

SPOKE 1
FUTURE HPC & BIG DATA

FLAGSHIP 5:
Survey of State-of-the-art

Codesign - application + SW + HW
targeting, benchmarking, patterns,

microkernels

 2

EXECUTIVE SUMMARY

The main goal of flagship 5 is the design, modeling and simulation of heterogeneous
accelerators for HPC-cloud systems and edge servers. This goal is planned to be achieved
through different objectives. The first objective is related to benchmarking of accelerators,
software optimization in heterogeneous architectures, microarchitecture efficiency,
performance analysis and portability and profiling of HPC codes. The second objective
consists of the selection of mini-applications and benchmarking from multiple domains, such
as: AI/ML, Big Data, fluid dynamics, multi-scale simulations, data analysis for
astrophysics, N-body dynamics, social media network analysis, graph analytics multi-
particle, long-range interacting systems; computational geometry; light-matter interaction,
low dimensionality systems, quantum materials, numerical analysis, etc.). Algorithmic
prototyping, and algorithmic co-design: simulation, modeling, optimization. Finally, the third
objective is related with codesign HW Development and exploitation of next generation of
HPC systems: VLSI and FPGA-based architectures; CPUGPU algorithms, VLSI and FPGA-
based architectures; data-driven parallelism, data affinity and data locality, streaming
computation.

Flagship 5 is carried out by the following units: UNICT(Leader); UNIBO, UNITO, UNIPI,
UNIPD, ROMA-TOV, UNINA, PoliMI, UNICAL, INAF, CINECA, ENEA, IIT, UNIFE.

In this report we provide a survey of state-of-the-art approaches and gap analysis of mini-
application, benchmarks, and accelerated applications (Section 1). In Section 2 we
summarize the cooperation between the different units and with external research groups.
A reference list is provided in Section 3.

For subsections with one subindex, namely Section 1.x, we listed at the end of the title the
units involved in that specific research. The units are not repeated for subsections involving
more than one subindex, such as Section 1.x.y.

 4

Contributors:

Sebastiano Battiato, Sebastiano Boscarino, Armando Coco, Patrizia Daniele, Orazio
Muscato, Giovanni Nastasi, Alessandro Ortis, Corrado Santoro, Vittorio Romano, Giovanni
Russo, Laura Rosa Maria Scrimali, Università di Catania (UNICT)

Giulio Malenza, Marco Aldinucci, Marco Beccuti, Simone Pernice, Università di Torino
(UNITO)

Fabio Durastante, Luca Gemignani, Beatrice Meini, Università di Pisa (UNIPI)

Daniele Bertaccini, Gianfranco Bocchinfuso, Andrea Clementi, Salvatore Filippone, Ugo
Locatelli, Francesco Quaglia, Roberto Verzicco, Università di Tor Vergata (UNITOV)

Donato D’Ambrosio, William Spataro, Università di Cagliari (UNICAL)

Carlo de Falco, Aldo Ghisi, Politecnico di Milano (POLIMI)

Giulia Bertaglia, Walter Boscheri, Giacomo Dimarco, Cristiano Guidorzi, Elisa Iacomini,
Fabio Schifano, Lorenzo Pareschi, Luca Tomassetti, Università di Ferrara (UNIFE)

Alberto Aloisio, Giovanni De Lellis, Guido Russo, Università di Napoli (UNINA)

Walter Rocchia, Sergio Decherchi, Cristian Ciracì, Pietro Vidossich, Massimiliano Pontil,
Istituto Italiano di Tecnologia (IIT)

Eva Sciacca, Nicola Tuccari, Luca Tornatore, Vincenzo Antonuccio, Alessandro Costa, Gian
Luigi Granato, Giuseppe Murante, Alberto Vecchiato, Valentina Cesare, Claudio Zanni.
Istituto Nazionale di Astrofisica (INAF)

Gianfranco Bilardi, Carlo Fantozzi, Carlo Janna, Leonardo Pellegrina, Andrea Alberto
Pietracaprina, Geppino Pucci, Michele Scquizzato, Francesco Silvestri, Fabio Vandin,
Università di Padova (UNIPD)

 5

Section 1. Survey of state-of-the-art approaches and gap analysis of mini-application,
benchmarks, and accelerated applications

The state-of-the-art in optimization in FutureHPC and Big Data is rapidly evolving, driven by
advances in hardware and software technologies as well as the growing demand for more
efficient and effective computing systems.
In FutureHPC, one of the major areas of research in optimization is the development of new
architectures and technologies that can handle increasingly complex and demanding
workloads. For example, there has been a significant focus on developing new types of
processors such as neuromorphic and quantum processors, which can perform specific
tasks much faster and more efficiently than traditional processors.
Another area of research in FutureHPC optimization is the development of new software
frameworks and algorithms that can improve the performance of existing computing
systems. For example, there has been a lot of work done in optimizing parallel computing
techniques such as distributed computing and multithreading, as well as developing new
algorithms that can take advantage of these techniques to improve performance.
In Big Data, one of the major areas of research in optimization is the development of new
data storage and retrieval techniques that can handle large and complex datasets more
efficiently. This includes the development of distributed storage systems.
Another area of research in Big Data optimization is the development of new machine
learning and artificial intelligence algorithms that can improve the accuracy and efficiency of
data processing and analysis. This includes the development of deep learning algorithms,
which can learn from large datasets and make accurate predictions or decisions based on
that data.
High Performance Computing is of paramount importance also in supply chain
management. Supply chain management is a crucial element of any business strategy. It
includes the design, planning, execution, control, and monitoring of all supply chain
activities, including finding and storing raw materials, work-in-process inventory, and product
completion. To achieve optimal performance, companies are investing in HPC resources to
optimize the flow of products and services, and to find successful tools to deliver the right
products, accelerate time to market, and maintain efficiencies to each stage of the
development.

Section 1.1: Astrophysics and Cosmology (INAF, UNITOV)
High Performance Computing (HPC) plays a crucial role in the field of Astrophysics and
Cosmology (A&C) by enabling researchers to simulate complex phenomena and analyse
vast amounts of observational data. HPC resources allows to run simulations with high
resolutions, complex physics, and massive amounts of particles, which are crucial for
studying e.g. the evolution of the universe, the formation and evolution of galaxies, or the
behaviour of black holes.

The detailed structure and evolution of galaxies, clusters, and other astronomical objects
are highly complex and require simulations with high resolutions. With HPC, researchers
can perform simulations with billions of particles, allowing them to model intricate
astrophysical processes that are otherwise impossible to study. Moreover, astrophysical
simulations often require the inclusion of a wide range of physical processes, including gas
dynamics, radiation, magnetic fields, and more. HPC resources enable researchers to

 6

simulate these complex physics accurately, helping them to better understand how the
universe behaves on different scales. Additionally, HPC resources are also essential for
analyzing the vast amounts of data generated by astronomical observations. These data
sets can be terabytes or even petabytes in size and require advanced computing resources
to process and analyze them effectively.

