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EXECUTIVE SUMMARY 
 
 
Flagship 4 aims to explore innovative technological solutions enabling multi-tenancy HPC/Cloud platforms 
with strong security and data privacy guarantees. As part of the activities in the flagship, documented in 
previous deliverable D4.FL4 Survey of state-of-the-art approaches and gap analysis, the participants have 
already identified the key areas of interest for the project, including RISC-V Trusted Execution Environments, 
accelerator (FPGA) oriented TEE support, secure virtualization, Federated Learning, trustworthy AI, social 
media data analysis, numerical analysis, trusted distributed workflows, and stochastics models. 
Aiming at the selection of candidate prototypes due at Month 8 as part of Milestone 5, we identified a range 
of key technologies and IPs that will provide the main building blocks for the prototypes developed in Flagship 
4, described in this deliverable. 
The selection of key technologies and IPs, in particular, has been driven by the gaps identified in D4.FL4, so 
as to provide effective answers to the open issues in the state of the art. The relevant gaps are also recalled in 
this deliverable to provide a starting point for the presentation of the key technologies explored in Flagship 4. 
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2Università degli Studi di Napoli Federico II, { acilardo, cotroneo,

luigi.desimone, roberto.pietrantuono }@unina.it
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1 Introduction

Flagship 4 aims to explore innovative technological solutions enabling multi-
tenancy HPC/Cloud platforms with strong security and data privacy guaran-
tees. As part of the previous activities in the flagship, documented in D4.FL4
Survey of state-of-the-art approaches and gap analysis, the participants iden-
tified the key areas of interest for the project, including RISC-V Trusted Ex-
ecution Environments, accelerator (FPGA) oriented TEE support, secure vir-
tualization, Federated Learning, trustworthy AI, social media data analysis,
numerical analysis, trusted distributed workflows, and stochastics models.

Furthermore, in the context of the activities herein reported, the partic-
ipants have identified a range of industrial players potentially benefiting from
the flagship results. Some of the large companies in the CN have expressed their
interest in the activities related to the flagship, involving resource optimization,
federated learning, fault recovery, and on-premise and on-cloud resource man-
agement, as well as hardware/software-level security primitives for trustworthy
computing, security algorithms and protocols for confidentiality and attestation.
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Aiming at the selection of candidate prototypes also due at Month 8 as part
of Milestone 5, we identified a range of key technologies and IPs that will provide
the main building blocks for the prototypes developed in Flagship 4, described
in this deliverable. The selection of key technologies and IPs, in particular, has
been driven by the gaps identified in D4.FL4, so as to provide effective answers
to the open issues in the state of the art. The relevant gaps are also recalled
below as a starting point for the presentation of the key technologies in the
flagship.

Gap# Related area Gap description

Gap01 RISC-V TEEs limited TEE support in RISC-V
microcontroller-class systems

Gap02 RISC-V TEEs limited privilege management flexibility in
RISC-V microcontroller-class systems

Gap03 Accelerator TEE sup-
port

CPU-based TEEs unfit for HPC/big data

Gap04 Accelerator TEE sup-
port

no commercial solutions accelerator-based
TEEs

Gap05 Secure virtualization limited support for RPU virtualization
Gap06 Secure virtualization limited hypervisor misbehavior detection in

hardware-assisted virtualization
Gap07 Secure virtualization difficulty of test cases for tracing CPU vir-

tualization bugs
Gap08 Secure virtualization trade-offs between bug detection and isola-

tion properties
Gap09 Federated Learning FL lacks approaches enabling the usage

of ML models that are impossible (or not
easy) to be trained without gradient de-
scent

Gap10 Federated Learning FL needs to be augmented with additional
tools for provide better privacy guarantees

Gap11 Federated Learning Privacy constraints prevent using standard
HW/SW platform as deployment target

Gap12 Trustworthy AI lack of AI explainability benchmarking
methods

Gap13 Trustworthy AI lack of trustworthy AI solutions for ranking
systems and law

Gap14 Trustworthy AI limited support for trustworthy AI with un-
structured and heterogenous data

Gap15 Trustworthy AI user privacy vs. data utility tradeoffs
Gap16 Trustworthy AI lack of analytical models for validating

trustworthy AI proposals
Gap17 Trustworthy AI ethical concerns in data collection
Gap18 Trustworthy AI limited real-time analysis support for inter-

net data

2



Gap19 Social media data
analysis

limited means to assess accuracy, complete-
ness, and validity of large-scale social me-
dia data sets

Gap20 Social media data
analysis

data privacy and ethical concerns for pri-
vacy violation in social media data collec-
tion and analysis

Gap21 Social media data
analysis

need to improved AI algorithms for analyz-
ing social media data at scale

Gap22 Social media data
analysis

need for ways of integrating cross-platform
data from multiple social media

Gap23 Social media data
analysis

lack of support for real-time analysis of so-
cial media data

Gap24 Numerical Analysis NA needs efficient numerical SW for ap-
proximation using hyperparameters tuning
in Big Data

Gap25 Numerical Analysis NA lacks software for approximation and
classification on large graphs

Gap26 Trusted Distributed
Workflows

need for zero-trust distributed workflows

Gap27 Trusted Distributed
Workflows

complexity, limited portability and main-
tainability of enclave-based application
code

Gap28 Stochastics Models gap and approximations between real pro-
cesses and theoretical processes

Gap29 Stochastics Models need for exact algorithms for inverse first
passage time

Gap30 Stochastics Models first passage time for a Lindley process not
known

Table 1: Gaps identified in D4.FL4.

