

Stochastic models may become useful tools to support AI system development
and study. In particular they can play an important role in some industrial ap-
plications when the interest focus on optimal choices requested, for example, in
predictive maintenance or reliability problems. In this context, optimal stopping
methods give alternative approach with respect to the use of machine learning
or advanced statistical methods [ref]. Optimal stopping methods include all the
methodologies aiming to select the best time when to stop a procedure in order
to minimize a cost function. Often this implies to look for the time that mini-
mizes the probability of false alarm and the expected delay. Presently, optimal
stopping tools are available for specific stochastic processes such as, for example
Poisson process, Brownian motion, Bessel process. [ref].

Furthermore, in some instances reliability problems involve first passage time
problems. In such problems one looks for the first time in which the observed
process reaches a given level or the first time when the process exit from a strip.
Numerical and simulation tools are available in the case of one dimensional
stochastic processes [] such as diffusion or specific Levy processes. []

Another approach connected with first passage time and useful for reliability
make use of the inverse first passage time problem. Here one assume that the
process and the fist passage times are known and looks for the shape of the
boundary. Inverse first passage time methods have been used as an alternative
tool to classify observed data by comparing the boundaries corresponding to
different sets of data [].
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An important problem that arises for any modelling attempt consists in ac-
counting for dependencies between involved variables. The standard technique
is based on correlation analysis but it highlights linear dependencies between
variables. A useful tool in this context is given by copulas []. These are mul-
tivariate functions that allow to detect dependencies between random variables
separating the joint and the marginal behaviour.

Identified gaps. All the proposed techniques should be adapted to the spe-
cific instances of interest. In particular, industrial applications request the de-
velopment of stopping time methods for processes different from the theoretical
ones discussed in the recent mathematical literature. Approximations of real
processes to theoretical ones will be necessary. As far as first passage time
problems are concerned, there are open questions for processes of interest in re-
liability studies or for queuing modeling. In particular, the first passage time for
a Lindley process is not known (such process is a random walk, constrained to
be positive and characterized by jumps of continuous size, Laplace distributed).
Furthermore, exact algorithms for inverse first passage time should be devel-
oped for specific processes of applied interest. In presence of specific problems
suggested by applications a copula approach can be investigated adapting the
existing mathematics to the specific instances.

11 Gap analysis

Below we summarize the results of the background and gap analysis carried out
within Flagship 4.

Gap# Related area Gap description
Gap01 RISC-V TEEs limited TEE support in RISC-V

microcontroller-class systems
Gap02 RISC-V TEEs limited privilege management flexibility in

RISC-V microcontroller-class systems
Gap03 Accelerator TEE sup-

port
CPU-based TEEs unfit for HPC/big data

Gap04 Accelerator TEE sup-
port

no commercial solutions accelerator-based
TEEs

Gap05 Secure virtualization limited support for RPU virtualization
Gap06 Secure virtualization limited hypervisor misbehavior detection in

hardware-assisted virtualization
Gap07 Secure virtualization difficulty of test cases for tracing CPU vir-

tualization bugs
Gap08 Secure virtualization trade-offs between bug detection and isola-

tion properties
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Gap09 Federated Learning FL lacks approaches enabling the usage
of ML models that are impossible (or not
easy) to be trained without gradient de-
scent

Gap10 Federated Learning FL needs to be augmented with additional
tools for provide better privacy guarantees

Gap11 Federated Learning Privacy constraints prevent using standard
HW/SW platform as deployment target

Gap12 Trustworthy AI lack of AI explainability benchmarking
methods

Gap13 Trustworthy AI lack of trustworthy AI solutions for ranking
systems and law

Gap14 Trustworthy AI limited support for trustworthy AI with un-
structured and heterogenous data

Gap15 Trustworthy AI user privacy vs. data utility tradeoffs
Gap16 Trustworthy AI lack of analytical models for validating

trustworthy AI proposals
Gap17 Trustworthy AI ethical concerns in data collection
Gap18 Trustworthy AI limited real-time analysis support for inter-

net data
Gap19 Social media data

analysis
limited means to assess accuracy, complete-
ness, and validity of large-scale social me-
dia data sets

Gap20 Social media data
analysis

data privacy and ethical concerns for pri-
vacy violation in social media data collec-
tion and analysis

Gap21 Social media data
analysis

need to improved AI algorithms for analyz-
ing social media data at scale

Gap22 Social media data
analysis

need for ways of integrating cross-platform
data from multiple social media

Gap23 Social media data
analysis

lack of support for real-time analysis of so-
cial media data

Gap24 Numerical Analysis NA needs efficient numerical SW for ap-
proximation using hyperparameters tuning
in Big Data

Gap25 Numerical Analysis NA lacks software for approximation and
classification on large graphs

Gap26 Trusted Distributed
Workflows

need for zero-trust distributed workflows

Gap27 Trusted Distributed
Workflows

complexity, limited portability and main-
tainability of enclave-based application
code

Gap28 Stochastics Models gap and approximations between real pro-
cesses and theoretical processes
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Gap29 Stochastics Models need for exact algorithms for inverse first
passage time

Gap30 Stochastics Models first passage time for a Lindley process not
known

Table 2: Flagship 4 gap analysis.
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