INAF staff involved in Spoke 1 FL5 is developing software and codes specifically for the
following astrophysical applications: i) Cosmological and Astrophysical codes including
computational fluid dynamics simulations, N-body and smoothed particle hydrodynamics
(SPH) simulations on massively parallel computers and GasDynamics; ii) astrophysics
pipelines, data analysis and scientific visualization; iii) mini-applications and benchmarking
of Least Square Solutions of Big Systems of linearized equations from astrophysics domains
(GAIA). The state-of-the-art of the applications is reported in the following sections.

Section 1.1.1: Cosmological and Astrophysical codes

GADGET
General overview

GADGET [5] is a state-of-the-art Astrophysical highly scalable HPC numerical simulation
application and it is a reference in the numerical cosmology community. It solves the hydro-
gravitational problem for a collisionless fluid.
The scientific problem can be divided in two parts: gravity, a long-range component affecting
all of the computational elements of the chosen domain; and hydrodynamics, that is almost
local and only affect normal matter (in astrophysics, called “baryonic” matter).
GADGET computes gravitational forces using a TreePM technique. This means that a mean
field approximation is used for large scales – called Particle-Mesh, PM – while at smaller
scales a Treecode is used.
In the latter case, the computational domain is partitioned using an oct-tree. For nearby
regions of the computational domain, all particles interact among themselves; while (in first
approximation) only the center of mass of far regions is considered.
Hydrodynamics is solved using a so-called Smoothed Particle Hydrodynamics technique. In
this case, one particle represents a fluid element, whose thermodynamical properties such
as density, pressure, entropy, are obtained from those of neighbouring particles, smoothed
over a given physical scale (smoothing length), using a kernel with suitable characteristics.
The smoothing length gives the resolution of the computation; only information of particles
within such a scale is needed for the calculation of hydro forces.
GADGET can work both in “physical” and “comoving” coordinates. This means that the code
is well suited both for standard numerical computation and for cosmological ones. An
example of the former experiment is the evolution of a model galaxy whose initial conditions
are devised so as to represent the properties of the Milky Way as it is observed today. The
latter kind of computations usually start from an early phase of the Universe evolution, as
deduced e.g. by the data we have on the properties of the Cosmic Microwave Background
– almost 13 billion years ago – and follow the formation and evolution of structures in a fully
cosmological context, as described by our models, reaching the present time.

 7

GADGET also contains a number of so-called “astrophysics modules”, used to compute
more processes and properties, needed to follow in details the formation and evolution of
cosmic structures. Among those, of paramount importance are: star formation and stellar
energy feedback, given by the explosion of massive stars at the end of their lifecycle, known
as SuperNovae type II (SNII); cooling and heating of the gas; energy feedback from Active
Galactic Nuclei powered by a central SuperMassive Black Hole; evolution of stars and
formation of elements during the explosions of Supernovae or other rarer phases of the life
of stars. The majority of those processes cannot be directly computed, on the basis of first
principles, like gravity and hydrodynamics. The reason is that the dynamical range needed
is by far outside the reach of current calculus power, even using the most powerful existing
supercomputers. They are thus modelled with "sub-resolution" models, aimed to capturing
the effect on resolved scales of the (astro) physical processes happening at unresolved
scales. These sub-resolution models are currently widely employed in the astrophysical
literature and are needed to produce state-of-the-art theoretical computations.

Technical details

GADGET is written in C and massively parallelized using a hybrid model, MPI+OpenMP.
Most of the physics is also ported on GPU with a significant speed-up.
Computing tiles (particles) are assigned to MPI task using domain decomposition. In details,
the code computes a space-filling Peano curve that touches every particle in the
computational domain. A computational weight is assigned to each particle. The curve is
divided into M segments, having similar computational weight, and assigned to the N MPI
tasks (M=x*N, where x can range from 1 to some tenth and must be even). This scheme
achieves a good workload balance at the expense of memory unbalance.
The code is written in C, massively parallelized through MPI+OpenMP and presents a good
scalability up to ~10^5 cores, although its inherent computation intensity, in its current
implementation, may limit its ability to adapt to a multi-million thread scale.

Memory and disk occupancy are obviously dependent on the size of the problem. As for disk
storage, Typical state-of-the-art problems requires ~100TB of disk space, cutting-edge
problems reach the ~1PB, target exa-scale problems are as large as ~20PB.
The memory occupancy, for state-of-the-art runs, is as large as ~100-200TB.

Run-times are of typical order of 50M core-hours over thousands of cores.

PLUTO
General overview
PLUTO (https://visivo.readthedocs.io/) is a freely-distributed software for the numerical
solution of mixed hyperbolic/parabolic systems of partial differential equations (conservation
laws) targeting high Mach number flows in astrophysical fluid dynamics. The code is
designed with a modular and flexible structure whereby different numerical algorithms can
be separately combined to solve systems of conservation laws using the finite volume or
finite difference approach based on Godunov-type schemes.

https://visivo.readthedocs.io/

 8

Equations are discretized and solved on a structured mesh that can be either static [6] or
adaptive [7]. The Adaptive Mesh Refinement (AMR) interface relies on the Chombo library
for parallel calculations over block-structured, adaptively refined grids
(https://commons.lbl.gov/display/chombo/).

Technical details
The code is written in the C programming language while the AMR interface also requires
also C++ and Fortran.

PLUTO is a highly portable software and can run from a single workstation up to several
thousands processors using the Message Passing Interface (MPI) to achieve highly scalable
parallel performance.

The software is developed at the Dipartimento di Fisica, Torino University in a joint
collaboration with INAF, Osservatorio Astronomico di Torino and the SCAI Department of
CINECA.

The current release adds Particles support, Hall MHD, forced turbulence and RK-Legendre
time stepping for parabolic problems.

FLASH (https://flash.rochester.edu/site/index.shtml)
General overview.
FLASH is an Adaptive Mesh Refinement modular code aiming at numerically modelling the
complete MHD system of Navier-Stokes equations, and includes a wide range of source
terms accounting for energy losses and sources, including a detailed treatment of
thermonuclear energy sources, radiative cooling and cosmic rays transport. It adopts the
PARAMESH library (https://opensource.gsfc.nasa.gov/projects/paramesh/index.php) for
effective parallel implementation of the adaptive domain decomposition, and a wide
selection of refinement/derefinement criteria (up to 13). The hydrodynamic and MHD
modules allow the user a rather wide choice of the numerical integration scheme (among
others: split/unsplit PPM, WENO, PCM, GP), and the physics modules include (special)
relativistic CFD and MHD.
FLASH has been extensively used by a very large, international community of physicists,
mostly including plasma physicists and astrophysicists.