2 RISC-V Trusted Execution Environments

To address the gaps identified in deliverable D4.FL4 with respect to low-end
RISC-V memory protection support, particularly Gap01 and Gap02, we aim
at developing architectures with built-in protection mechanisms which 1) en-
able shielding from physical attacks (e.g., bus tampering, peripheral attacks,
power analysis/side channels [19, 16]) and/or 2) allow new types of software
defenses based on dedicated hardware-level architectural extensions. Our activ-
ity in Flagship 4 will particularly address the latter opportunity, relying on the
non-proprietary RISC-V Instruction Set Architecture (ISA) specification and
its open-source hardware philosophy. In this specific branch of the activity, we
particularly target low- to medium-end systems used in deeply embedded indus-
trial applications, and hence we are interested in microcontroller-class RISC-V
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implementations. More specifically, we aim at introducing integrated defense
mechanisms serving as a baseline for establishing Trusted Execution Environ-
ments (TEEs), which are suitable for resource-constrained microcontroller-class
systems. TEEs are increasingly becoming a pillar in current security archi-
tectures, ranging from server-class facilities to embedded systems, with Intel
SGX and ARM TrustZone being the most prominent examples of proprietary
TEE solutions. They provide an isolated execution environment based upon the
paradigm of trusted computing. While a few TEE solutions exist in the technical
literature for application-class RISC-V implementations, such as Keystone [22]
or Sanctum [10], relying on protection [38] and isolation [21] mechanisms, we
pointed out that supporting a trusted environment in deeply embedded systems
based on microcontroller-class cores is particularly challenging, especially for
applications having some form of latency-sensitive requirements. In the project,
we will aim to identify a minimum set of hardware-level support mechanisms,
with limited assumptions on the available privileged modes and memory pro-
tection measures. The reference architecture will be demonstrated by extending
a lightweight RISC-V core, e.g. Ibex [25], then showing that full support for
isolation properties is achieved at a reasonable overhead in terms of additional
hardware resources and delay.

In particular, although existing solutions, such as the enhanced PMP unit [21],
enable isolation for User mode processes, these improvements are not enough to
support trusted execution in microcontroller-based systems lacking a Supervisor
Mode. Modern complex systems may need to run multiple privileged software
components (e.g. drivers, embedded Operating Systems, Real-Time Operating
Systems [44, 26, 5, 17]), which would all run in Machine mode. While locking
entries is effective for isolation, it reduces the System Software capability of
creating and deleting new PMP entries, preventing the dynamic management
of the trusted environment. In Flagship 4, we will address these limitations
by introducing new mechanisms allowing a more versatile Machine mode PMP
region management, while keeping the attack surface restrained.

2.1 Proposed RISC-V MCU-based TEE solution

Along this research line, Flagship 4 aims to identify minimal architectural ex-
tensions for effective yet flexible memory isolation which, unlike [22], are im-
plemented at the hardware level and suitable for microcontroller-class RISC-V
cores. We will first precisely formalize the notion of isolation and specialize it
for RISC-V processors, in order to provide a set of properties and requirements
that are needed for trusted execution environment support. By isolation we
refer to the capability of the system of segregating different software processes
to prevent them from accessing or interferng with resources that they do not
own, e.g. some part of a memory space, so that a breach in a software partition
will not break other partitions. This implies that violating a single partition
will not give access to the entire system, resulting in a reduced attack surface,
because in order to break the system an attacker has to tamper with a num-
ber of partitions N > 1, ideally the totality of system partitions. An additional
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property that is desirable in a flexible TEE, albeit not supported by PMP-based
isolation mechanisms, is the capability of dynamically manipulating system par-
titions. Based on the above discussion, in RISC-V we can describe the system
isolation state starting from the memory partitioning into regions, described by
means of the pmpcfgx-pmpaddrx register pair, which encodes the permissions
and the address space for each region. New memory regions allocated to privi-
leged and non-privileged software can be created and modified at any moment.
If a running process is capable of accessing control and status registers, then it
is capable of changing memory regions, thereby breaking isolation. But if such
a modification is legal, then the system will not reach an illegal isolation state
and the attack surface will not be increased. This translates into saying that
editing CSRs should not allow isolation property violation by means of system
provided mechanisms (e.g. PMP priority functionalities). Based on the state of
the art (bidirectional isolation between privileged processes and non-privileged
ones), in Flagship 4 we will introduce a set of requirements which must be satis-
fied in order to dynamically manage the isolation state, without decreasing the
level of security:

1. A super-privileged process (i.e. trusted System Software) must exist and
be capable of completely accessing system resources.