Technical details.
The package is written in Fortran90, C, C++ and Python, and parallelized using OpenMP
and MPI, and it scales efficiently up to few thousand cores. One of the most critical issues
concerning FLASH the I/O. Latham et al (2012) got a significant improvement by adopting
Parallel-NetCDF: yet, there is a significant room for further improvement. It would be
particularly useful to improve parallel I/O on HDF5 files, as this is one of the most widely
adopted formats.

Section 1.1.2: Astrophysics pipelines, Data analysis and scientific visualization

https://commons.lbl.gov/display/chombo/
https://flash.rochester.edu/site/index.shtml
https://opensource.gsfc.nasa.gov/projects/paramesh/index.php

 9

Data analysis and scientific visualisation are crucial for astronomy and astrophysics because
they allow us to make sense of the enormous amounts of data generated by modern
telescopes, observatories and numerical simulations. The sheer size and complexity of
these data sets make it impossible to analyse them manually or with simple statistical tools.
Instead, researchers rely on sophisticated data analysis techniques, such as scientific
visualisation, visual analytics and machine learning algorithms, to extract meaningful
insights from the data. This enables them to uncover new phenomena, identify patterns and
trends, and make predictions about the behaviour of celestial objects.

In addition, scientific visualisation is a powerful tool that allows researchers to represent
complex data sets visually, making it easier to understand and interpret the data. By
visualising the data, researchers can identify patterns and trends that may not be
immediately apparent from raw data sets. Moreover, visual representations can help
communicate scientific findings to a wider audience, including policymakers, educators, and
the general public. For example, scientists can use visualisations to create stunning images
of galaxies, stars, and other celestial objects, bringing the wonders of the universe to life
and inspiring a new generation of scientists and astronomers.

VisIVO [1] (Visualization Interface for the Virtual Observatory) performs multi-dimensional
data analysis and knowledge discovery of a-priori unknown relationships between multi-
variate and complex datasets in Astrophysics. VisIVO development started within the
activities of the Virtual Observatory framework. It supplies users with functionality to render
meaningfully highly-complex, large-scale datasets and create movies of such views using
distributed computing infrastructures.

VisIVO (https://visivo.readthedocs.io/) provides an integrated suite of tools and services that
can also be used in other scientific fields. The VisIVO suite offers a variety of flavours as
follows:

VisIVO Server a platform for high performance visualization.
VisIVO Library for running complex workflows on DCI, clouds and HPC infrastructures to
efficiently produce complex views of the dataset and full movies directly with the user-code
internal data representation (i.e. without the need to create intermediate files).
VisIVO ViaLactea Visual Analytics (VLVA) [2], developed within the ViaLactea project, which
allows to exploit a combination of all new-generation surveys of the Galactic Plane to
analyze star forming regions of the Milky Way.
VisIVO ViaLactea Web (VLW), a work-in-progress simplified web version of the VLVA,
developed in collaboration with University of Portsmouth (UK) providing an efficient
visualisation (GPU and CPU rendering) on remote server.

VisIVO technologies have been demonstrated as success stories in numerous relevant
multidisciplinary environments, and Projects. As an open access software, significant
interest in its usage has been shown from all over the world (evident by the number of hits
on the websites) and several scientists from different domains (e.g. Nuclear Physics) have
produced visualisations of their data (simulations or observational datasets).

 10

VisIVO is written in C++ and uses the Visualization Toolkit (VTK) library for the rendering
modules. The suite is maintained by INAF-Astrophysical Observatory of Catania and is
continuously enriched with several international collaborations.

Section 1.1.3: Mini-applications and benchmarking of Least Square Solutions of Big
Systems of linearized equations from astrophysics domains (GAIA)
The Astrometric Verification Unit-Global Sphere Reconstruction (AVU-GSR) Parallel Solver
[3] is a code developed for the ESA Gaia mission, whose main purpose is to find, with a [10,
100] μarcsec precision, the astrometric parameters of ~108 stars in the Milky Way, the
attitude and the instrumental setting of the Gaia satellite, and the global parameter γ of the
parametrized Post-Newtonian formalism. Deriving astrometric parameters (parallaxes, right
ascension, declination, and proper motions along those two directions) with such a precision
is essential to accurately investigate the formation, evolution, kinematics, and dynamics of
our Galaxy. To find these parameters, the code solves a system of linear equations, A x =
b, with the LSQR iterative algorithm. The lines of the coefficient matrix A correspond to the
stellar observations and the columns of A correspond to the unknowns of the system.
At the end of the Gaia mission, expected in 2025, the dataset is likely to occupy a memory
of ~[10, 100] TB, typical for the Big Data analysis, corresponding to ~1011 observations and
~108 stars. With this size, an efficient parallelization scheme is required to obtain scientific
results in reasonable timescales and to guarantee an optimal production in perspective of
the future Gaia Data Releases.
This code has been in production since 2014 on CINECA infrastructure Marconi100, under
an agreement between INAF and CINECA and with the support of ASI. The code was firstly
parallelized entirely on the CPU, with a hybrid MPI+OpenMP parallelization scheme, where
the computation related to a portion of the lines of the coefficient matrix was assigned to a
different MPI process and was further parallelized with OpenMP. To accelerate the code, it
was ported to the GPU [4]. In a preliminary analysis, the porting was performed by replacing
the high level language OpenMP with the high level language OpenACC, obtaining a modest
speedup of ~1.5. The code was successively optimized by replacing OpenACC with the low
level language CUDA, to better match the GPU architecture and the topology of the system
to solve. This resulted in a substantial acceleration of the code: the speedup of the code
over the MPI+OpenMP version increased with the system size and the number of employed
GPU resources, reaching a maximum of ~14 for the considered systems.

Section 1.1.4: Computational Methods in Dynamical Astronomy
The application of computational techniques in Celestial Mechanics problems has always
been innovative and challenging. In particular, modern space missions without computers
would not even have been conceivable.
The problem of the long-term stability of our planetary system is investigated since several
decades ago by using computers. This is commonly done by both numerical integrations
and algebraic manipulations aiming to construct suitable Hamiltonian normal forms. Since
the end of the last century, the interest for this kind of investigations has been enormously
increased by the discovery of multiple-planets extrasolar systems. The problem of their
stability is made harder by the fact that often the (mutual) inclinations of the exoplanets is
totally unknown or (in the best cases) poorly known. Thus, the usual approach based on

 11

(KAM) normal forms here can be fruitfully applied on reverse. Ranges of the possible values
of the mutual inclinations are deduced by prescribing the KAM stability of the extrasolar
planetary stability, that is ensured by the convergence of the construction of the
corresponding normal form (see [8]). Such an approach has been substantially improved by
preliminarly constructing the normal form for a so called elliptic torus around which plenty of
KAM invariant tori are winding; then, it is easier to construct the final normal form
corresponding to the one of them that is characterized by the frequency of motions we are
looking for. This combination of normal forms has been successfully applied to the upsilon-
Andromedae extrasolar system (that is one of the very few for which also the inclinations
are approximately known) and has allowed also to properly define a numerical indicator of
the dynamical robustness of an orbital configuration (see [9, 11]).
From a computational point of view, the accomplishment of such a research project has
required to fully develop libraries of computer algebra software specially designed to deal
with Celestial Mechanics problems and Hamiltonian perturbative methods; this
programming effort started more than 20 years ago (see [10]). A question about the
generality of our approach naturally arises: can it apply also to other exoplanetary systems?
Since for most of them the inclinations of the exoplanets is unknown, the computational
complexity increases dramatically: algorithms constructing normal forms must be launched
for every point of a regular grid covering the ranges of the orbital parameters given by the
observations. Of course, parallelization comes here into play, but each computational
procedure of this type requires a very big amount of RAM. Thus, in the near future the
success of this investigation about the robustness of extrasolar systems 3D architectures
will depend on both a good balancing of all the parameters ruling the computational
complexity and the careful implementation of techniques of algebraic manipulations for the
saving of memory.

Section 1.2: Applications in life sciences, biomedical, social sciences, material
sciences, condensed matter physics (UNIFE, IIT, UNICT, POLIMI)
UNIFE focused on the design and construction of efficient algorithms for quantifying
uncertainty in complex systems oriented to applications in physics, engineering, biomedical,
and social sciences that require multiscale simulations. The development of numerical
methods for quantifying uncertainty in complex systems is a rapidly growing area of research
that has broad applications in several fields [99-100]. In many cases, simulations of these
complex systems require the integration of multiple scales, ranging from microscopic to
macroscopic, and involve a large number of uncertain parameters. State-of-the-art
algorithms for quantifying uncertainty in these multiscale simulations include stochastic
methods, such as Monte Carlo simulations and Markov Chain Monte Carlo methods, as well
as data-driven methods, such as machine learning and deep learning techniques [95].
Another class of methods is based on a deterministic approach and makes use of
generalized polynomial chaos expansions and stochastic Galerkin or stochastic collocation
techniques. These algorithms can be used to propagate uncertainties in model inputs to
outputs, providing estimates of the variability and uncertainty in simulation results.
Additionally, these algorithms can be used to optimize model parameters, reduce
computational cost, and improve model predictions. Overall, the development of efficient

Commentato [1]: alla sezione 1.2.1 contribuisce anche
POLIMI, in collaborazione con IIT

 12

algorithms for quantifying uncertainty in complex systems has the potential to improve our
understanding of complex phenomena and inform decision-making in a wide range of fields.

IIT staff involved in Spoke 1 FL5 is developing models, software and codes for the
applications in life sciences, material sciences, and condensed matter physics. We are
considering the following computational topics as particularly relevant and as those which
could largely benefit from algorithmic refactoring: i) (bio)electrostatics and
electromagnetism; ii) template matching in protein-protein docking and cryo-em; iii) quantum
physics; iv) computational geometry.
The state-of-the-art of the aforementioned applications is briefly sketched in the following
sections.

Section 1.2.1: (bio)electrostatics, electromagnetism and plasma simulations
Electrostatics and electromagnetism are at the core of countless applications. At IIT, we
have a lot of experience in simulating electrostatic effects inherent in biomolecular
phenomena as well as electromagnetic effects inherent in light-matter interaction. Many of
the underlying models lead to descriptions based on Partial Differential Equations, whose
solution can become computationally prohibitive if the size or the complexity of the studied
systems are too high. This is where specific solutions, which combine effective models and
advanced applied mathematics approaches, can make the difference.
The finite element method (FEM) is a general and versatile numerical method for solving
partial differential equations, and it is commonly used in the field of structural analysis, heat
transfer, fluid flow, and electromagnetism. Crucial to FEM is the setup and solution of linear
systems of equations and represents hence a typical kernel in computational physics.
In this context, sparse direct solvers [12] are very popular since, unlike iterative solvers and
preconditioners, sparse direct solvers do not suffer from convergence issues and do not
require much tuning. However, efficiently implementing a sparse direct solver in a scalable
and high-performance way can be quite challenging. With a good numerical factorization,
most of the work in a sparse direct solver is performed using dense linear algebra operations
on these dense sub-blocks. Although the numerical factorization phase can achieve
relatively high performance on modern multi-core architectures, the fact that many of these
blocks are small makes it hard to fully exploit the potential of GPU accelerated nodes. To
solve this bottleneck, one would need to minimize data movement between the CPU and
the GPU [13], and hence reduce kernel launch overheads, or increase the communication
speed between the CPU and the GPU through the development of an ad hoc hardware
implementation.
From the point of view of the development of an efficient FEM code, this brings two
problems: from the one hand to obtain a good computational performance (considering the
memory/compute bound nature of the problem) and on the other hand to assure
longevity/portability to the code by avoiding too code-intrusive approaches. In this context,
we will develop computational kernels and use libraries that take advantage from recent and
future accelerators, and to confer portability and longevity, we will use a OpenACC/OpenMP
approach which will allow to support both current and future accelerators. In particular, we
will focus on the frequency domain electromagnetic FEM solvers.

 13

Different solutions might be more suitable for applications to bio-electrostatics. In IIT, there
is a long tradition of continuum electrostatics models and solvers for biomolecular
applications. Specific acceleration of PDE solvers for this kind of applications are done in
collaboration with Prof. De Falco at Polytechnic of Milan and are detailed in their
contribution.

UNICT is involved in the simulation of a plasma source using the Particle In Cell method,
carried out in collaboration with INFN Catania Laboratori Nazionali del Sud (contact person
Dr. Lorenzo Neri).
UNICT is dealing with two aspects concerning the plasma simulation: the numerical solution
of the Poisson equation for calculating the electric field produced by the charges inside the
source, and the choice or study of the most indicated for the advancement of charges in
time. The goal of the research is to provide implementations that are computationally time
efficient on multicore machines and maintain the necessary level of accuracy. In particular,
the new implementation of the resolution of the electrostatic field allows not to use
interpolating functions and writes to files necessary with the previous implementation made
with the Comsol Multiphysics software. The integration of the equations of motion has also
been extended to the relativistic case which concerns a small but not negligible fraction of
the electrons involved in the calculation. rest of the simulation code, and a solver for the
advancement in time that also takes into account the relativistic corrections, which may not
be negligible given the speed of the charges.

Section 1.2.2: template matching tasks in protein-protein docking and cryo-em
applications.
The availability of large amount of experimental data calls for advanced and highly
computationally efficient methods of analysis and interpretation. We decided to focus here
on implementations of the general concept of template matching, where two scalar fields in
3D are compared across many, or all, possible roto-translations. Main computational
implementations make use of the FFT, which, however, is only suitable when rotation angles
are unbounded. Among the very many possible applications of this routine there is protein-
protein docking [14, I-15], very significant in the life science field, and template matching for
the recognition of a given macromolecular system in a heterogeneous environment analyzed
via Cryo-EM [16, I-17].