2. The super-privileged software is the only process capable of creating, delet-
ing, and editing any privileged and non-privileged memory region.

3. Any privileged process other than the super-privileged one cannot access
system resources and cannot create nor edit any memory region.

4. Bijective isolation between privileged and non-privileged software must
still hold, as well as between the super-privileged process and the privi-
leged ones.

5. If two memory regions overlap with each other, the super-privileged ones
take priority over the privileged ones.

6. The super-privileged software can grant some permissions over system
resources to privileged software, which can therefore access a subset of
system resources.

2.1.1 TEE architecture

For the prototype foreseen in this Flagship to address Gap01 and Gap02, as
identified in D4.FL4, we refer to a general architecture of a TEE-enabled sys-
tem, shown in Figure 1, enabling tight integration of the TEE into the processor.
In particular, for the benchmarking, we will refer to a RISC-V-based system and
the privileged modes available in a typical low-end microcontroller class device.
Unlike previous proposals, such as SMART [13] and TrustLite [20], the system’s
trusted anchor exposes functions –the RoT services– that are safely maintained
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into a physical module hardwired into the processor, called the Shielded Do-
main (SD). SD services and keys are stored in a private addressing space and
can be only accessed through special instructions, enhancing the RoT security.
The remaining chain of trust can be extended via software, attaching further
validated software modules in a layered fashion. The design allows software
libraries and applications to be isolated during their execution thanks to the
RISC-V native PMP mechanism. However, the RISC-V privilege levels nor-
mally available in a microcontroller, User and Machine modes, are not enough
to build fully-functional TEEs. Therefore, we assume that the PMP is ex-
tended, similar to the context extension proposed in [27], in order to create
privilege level orthogonal memory partitions called Trusted Domain (TD) and
Untrusted Domain (UD). A trusted privileged runtime, called Trusted Security
Monitor (TSM), is responsible for the management of UD applications, i.e. the
TEEs, for their communication and their interactions with the RoT, enabling
protected accesses to keys, ensuring TEE isolation, integrity, and confidential-
ity. Our reference architecture targets a wide spectrum of microcontrollers,
ranging from ultra-low-power devices with few kilobytes of memory up to high-
performance multi-core microcontrollers with hundreds of kilobytes. It is thus
crucial to identify the building blocks supporting a TEE, especially for very
resource-constrained microcontroller-class devices.

Figure 1: Reference architecture. Gray blocks denote the shielded domain, green
blocks denote the trusted domain, while yellow blocks denote the untrusted
domain.

Secure Boot (SB) is the process meant to ensure that the TSM only runs
after the execution of trusted software modules. Starting from the reset code
hardcoded into the SD ROM, the First Mutable Code (FMC), i.e. the first
software module to be run, must be validated. Its Manifest, signed with the
processor key called Unique Device Identifier (UDS), is read from a fixed mem-
ory region, usually flash memory, and the hashing of the software module is
performed and compared to the golden values stored into the SD. In case of a

6



match, a PMP entry is created for the FMC, and it is loaded into the address
specified in its manifest and finally executed. The FMC will support new RoT
services such as attestation and trusted storage. Similarly, after system periph-
eral initialization, the FMC may validate some new software modules. Once the
TSM is brought to execution, the SB is complete.

Remote Attestation (RA) involves an external party, called the verifier, will-
ing to verify a target device, the attester, using an attester-produced attesta-
tion report as a reference, in order to exchange information of various nature
(libraries, updates etc..). Such a report is derived from the attester measure-
ment (a hash of the attester’s running software and hardware configuration)
and signed with the hardware/software attestation key. Furthermore, the high
degree of interconnection among IoT devices and their behaviour as a swarm
suggested a new form of attestation, known as Collective Remote Attestation
(CRA) [1], used to prove the genuine state of an entire group, or swarm, of de-
vices. One of the most popular scheme is SEDA [4], which is based on a span-
ning tree structure used to propagate attestation requests/responses through
the swarm, triggered by the peer device in the tree root being queried by an
external verifier. The Flagship will also explore the integration of collective
attestation mechanisms into the proposed prototype architecture.

SB and CRA primitives inherently need cryptographic hash functions, while
authentication can in principle be performed based either on symmetric cryp-
tography or public key cryptography. Given the stringent resource constraints
and the relatively closed nature of a typical IoT application, making key setup/
distribution much less problematic than in a generic Internet application, we as-
sume here that TEE primitives only use symmetric cryptography. Nevertheless,
the current state of the art offers a wealth of hash and symmetric encryption
algorithms, with a variety of implications on implementation efficiency.