Section 1.2.3: quantum physics
Estimating physical observables, as free energies, is of paramount importance both in
organic and inorganic chemistry. To reach a high level of accuracy in the estimation process
often the Density Function Theory (DFT) level of theory (hence Kohn-Sham equations) is
employed yet being this approach significantly time consuming. Additionally, when
estimating thermodynamic observables, size effects arise and a fully dynamical (Molecular
Dynamics) treatment is needed. This inevitably creates further computational burden as the
dynamical simulation of big molecular environments is required. To cope with these issues
at EPFL and Sapienza University a code dubbed MaZe (Mass-zero constrained dynamics
for simulations based on orbital-free density functional theory) was devised which takes
advantage of the fast, albeit approximate, orbital free DFT method. This was coupled with

 14

the recently introduced Mass Zero (from which the MaZe acronym) method which allows to
treat the DFT minimization problem as a constraint and hence granting a zero mass, fully
adiabatic, decoupling in the spirit of the Car-Parrinello method. Despite the speed of the
method, the code is currently not fully optimized to exploit parallel and GPUs architectures.

Section 1.2.4: Computational geometry
The problem of building and analysing molecular surfaces is at the same time challenging
and relevant in the computational biophysics field, since it takes part in continuum
electrostatics-based implicit solvent models [18], in the estimation of hydration energies, and
in the search for potential new binding sites in proteins [19]. We are focusing on the
parallelization of some key processes related to the construction of the molecular surface
and on its mapping onto a grid, chiefly within the NanoShaper tool which was devised in IIT.

Section 1.3: computational simulation of complex biological systems (UNICT, UNITO,
UNITOV)
UNICT work concerns the study of biological network formation models, carried out in
collaboration with the King Abdullah University of Science and Technology (KAUST,
supervisor Prof. Peter Markowich), and with Prof. Vito Latora (University of Catania and
Queen Mary, London).
The mathematical models describe the formation of biological networks such as, for
example, the veins of a leaf that carry lymph over the entire surface, or the vascular system
of a living being that transports oxygen throughout the body. The starting point of these
models is the idea that the network that supplies a certain region is formed by trying to
achieve the goal with the least "cost". From the mathematical point of view, this idea
translates into a variational formulation, in which the equations that describe the model
derive from the minimization of a certain functional that describes the overall cost. The
resulting model is described by a system of evolutionary partial differential equations in two
or three spatial dimensions. Detailed numerical simulation of such a system presents
significant challenges, even in two spatial dimensions, due to the multiscale nature of the
solutions. The computer codes that will be developed for the simulation of these problems
must therefore be set up in order to scale well on parallel architectures, in order to provide
an adequate spatial resolution and capture the solution of the problem at different scales.

The UNITO group is working on the definition of a possible case of study in the context of
computational simulation of complex biological systems.
Indeed, computational models are crucial to address critical questions about systems
evolution and deciphering system connections. The pivotal feature to making this concept
recognisable from the biological and clinical community is the possibility to quickly inspect
the whole system bearing in mind the different granularity levels of its components.
This holistic view of system behaviour expands the study of evolution by identifying the
heterogeneous behaviours applicable, for example, to the cancer evolution study.
With the recent advances in supercomputers, most of the challenges in modelling and
understanding the complexities of biological networks can now be addressed, however,
most of the current modelling tools are not able to efficiently scale up on these
infrastructures.

 15

In this context our group has recently developed a tool called GreatMOD which represents
a new way of facing the modelling analysis, exploiting the high-level graphical formalism,
called Petri Net (PN), and its generalizations, which provide a compact, parametric and
intuitive graphical description of the system and automatically derivation of the low-level
mathematical processes (either deterministic and stochastic) characterizing the system
dynamics. The framework strengths can be summarized into four points:
the use of a graphical formalism to simplify the model creation phase by exploiting the
GreatSPN GUI;
the implementation of an R package, EPIMOD, providing a friendly interface to access the
analysis techniques (from the sensitivity analysis and calibration of the parameters to the
model simulation);
a high level of portability and reproducibility granted by the containerization of all analysis
techniques implemented in the framework;
a well-defined schema and related infrastructure to allow users to easily integrate their own
analysis workflow in the framework.

The architecture of this framework is composed of three main modules which cover different
aspects (see Figure 1).

The first module consists of a Java Graphic User Interface (GUI) based on Java Swing Class
which allows drawing models using the PN formalism. This graphical editor is part of
GreatSPN [20], a software suite for modelling and analyzing complex systems using the PN
formalism and its extensions. In particular, for the purposes of the framework presented in
this paper, the GreatSPN GUI has been upgraded to support the Extended Stochastic
Symmetric Net (ESSN), a high-level Petri Net formalism, which enables users to define a
system in a compact and parametric manner and to specify in a natural manner the rate
functions which may be associated with the model reactions

 16

The other two modules, consisting of an R library and a set of docker images, implement all
the framework functionalities needed for the model analysis. Docker containerization, a
lightweight Operation System (OS)-level virtualization, is exploited to simplify the
distribution, utilization and maintenance of the analysis tools; the R library provides an easier
user interface for which no knowledge of the docker commands is needed.

The tool was successfully exploited in different contexts ranging from COVID-19 [21] to
Multiple Sclerosis [22, 23, 24] and Pertussis [25].
Nevertheless, in these studies, the limitations of the current data-sensitivity
analysis, optimization and data fitting tools integrated into the GreatMOD clearly came to
light.
According to these, we believe that the improvement tools could be a case study for the FL5
working group.

Sensitivity Analysis. It allows us to identify among the input parameters which are the
sensitive ones (i.e., those that have a great effect on the model behaviour). This may simplify
the calibration step by reducing (1) the number of variables to be estimated and (2) the
search space associated with each estimated parameter. In GreatMOD the R function
sensitivity_analysis() implements the sensitivity analysis starting from a model exploiting the
Partial Rank Correlation Coefficient (PRCC) analysis [26].

Model Calibration. The aim of this phase is to adjust the model input parameters to have the
best fit of simulated behaviours to the real data. The model calibration is performed by the
R function model calibration() which exploits different solvers based on Genetic
Algorithms, Generalized Simulated Annealing, and Differential Evolution for solving non-
linear optimization programs in which constraints are potentially non-linear.