3 Accelerator oriented TEE support

As highlighted in Deliverable D4.FL4, the joint problem of performance and pri-
vacy requirements in HPC environments poses a perspective that is fundamen-
tally ignored in the current technological landscape, when application-specific
acceleration is provided, e.g. based on GPU or FPGA accelerators. The key
problems are that CPU-based Trusted Execution Environments do not directly
fit the requirements of large-scale big data and HPC applications (Gap03),
while special-purpose acceleration based on commercial GPU and FPGA de-
vices do not currently provide any consistent notion of TEE for user appli-
cations (Gap04). As one of its key contributions, the PNRR CN1 Spoke 1
Flagship 4 activity will introduce a novel trusted computing paradigm for accel-
erated HPC/big data, demonstrated on a customized platform enclosed within
the physical perimeter of a hardware-reconfigurable accelerator. Such a solu-
tion will jointly address Gap03 and Gap04. In fact, hardware reconfigurability
will enable the coexistence of accelerated HPC algorithms and hardware-boosted
privacy-preserving computing solutions, featuring different cryptographic mech-
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anisms to be used for different levels of complexity of the HPC user tasks. The
solution will introduce a range of new technologies, algorithms, and protocols
which will

• create a notion of trusted computing in special-purpose compute plat-
forms, particularly FPGA-based acceleration devices (used both as the
final acceleration technology and as a prototyping platform);

• support hardware-boosted cryptographic solutions for privacy-preserving
computing, targeting specific tasks where homomorphic encryption and
garbled circuits are a good fit;

• fully preserve the potential performance of dedicated FPGA acceleration
in complex HPC and big data tasks, adopting an SGX-like approach ex-
tended to the FPGA domain;

• ensure the smallest possible trusted compute base, fundamentally limited
to the acceleration cards, which can be installed in any place, including
remote servers with untrusted Operating Systems and system administra-
tors, while still providing privacy-preserving guarantees;

• ultimately, enable federated architectures based on accelerated comput-
ing services, which will promote open, privacy-aware data sharing and
processing.

As such, the proposed solution will allow moving from centralized settings
towards fully privacy-aware federated architectures, promoting secure data ex-
change, data ownership and access right tracking, along with high-performance
computing services.

3.1 Prototype

The project will release a fully operational environment for privacy-sensitive
accelerated HPC/big data application, also relying on the outcome of previous
research projects, particularly a H2020 project in the area of High-Performance
Computing (H2020-FETHPC MANGO project ID 671668, where one of the
authors of this deliverable served as part of the core research group and leader
of WP3 dealing with compute node technologies), then extended in the H2020-
FETHPC RECIPE project ID 801137 with high-bandwidth interconnect sup-
port. The outcome from previous projects will include access to cutting-edge
high-performance computing technologies and guarantee the technical feasibil-
ity of the ambitious research plan described here. In particular, the prototypical
platform, shown below, features multiple datacenter-grade FPGA acceleration
cards (namely, Xilinx U280 and U250 Alveo cards), hosted by a dedicated PCIe
backplane enabling peer-to-peer data communication, directly connected to an
InfiniBand network adapter based on 200Gb/s HDR communication standard.
An illustrative representation is depicted in the figure below.
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Figure 2: High-level view of the prototypical TEE-enabled accelerated system
explored in Flagship 4.

This setup will be representative of cutting-edge FPGA-based compute tech-
nologies, but also ultra high-bandwidth inter-node interconnects, which will be
key for HPC applications where often multi-terabyte datasets need to be trans-
ferred and accessed for data analysis. Hence, augmented with privacy-preserving
acceleration support, this prototype will serve as an excellent showcase for the
solution explored here, suitable for two types of deployment in real settings:

• on-premise machines, where researchers or institutions directly acquire
and own privacy-enabled acceleration nodes for deployment in local in-
frastructures, and

• cloud-based access, fully compliant with the federated approach envisioned
by the project and inherently relying on its privacy-preserving trusted
acceleration environment.

4 Secure virtualization

Hardware-assisted virtualization takes advantage of CPU virtualization tech-
nologies (e.g., Intel VT-x [29], AMD-V [2], ARM VHE [12]) to implement full
virtualization, i.e., emulating a complete machine to run unmodified guests.
These hardware extensions introduce a novel (and higher) level of privilege for
the hypervisor. This way, developers can implement virtual CPU (vCPU) ab-
stractions that can run a guest OS at a lower level of privilege compared to the
hypervisor. If the guest OS needs to execute a sensitive instruction (e.g., page
table update, interrupt handling, etc.), the execution traps, and the control is
passed to the hypervisor. The switch from the guest OS to the hypervisor is
called VM exit. A VM exit also involves a change in the privilege level, from the
VM to the hypervisor’s most privileged mode. This passage, however, can put
isolation at risk [32, 31, 30], possibly leading to hypervisor crashes (together with
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all running VMs) or denial of service issues (hangs, low responsiveness, etc.).
Uncovering such isolation issues is a major concern and a compelling open chal-
lenge to foster the adoption of hypervisors in critical industrial domains. This
is especially true for hardware-assisted virtualization, as the search for isolation
issues should include all the possible VM states reached by an extremely high
number of combinations of CPU instructions.

In hardware-assisted virtualization architectures, the hypervisor code is mainly
run when VM exits occur. Virtualization bugs can be discovered by hardening
such parts of the hypervisor source code. Identified gaps (see Deliverable 4: Sur-
vey of state-of-the-art approaches and gap analysis, Section 4.6)) include a non-
negligible effort to apply security assessment techniques to hardware-assisted
virtualization solutions.

For example, existing hypervisor fuzzing solutions fall short when targeting
hardware-assisted virtualization, since they i) mostly target I/O virtualization
[39, 28, 18, 33, 7], starting from the same VM state, thus leaving behind the
vCPU abstraction, which is the core of hardware-assisted hypervisors; ii) face
serious issues related to seed generation (build valid VM states to start the
fuzzing [14, 43], generation of valid seeds to be corrupted to accelerate the
fuzzing, which may require the use of an ad-hoc OS within VM [39, 40] or
construct seeds [3, 43, 14, 15]); iii) require a deep knowledge of the underlying
hardware (i.e., the knowledge of an operating system), trying to reach valid VM
states from a dumb sequence of inputs, which lead to incurring in several crashes
of the test VM [45], which then requires resetting the test, with a non-negligible
impact on the testing time efficiency.

To overcome the above limitations, including Gap05 identified in D4.FL4,
in Flagship 4 we will address these limitations by proposing a new framework
to record (learn) sequences of inputs (i.e., VM seeds) from the real guest execu-
tion (e.g., OS boot), replay them as-is to reach valid and complex VM states.
Such a record and replay mechanism can be used in different security assess-
ment techniques for hardware-assisted virtualization, such as fuzzing (use the
replay mechanism to submit mutated valid VM seeds) and runtime verifica-
tion/monitoring (detect hypervisor misbehavior according to recorded normal
behaviors).

4.1 Proposed architecture

The record and replay framework we propose allows to easily record (learn)
complex VM scenarios, by executing guests; further, the replay mechanism al-
lows submitting recorded VM behaviors as a train of recorded VM exits, with
no need to execute guest workloads. The main challenges to be addressed are
in the following:

1. Automatic VM seed generation: reduce the manual effort in VM
seed generation, to minimize the required knowledge to develop security
assessment techniques such as fuzzing and runtime verification/monitoring
for hardware-assisted hypervisors;
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2. Accurate VM seeds generation: generate VM seeds that are accurate
in reproducing the real VM behaviors;

3. Efficient submission of VM seeds: submit VM seeds in a lightweight
fashion, without requiring specific VM guest workload to be executed.

Figure 3 depicts a sketch of the high-level architecture of the proposal. The
VM behavior is a sequence VM exit trace = {VMexit1, ..., V MexitN} that
is the flow of VM exits triggered by a workload to reach a valid VM state. The
VM seed includes the pairs of VMCS {field, value} read via VMREAD instruc-
tions, and the values of general-purpose registers (GPR), both obtained during
the handling of a VM exit within the VM exit trace. The recording component
aims to collect a set of information observed while executing the VM, i.e., the
VM behavior. The replaying component allows submitting recorded or manu-
ally built VM seeds to the hypervisor. The manager, exposes an interface that
can be used by a user-space application (CLI) to (i) choosing between operation
modes, i.e., record and replay ; (ii) retrieve VM seeds and metrics during the
record mode; iii) submitting VM seeds during the replay mode. Such a solution
will jointly address Gap06, Gap07, and Gap08.

Hypervisor

test VM dummy VM

Record

GPR
VMCS VM seedi

VM ENTRYVM EXIT

Replay

CLI

VM seed
DB

submit
retrieve

GPR

VM Exit handler

VMCS

Manager
VM ENTRYVM EXIT

VM seedj

Figure 3: Overview of framework design

4.2 MPSoCs virtualization

The use of modern MPSoCs to build virtualized cyber-physical systems with
differentiated criticality levels on the same board is not an easy task. The
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configuration phase for each technological stack as well as the isolation and
the interconnection between the virtual environments requires a strong effort
and specialized expertise. This is especially true when the system must be
integrated into critical environments such as the automotive, railway, or avionics
where safety, security and real-time requirements have to be fulfilled. In these
circumstances, over-provisioning is frequently the solution: each board is used
to run a single application. Nevertheless, this approach has the disadvantage of
preventing migration, integration of new features, and code portability limiting
non-functional requirements necessary for the fog computing paradigm such
as scalability, agility, reconfigurability, and workload consolidation, as well as
obviously increasing the total cost for the implementation of the system.

To overcome these limitations, we propose a framework that extends the
traditional hypervisor concept: the Omnivisor. It provides the ability to run
virtual environments in isolation with different requirements, from strict tem-
poral predictability to high performance, making full use of existing asymmetric
processors, accelerators, and re-programmable hardware (see Fig.4). Each VM
can run on different processors and can share a resource or take full ownership of
it according to its criticality and needs. Code with hard real-time requirements
can run over RPUs while code that needs higher performance can run over
APUs using accelerators such as the GPU. This is feasible only if the Omnivisor
has full control of the resources and implements the security mechanism that
can guarantee temporal and spatial isolation of the virtual environments. The
implementation of the Ominvisor concept can benefit from the recent advances
on CPU, memory, and I/O virtualization. However, despite the availability of
these technological advancements, there is still a lack of solutions to virtualize
the asymmetric processors on board, namely the RPU virtualization.