UNITOV is working on Computational Methods in Molecular Dynamics simulations of
biomolecules. Molecular Dynamics simulations based on classical force fields are a
widespread technique in many chemical, physical, and biological research areas. The
classical force fields are preferred each time the complexity of the conformational space that
needs to be sampled is prohibitive for the quantum mechanical approach. This is the case,
for example, in many problems of biological interest, for which the dynamics of proteins play
a pivotal role. This kind of simulations is based on the ergodic hypothesis, which assumes
that the average of a process parameter over time and the average over the statistical
ensemble are the same. This is only true if the simulation time is long “enough”. For this
reason, over the years, many efforts have been made to optimize the algorithms, mainly
making large use of parallel computing, including GPU-based architectures. Nowadays,
software packages are available, sometimes developed under the open-source approach,
with performances challenging to approach by using homemade codes. Among others,
Gromacs (www.gromacs.org/), Namd (http://www.ks.uiuc.edu/Research/namd/), Amber
(https://ambermd.org/), and Charmm (https://www.charmm.org/) represent a standard for
the community, thanks to their performances and their flexibility. We will use the Gromacs
software package [27, 28] to perform our benchmarks. The parallelization philosophy of
GROMACS is based on a domain decomposition approach, where the simulation system is
divided into multiple subdomains that can be independently simulated. Each subdomain is

 17

assigned to a different processing unit allowing the simulation to be parallelized across
multiple processors. GROMACS supports GPU acceleration. This is achieved using the
CUDA language developed by NVIDIA. The peculiarity of GROMACS is that it is based on
a Hybrid MPI/OMP thread parallelization for calculating the potential function (bonded and
non-bonded parameters), which allows for retaining good performance in diverse
architectures. Different parameters can be tuned to optimize the parallelization process [29].
Tools have been developed to help the optimization process in different architectures, such
as MDBenchmark [30] or the more general Scalasca [31], and their usage will also be
evaluated.

Section 1.4: solution of large-scale sparse linear systems in a parallel distributed and
hybrid environment (MPI, OpenMP functionality, and use of GPU accelerators) (UNIPI,
UNITOV, UNICT)
The solution of linear algebraic systems lies at the core of many scientific and engineering
simulations, from the approximation of the solution and optimal controls of partial differential
equations coming from engineering and physical simulations to the analysis of complex
systems such as networks, queues, and other phenomena with complex interactions via,
e.g., the computation of matrix functions with rational Krylov methods.

The state-of-the-art concerns the solution of linear systems with tens of billions of unknowns
fully using the current pre-exascale machines. The currently existing libraries that come
closest to the scale needed are Hypre, developed by Lawrence Livermore National Lab,
Trilinos, developed by Sandia National Labs, they are Hypre, developed by Lawrence
Livermore National Lab, Trilinos, developed by Sandia National Labs, and the AGMG
Library. More recently, the development of the PSCToolkit library. More recently, the
development of the PSCToolkit [33] (https://psctoolkit.github.io/) has proven to be able to
tackle problems on the same size scale and with comparable performance. At the heart of
all these different approaches are algorithms of the Algebraic Multigrid type (AMG). It is a
class of algorithms that do not exploit the information concerning the source of the linear
system to be solved, i.e. algorithms that use only the information contained in the coefficients
of the system matrix. The choice made to aim at the construction of solvers that are as close
as possible to being general purpose and that can be inserted into other application codes,
for example, libraries for solving partial differential equations using finite elements, without
requiring the modifying the code related to the other phases of the problem. The line of
development in this direction is to extend the code already available in the MPI and CUDA
environment to shared memory functions and, therefore, to the OpenMP framework. The
goal is to have an implementation that is also optimized at the node level. We consider here
an example of the tested algorithms from [34], this is the solution of a standard finite
difference discretization of a Poisson problem on a 3D grid; this is a classical benchmark for
AMG algorithms. To test the applicability and transversality of the PSCToolkit library, UNIPI
tested the mini-app on different machines and development environments

Machine Hardware Environment

 18

Laptop CPU: Intel(R) Core(TM) i7-8750H CPU @
2.20GHz; Memory: 16Gb.

Compiler: GNU Suite
11.3.0; MPI: OpenMPI
4.1.2; BLAS:
OpenBLAS 0.3.20

Workstation 1 CPU: Intel(R) Xeon(R) Silver 4210 CPU @
2.20GHz; Memory: 64Gb; GPU: NVIDIA
Quadro RTX 5000.

Compiler: GNU Suite
11.3.0; MPI: mpich
3.4.3; CUDA: Cuda
compilation tools,
release
11.3, V11.3.109; BLAS:
ATLAS 3.10.

Workstation 2 CPU: Intel(R) Xeon(R) Gold 6238R CPU @
2.20GHz; Memory: 1.48T.

Compiler: GNU Suite
6.1.0; MPI: OpenMPI
1.10.7; BLAS:
OpenBLAS 0.3.3.

Small cluster
(Toeplitz, Math
Department
UNIPI)

CPU: 1 Node (cl1) with Intel(R) Xeon(R)
CPU E5-2643 v4 @ 3.40GHz, 4 nodes (cl2)
with Intel(R) Xeon(R) CPU E5-2650 v4 @
2.20GHz; Memory: (cl1) 126Gb, (cl2)
252Gb; Network: Intel 10-Gigabit X540-
AT2.

Compiler: GNU Suite
12.2.0; MPI: OpenMPI
4.1.4; BLAS:
OpenBLAS 0.3.20.

Large cluster
(Marconi-100,
Cineca)

CPU 980 nodes with 2×16 cores IBM
POWER9
AC922 at 2.6(3.1) GHz; Memory: 256
GB/node; Network: Mellanox IB EDR
DragonFly++ 100Gb/s; GPU: 4 × NVIDIA
Volta V100 GPUs/node, Nvlink 2.0, 16GB.

Compiler: GNU Suite
11.2.0; MPI: OpenMPI
4.1.2; BLAS: BLAS
3.10.0; CUDA: Cuda
compilation tools,
release 11.6, V11.6.124.

For which the scalability and performance results are given in the following figure,

 19

We observe behavior in line with the expected one given the performances on a single node
and the performances using
pure MPI. Small fluctuations are observed in the solution times which seem mostly
attributable to the machine; in fact, the number of iterations for the use case with pure MPI
is contained between 8 and 15, while in the hybrid case between 8 and 12. For results in
extreme scalability (27000 MPI tasks, and 2048 GPUs) and comparison tests between the
various preconditioners and the state-of-art, we refer to [33].

UNICT implemented a multigrid approach to solve the Poisson equation on MPI
architectures using the PETSc library suite.
Poisson equation is central to countless applications, such as fluid dynamics, gravitational
problems, electromagnetism, fluid-structure interactions.

Linear Algebra is and will continue to be at the heart of HPC applications for the foreseeable
future. An immense amount of research has been devoted to the efficient implementation of
linear algebra; among these efforts we can identify some that are more concerned with the
computational models needed in approaching the use of linear algebra inside applications.

 20

Among these trends UNITOV identified the emergence of the so-called task-based runtime
environment [35, 36]; these systems provide a novel way to encode complex algorithms by
specifying a set of dependencies among various building blocks. The programmer builds a
DAG (directed acyclic graph) specifying for each node a kernel to be executed on a certain
portion of the data, and connecting the nodes with directed arcs to specify an input-output
relationship among the various computations. The end result is the increase in
programmability of various kinds of complex linear algebra algorithms.