To realize a dependable solution for RPU’s virtualization, the following re-
quirements need to realized:

• Multi-Tenancy Abstraction: The hypervisor must abstract the RPUs to
more than one VM, making the latter believe to be the only one using it.

• Deterministic Communication Technologies: The current Asymmetric Multi-
Processing (AMP) communication technologies (adopted for inter-processor
communication in MPSoCs) must be improved to realize deterministic and
secure applications with strict temporal constraints.

• Isolation Methodologies : The hypervisor have to manage parallel com-
munication channels ensuring isolation for security and assure a certain
amount of communication bandwidth to each channel (useful for timing
analysis and incremental development and certification).
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Figure 4: Omnivisor Design.

5 Federated Learning

5.1 Federated Learning without Gradient Descent

Most FL algorithms are currently based on some form of gradient descent op-
timization of the model parameters. While this approach is well suited for the
FL setting, it makes it difficult to develop systems where traditional ML algo-
rithms (e.g., SVMs, decision trees, K-NN, etc.) would be preferred over neural
networks and other gradient-based approaches. A first attempt to overcome
this problem has been presented in [36], where techniques based on distributed
versions of AdaBoost have been tailored to the FL setting.

While the approach looks promising, the algorithms have been developed
under the assumption of being in a horizontal and cross-silo FL setting. The
authors, in fact, assume that the number of entities participating in the feder-
ation is low, that they are always available, and that they are well connected.
Also, the proposed algorithms cannot work in a vertical FL setting.

The resulting algorithms make heavy usage of communication resources and
cannot scale to settings where the number of clients is high. These problems do
not appear, however, unsurmountable. To address the gaps identified in D4.FL4,
particularly Gap09, it would be very interesting to extend these algorithms to
cope with cases that are more challenging from the point of view of the client
availability and of the constraints on the communication costs.

5.2 Secure Federated Learning

In the traditional FL setting, data cannot be moved from their original loca-
tion due to privacy concerns. This requirement excludes shared infrastructures
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for model training, such as public cloud and HPC facilities. However, these
architectures’ computing power and communication speed are fundamental for
training modern large-scale deep networks [6, 37]. Trusted execution environ-
ments are a potential solution to this issue. As long as privacy and integrity are
preserved throughout the training process, nothing prevents data from being
moved to remote locations.

Implementing end-to-end secure FL processes is non-trivial, as it requires
a careful application of the security-by-design principle to all the steps of the
learning pipeline, such that unencrypted data should never leave the perimeter
of the secure enclave. Moreover, the aggregation plane should rely on resistant
aggregation functions to avoid attacks, such as model poisoning and byzan-
tine agreements [24]. Besides increasing implementation complexity, these tech-
niques add overhead to a training process’s computation and communication
phases, hindering performance.

The first research step is to measure such overhead, comparing it with the
benefits of high-end hardware technologies provided by cloud and HPC systems.
The second step is to find generic methodologies to predict the extent of the
overhead starting from a coarse-grain characterization of the training process,
e.g., the model size, the amount of data to protect, and the difference in com-
puting power between local and remote resources.

The natural culmination of this process consists of developing a configurable
FL framework that can guide users in tweaking the security vs performance
trade-off according to the level of trust of different portions of the federated
infrastructure and the time constraints for the overall training process.

5.3 Resisting to privacy attacks

In addition to the above considerations, one would also need to cope with pos-
sible privacy attacks by entities participating in the federation. Model inver-
sion attacks, for instance, exploit the exchange of gradient information between
rounds of the FedSGD algorithm to reconstruct examples from other clients’
datasets. A number of techniques can be deployed to overcome these problems:
secure multiparty computation, differential privacy, homomorphic encryption,
or methods that do not share the entire model (e.g., split learning) appear to
be good candidates for counteracting these attacks. Unfortunately, all these
methods have problems. Multi-party computation requires additional commu-
nication. Differential privacy risks to affect the federated model performances
too heavily. Homomorphic encryption is computationally very demanding. Not
sharing the entire model is less studied, but split learning-based methods are
very costly from the communication point of view. A candidate solution to ad-
dress Gap10 and Gap11 may try to share with the aggregator only the layers
nearer to the output and some technique to force the embedding layers (kept
local to the clients) to converge to a common solution without requiring to share
any data.
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6 Trustworthy AI

6.1 Assessing and ensuring AI trustworthiness: explain-
ability, robustness, and fairness

The Big data availability and the widespread high-performance computing (HPC)
have promoted the development of machine learning (ML) and artificial intel-
ligence (AI) models. However, as AI models become increasingly pervasive,
assessing and enforcing their trustworthiness and reliability is critical. Trust-
worthy AI research aims to develop AI systems that are explainable, robust, and
fair, making AI trustworthy [23]. Despite the recent progress, several gaps still
need to be addressed to ensure trustworthy AI models. We envision contributing
to this aim via the following efforts.

Benchmarking explainability. Explainable AI (XAI) indicates the set of
techniques to enable human users to understand the outcomes of ML models.
Explainability is a crucial requirement of trustworthy AI. Therefore, multiple
research efforts have proposed XAI explanation methods for model understand-
ing. However, there is still a lack of easy access to using and comparing XAI
explanation methods. There is a need to assess the quality of explanations
generated by XAI. Specifically, we should compare explanations with respect
to their adherence to the model behavior and human reasoning. To effectively
address Gap12, we are working on an open-source library called ferret. ferret is
a framework that simplifies the use and comparisons of XAI methods. We pro-
posed it in the context of Natural Language Processing (NLP). Benchmarking
XAI approaches is crucial in high-risk and impactful applications such as auto-
mated legal document processing and hate speech detection. We will benchmark
and evaluate XAI approaches in such critical applications, proposing ad-hoc so-
lutions for each domain.

Trustworthy AI in multiple application domains and for multiple data types.
Big Data and HPC applications have enabled the adoption of ML models in
critical fields such as ranking systems and law. Ensuring these systems are reli-
able, ethical, and aligned with societal values is crucial. We envision assessing
and ensuring AI trustworthiness in critical application domains, proposing ad-
hoc solutions depending on the application context. Moreover, ML applications
consider various types of data, from structured to unstructured data as images,
text, and speech. However, existing trustworthy AI techniques are often de-
signed to address specific data types. Hence, as a strategy to address Gap13
and Gap14, we plan to generalize trustworthy methods for various data types
and application domains. Among the existing techniques, we first target to ad-
dress the problem of identifying data subgroups with anomalous behavior in the
data [8, 35, 34]. Identifying these subgroups plays an important role in assessing
three key requirements of trustworthy AI: fairness, robustness, and explainabil-
ity. DivExplorer [34] is an anomalous subgroup identification technique we
recently proposed. The proposed algorithm is based on effectively integrating
frequent pattern mining algorithms to identify subgroups with peculiar behav-
ior. Moreover, the approach leverages game-theory notions to allow for the
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understanding of the model behavior among subgroups. However, it is specifi-
cally designed only for structured data and extensively applied for classification
tasks. We will work on novel methodologies to enable the study of the behavior
for multiple tasks, application domains, and different data types as speech data.

6.2 Models and tools for privacy assessment in internet
data

Users’ data has fuelled the growth of the current economic ecosystem in the
Internet. Online advertising and marketing have driven developments in this
space, transforming a decades-old industry and creating some of the biggest
businesses (and in a few cases, controversies) of our time. In fact, the online
advertising industry is breaking records year after year, both in terms of growth
and overall value.

In some aspects, this economy is primitive: the source of value – or raw
material – are the users, and they have no choice but to give away their goods
(data) to a very few companies against whom they have no bargaining power.
In exchange for their goods, users receive a range of services, some of which
are now essential to everyone’s digital life: web search, connecting with other
people, shopping, etc.

This system creates tension between the utility of data and the privacy of
those users to which such data belong. We aim to propose new solutions to
find a more balanced trade-off in which the privacy needs of the users are not
subordinate to their data’s economic value, but rather constitute a fundamental
line not to cross.

To design better solutions for privacy-preserving advertisements on the Web,
we cannot overlook a better understanding of this fragmented and ever-evolving
field. Hence, to address Gap15, Gap16, Gap17, and Gap18, we aim to closely
scrutinise solutions proposed by the industry, which have to be discussed in a
dialectic approach with privacy-advocating and academic parties, in particular
focusing on the study and understanding of the new proposals like the FLoC
and the Topics API that are designed to balance the end-user privacy and the
data utility for the online advertising companies. We will propose models to
easily gauge the impact of the privacy-preserving approaches and validate their
design with actual data collected from end-users.

7 Social media data analysis

Social media analysis has advanced significantly in recent years, with a range
of techniques and tools available for data collection and analysis from various
social media platforms. Overall, the ability to collect and analyze social media
data at a large scale provides valuable insights across various aspects of soci-
ety. However, we identified some potential research gaps and open questions in
scalable social media data collection and analysis. In summary: quality con-
trol, data privacy and ethical concerns, machine learning and AI, cross-platform
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analysis and real/time analysis (Gap19, Gap20, Gap21, Gap22, Gap23).
To address the above listed gaps, we aim to closely investigate part of the

previous questions and answer them, focusing on the important scalability issues
and their relation with HPC and Big Data infrastructure and software for data
collection, storage, and processing. Some of the techniques that will be involved
will relate to graph data modelling and analysis, followed by recent ML algo-
rithm designed for networks, such as GNN and temporal GNN. Particular effort
will be devoted to the study of different sources of information, including instant
messaging platform, such as Telegram groups. Finally, the developed techniques
will help to shed light on these complex ecosystems, discover interesting pat-
terns (e.g., polarization) and highlight possible misuse, from cybersecurity (e.g.,
phishing) to misinformation.