As we mentioned previously, linear algebra has elicited an immense amount of research
work, due to its importance in providing application building blocks; and yet, there is a certain
amount of disconnection between the users and programmers of applications, and the
developers of libraries. The libraries encompass a body of knowledge on what constitutes
efficient implementations, but the users tend to rely ever more on environments that may or
may not provide an optimal mapping from problem to function calls. As noted in the survey
[41], the mapping problem itself is NP-complete, hence there is a need for further activity in
this field to help users identify the best possible ways to frame the applications in ways that
are conducive to exploitation of exascale resources.

One of the essential ingredients of modern HPC architectures is their heterogeneity;
handling heterogeneity in the applications has been addressed e.g. by using the
techniques in [39, 40], but a lot more work is needed in training end-users on how to enable
heterogeneity.

In the recent past UNITOV has introduced new versions of their library software for sparse
linear algebra on high performance computers [37, 38], where they implemented some
among the most effective solver techniques available, i.e. algebraic multigrid preconditioners
coupled with Krylov subspace solvers.
UNITOV recent research has been focused on the implementation of more effective
strategies for building the multigrid hierarchy our research program has been accepted for
early access to the new Leonardo computational facility at CINECA, where UNITOV plans
to explore extreme scalability of multigrid construction based on graph matching [37, 38].

Section 1.5: Solution of structured linear systems coming from the study of Markov
chains (UNIPI)

The focus is on the computation of the stationary vector for a continuous-time Markov chain.
Such discrete-state models are widely employed for modelling and analysis of large
networks and systems such as communication networks, allocation schemes, computer
systems, and population processes. To compute the quantity of interest one has to solve a
homogeneous linear system. Again, due to the scale of the problem, the only possible
approach is to use iterative methods that can be implemented in an HPC environment. The
state of the art in this direction concerns the use of simple fixed point methods based on the
splitting of the system matrix. The promising direction in which to develop methods and

Commentato [AO2]: Dovrebbe essere UNIPI

 21

algorithms is that of being able to exploit the structure of the matrix in order to obtain
scalability in a parallel environment [32]. The current approach allows solving problems of
this form in a shared memory environment (OpenMP), with the prospect of extending the
approach from a node-level optimization to one that can actually be used in a distributed
environment, possibly in a hybrid way. A strong scaling example of the tested algorithms
from [32] run on a single with two Intel Xeon E5-2650v4 CPUs with 12 cores and 24 threads
each, running at 2.20GHz (without Hyper-threading to have a number of logical processors
equal to physical processors) of the three versions of the algorithm exploiting the new
structured approach on a standard benchmark is given in the following figure.

We observe that there is still room for improvement with respect to the optimal achievable
efficiency (consider the violet line).

Section 1.6: benchmarking and performance modelling of accelerators; algorithms
for tensor cores and processing-in-memory; memory management in multi-processor
architectures (UNIPD)
The widespread interest in machine learning applications has boosted the introduction of
hardware accelerators. Since the boost is market-driven, each silicon producer touts
exceptional speed or power efficiency, depending on the application, but, to the best of our
knowledge, there is little scientific work comparing solutions from different vendors
systematically and quantitatively, regardless of the metric. Performance figures are reported,
but they are customarily specific for a single accelerator and software stack. Reports on
factors influencing performance tend to be based on bottleneck analysis and can not be
used for predictions. On the other end of the spectrum, predictive register-level models (e.g.,
https://doi.org/10.1109/MM.2020.2985963, https://doi.org/10.1145/3466752.3480063) have
been proposed to explore the hardware design space. Still, they are not useful for high-level
decisions on the structure of the computation, algorithms, or the best accelerator for a given
performance metric.

Recent works have addressed how to include within the algorithm design process the
features of modern hardware accelerators like tensor cores and processing-in-memory. For
instance, tensor cores have been used for accelerating important primitives as scan
operations, linear algebra, similarity search (e.g. [46, 45, 44]). Processing-in-memory
architectures have been used for accelerating data structures as skip lists or irregular
computations line skyline computations (e.g., [47, 50]).

https://doi.org/10.1109/MM.2020.2985963
https://doi.org/10.1145/3466752.3480063

 22

Memory management in the presence of multiple instruction streams, each due to one
processor in a multi-processor architecture, has been extensively studied, particularly after
multi-core processors became mainstream. In this scenario, the memory is shared among
p possibly heterogeneous processors, each running, independently and concurrently, its
own program. The algorithmic decision faced by the memory-management policy is the
same as in the sequential case, that is, deciding which page to evict when a new page has
to be brought into fast memory; note that these decisions effectively determine a
partition of the memory among processors that changes over time. The objective is to design
a replacement policy that minimizes some objective function of processors' completion
times. This problem has also received considerable attention, starting from some pioneering
work, such as [49], on (offline and online) heuristics that dynamically adjust the sizes of the
memory partitions dedicated to each processor; it resisted a rigorous theoretical
characterization until recently when the first algorithmic solutions, as well as fundamental
limits, have been shown under standard worst-case analysis [48, 42, 43]. Future directions
of research include: randomized parallel paging policies with better guarantees than those
achievable by deterministic policies [42, 43], or a proof that this is not possible (i.e., that
randomization does not help in parallel paging); parallel paging policies that use (machine-
learning) predictions on future page requests: we aim for policies that have near-optimal
performance when these predictions are accurate, but recover the prediction-less worst-
case behavior when the predictions have large errors.

Section 1.7: Cellular Automata (CA) models (UNICAL)
The main activities of UNICAL are focused on OpenCAL++, a platform for transparent and
efficient parallel execution of Cellular Automata (CA) models [4], and on the development of
Load Balancing techniques for CA execution by devising simple closed-form expressions
that allow to compute the optimal workload assignment in a dynamic fashion, with the goal
of guaranteeing a fully balanced workload distribution during the parallel execution. The
Cellular Automata (CA) computational paradigm can be easily adopted to model and
simulate complex systems characterized by a high number of interacting elementary
components. Due to their implicit parallel nature, CAs can be productively parallelized
across multiple parallel machines to scale and speed up their execution. Execution of CA on
both sequential and parallel computers consists in a step-by-step evaluation of the transition
function for each cell of the cellular space.
Even though Parallel Computing has undoubtedly in general proved its effectiveness in
many CA application scenarios, overheads can arise due to the parallelization process itself,
that can reduce the obtainable benefits [51-53]. To reduce this overhead, different strategies
have been envisioned [54, 55]. Moreover, the low-level implementations of CA execution
must be devised for each parallel execution context, such as shared memory (e.g.,
OpenMP) and distributed memory (e.g., MPI) architectures and modern GPGPU (e.g.,
CUDA or OpenCL). The choice of the suitable execution context based on hardware
availability is a key factor for providing dramatic computational improvements in
computational results. On the other side, parallel programming requires strong technical
expertise, let alone considering the different parallel execution contexts and adopted
optimization strategies [54]. Indeed, different high level CA modelling APIs were proposed
in the literature in attempting to mitigate these issues. However, in general, these solutions

 23

lack a full portability across different execution contexts and parallelization strategies
requiring the model program to be adapted from case to case (e.g., [56]).
For this aim, the OpenCAL++ makes parallelism transparent to the modeler and addresses
many aspects of the underlying formal computational paradigms and optimization strategies.
Moreover, it implements a set of load balancing strategies to accelerate the computation.
The adoption of a fully object-oriented approach enables the full transparency of the code
and a plug-and-play feature that allows to easily insert new parallel optimization strategies
and new parallel execution contexts.