8 Numerical Analysis

8.1 A fast, accurate and stable numerical open-source soft-
ware for approximation using hyperparameters tuning

Several parameters have to be chosen in meshfree approximation: the shape
parameter in the radial kernel, the number of patches and the radius of the
subdomains in a local approach. An application of approximation to the inter-
polation and classification of signals on graphs, has been considered and also in
this context the determination of optimal parameters plays a fundamental role.
From a deterministic point of view, the target is to exploit cross validation and
likelihood estimation techniques in combination with strategies of univariate
global optimization with pessimistic or optimistic improvements and to design
fast and stable algorithms. Moreover, to address Gap24, we will assume also a
statistical approach which can be useful also in Machine Learning and Big Data,
for example considering Bayesian Optimization of the hyperparameters. In par-
ticular, Bayesian Optimisation can be used to simultaneously search the optimal
values of the shape parameter and the radius in RBF interpolation together with
the Partition of Unity Method. Also in this case we need to implement efficient
algorithms. The algorithms will be translated in Matlab/Python so creating a
fast, accurate and stable numerical software package useful in applications to
Machine Learning and Big Data.

8.2 A software package for interpolation and classification
on large graphs and networks

Communities detection is an edge-cutting topic in graph theory, indeed different
approaches may be used. In that respect, to address Gap25, we have in mind
to construct a method with a divisive technique where the centrality of the in-
terpolation nodes is the main criterion for splitting. In particular, we would use
a procedure allowing overlapping among communities. Our iterative algorithm
will repeat the following steps until some conditions on the presence of interpo-
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lation nodes and modularity are satisfied. In detail, in the splitting process we
find the two interpolation nodes with the highest Katz centrality in each com-
munity, if they exist, and divide the community into two sub-components, each
one containing one of the samples. When the splitting process terminates, the
small communities containing less than 2% of vertices are merged with the most
similar big community, according to the Jaccard index. Finally, the overlapping
expansion is performed for each community, where the more edges a community
shares with the others, the more it is augmented. This target will be finalized
to the production of open-source software in Matlab and Python usable by the
scientific community.

8.3 Parallel software for data approximation and signal
processing on graphs

Since the idea is to use the algorithms in Machine Learning and Big Data
applications, a parallel implementation will be obtained. All the numerical
experiments and tests will be carried out on the infrastructure for high per-
formance computing MathHPC, virtual cloud server of the structure HPC4AI
(High-Performance Computing for Artificial Intelligence) at the University of
Torino.

9 Trusted Distributed Workflows

A zero-trust approach to distributed workflow orchestration would be a game
changer for a broad class of research fields, enabling end-to-end trusted exper-
iments at the HPC scale. Secure enclaves and their remote attestation mech-
anisms can guarantee the privacy and integrity of remote computations. The
library operating system (libOS) abstraction allows running unmodified appli-
cations under complete enclave protection.

Configuring security and privacy aspects of a distributed workflow execution
at the coordination level is crucial for portability. Currently, libOSes enclave
interfaces like Gramine [42] and Occlum [41] require users to configure declara-
tive manifest files with enclave parameters, e.g., memory size or the maximum
number of threads, and a list of trusted files that should be checked for integrity
and executed.

This approach has two main drawbacks. First, the manifest format varies
from one libOS to another, hindering portability and reproducibility. Second,
properly configuring a libOS manifest is non-trivial for domain experts, as it
requires a deep knowledge of the libOS implementation and the enclave archi-
tecture. Even worse, both security and performance tend to be very sensitive
to misconfigurations.

Integrating the capability to express high-level security requirements directly
in a vendor-agnostic workflow coordination language can solve both issues, mov-
ing the responsibility of generating libOS manifests with proper configurations
to the workflow management system. However, to properly address Gap26 and
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Gap27, it is necessary to devise a general methodology to infer manifest pa-
rameters from the workflow description and the target execution environment,
which is a challenging task.

The StreamFlow workflow management system [9] is a perfect laboratory
to experiment with libOSes integration for secure distributed workflows. It can
orchestrate hybrid workflows, where each step can be mapped onto a different
execution location (e.g., a cloud environment or an HPC facility). Such locations
can be heterogeneous and independent of each other and may or may not share
a single file system. In the latter case, StreamFlow automatically manages data
movements. Plus, several aspects of workflow orchestration, such as scheduling,
data transfers, fault tolerance, and task offloading, can be extended using the
StreamFlow plugin system.

StreamFlow relies on the Common Workflow Language (CWL) open stan-
dard [11], a vendor-agnostic declarative coordination language based on the data
flow programming model. An existing CWL extension allows marking a set of
inputs as Secrets, denoting sensitive data. If a step has at least one input
marked as secret, StreamFlow automatically wraps it into a Gramine libOS and
executes it using the Intel® SGX enclave.

At runtime, remote attestation is used to exchange encryption keys through
an end-to-end secure channel between the StreamFlow control plane and the
encrypted memory of the enclave. Input data are encrypted, moved to the
remote location, and decrypted directly inside the enclave. Output data are
encrypted in the enclave before being transferred back to the user.
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