A second activity will regard Load Balancing (LB) techniques, which are widely adopted in
many scientific contexts with the aim of improving the computational performances of CA
models when executed on a parallel system. LB techniques fall into two main classes,
namely static and dynamic load balancing (cf. [58-62]). Static load balancing strategies can
be further classified based on how the domain is partitioned: Boxwise, in the case of row-
wise decomposition, Stripwise, in the case of column-wise decomposition and Scattered
where chessboard partitioning is adopted. As an example of static LB, in the partitioning of
a large scale urban simulation is initially determined before execution with the aim of
avoiding that large non-urbanizable areas could be allocated in the same partitions thus
resulting in a workload unbalance. In principle, dynamic load balancing can potentially
outperform static ones as it aims to balance the workload among processors during the
execution, with the consequence of better adapting to the unpredictable changes of the
workload distribution. Dynamic load balancing strategies can be classified in Diffusion,
Dimension Exchange and Gradient approaches [63, 64]. Diffusion is a highly distributed
local approach that uses near-neighbor load information to distribute excess load from the
more loaded processors to the nearby under loaded ones; in Dimension Exchange, LB is
performed iteratively by reducing an N processor system to a log N dimensions one for the
purpose of balancing one dimension at a time; in the Gradient model, a gradient map of
underloaded processors in the system is used to migrate tasks between overloaded and
underloaded processors.

Section 1.8: Locality Exploitation in High Performance Speculative Simulation on
Shared-Memory Machines (UNITOV)

Shared-memory multi-processor/multi-core machines have become extremely attractive for
innovative Parallel Discrete Event Simulation (PDES) techniques where the workload of the
events to be processed is fully shared among all the CPU units. In this scenario, aspects
like locality and its impact on the effectiveness of the hardware level configuration (cache
hierarchy and NUMA nodes) is becoming a critical factor for scaled up performance along
the path to exascale computing [64].

In this area, a few works investigated the management of buffers [65] or the reduction of the
number of message copies to exchange data [66]. The work in [67] discusses how the setup
of intra-node facilities---based on shared-memory---can allow multiple MPI ranks running on
a same machine to reduce their communication overhead. The proposal in [68] introduces
an architecture for speculative PDES where multiple threads running on a shared-memory

 24

machine support communication based on top/bottom half primitives with reduced
intrusiveness. Additional studies have been focused on the analysis of general architectural
redesigns when moving (speculative) PDES to shared-memory/multi-core machines (see
[69, 70]).

As for solutions oriented to load sharing in multi-core machines, in combination with long-
term binding of simulation objects to worker threads, we can find model-based approaches.
They allow the calculation of an effective distribution of simulation objects among threads
under the hypothesis that the future of the simulation run will have similarities with respect
to the last observed execution phase [71] For this scenario, the literature also offers
approaches where the state of the simulation object is dynamically migrated across the
different NUMA nodes in the shared-memory machine [72] to make the in charge worker
thread (after the rebalance) more effective in the access to state information.

In [73] the authors exploit a fully shared event pool in order to enable any worker thread to
CPU-dispatch any simulation object at any time along the simulation execution. Hence, a
simulation object is kept locked by a specific worker thread only for the time interval related
to the processing of an individual event. In this work, the accesses to the shared event pool
have been based on a non-blocking algorithm, which favors scalability. The major limits of
this work are related to the fact that spatial locality is not taken into account. Hence, a worker
thread can continuously switch across different simulation objects, with no attempt to reuse
the same memory areas (keeping the state of specific simulation objects) which have been
accessed recently. Also, the accesses are NUMA unaware, hence they can generate both
delay---because of the latency for accessing far NUMA nodes---and excessive pressure on
the NUMA interconnection, limiting performance and scalability. As we pointed out, these
are the baseline problems we tackle in this article, in combination with the reduction of the
amount of memory locations accessed by a worker thread when managing the shared event
pool.

The work in [74] provides an improvement for load-balancing in PDES on top of shared-
memory multi-processor/multi-core machines. It combines a classical medium/long-term
binding scheme based on persistence---namely, past data related to the workload---and
work-stealing. The stealing operation is put in place if the last re-balance has led to imperfect
partitions---this may occur because of errors in the prediction of the future workload that will
be actually generated by the simulation objects, when the re-balance occurs. In this solution
the simulation objects are still grouped and remain bound to a specific worker thread, up to
some steal operation or a periodic re-balance. Hence the core ideas in this proposal are still
not suited for locality improvement with fine-grain sharing of the workload among worker
threads. Additionally, in this proposal the authors do not tackle spatial locality, hence they
do not explicitly address the improvement of cache and NUMA usage.

The work in [75] provides a solution for improving the efficiency of cache usage in
speculative PDES systems. This solution is based on redirecting cache-adverse operations-
--like checkpointing, which leads to the invalidation of other information kept into the cache-
--to a specific cache partition. In practice, it offers the advantage of keeping some zone of

 25

the cache less affected by cache replacement caused by write intensive operations related
to data that are likely not re-accessed for a while (like it occurs for a checkpoint).
The work in [76] provides an analysis showing how checkpointing and reverse computing
have different impacts on speculative PDES performance on a shared-memory machine
because of their different effects on the TLB architecture.
These proposals are however not tailored for the optimization of cache management in the
context of fine-grain sharing of simulation objects among worker threads, and are also not
tailored to the improvement of the effectiveness of memory accesses in NUMA architectures
when cache misses occur. These aspects are instead central for our proposal.

Our research plan differs from these studies since none of them is oriented to the
combination of 1) cache-aware association of simulation objects to threads, 2) NUMA-aware
placement/access of/to simulation objects' states and 3) batch-processing of the events of
specific simulation objects along any thread. As a matter of fact, our research plan has
relations with classical mechanisms that have been used in operating systems in order to
CPU-schedule the different threads. In more detail, the perfect load sharing approach, which
has been used in Linux (see https://mirrors.edge.kernel.org/pub/linux/kernel/v2.4/), enables
a same thread to consume its residual ticks according to a batching scheme. This enables
the thread to exploit the caching system in a more effective manner---compared to the
scenario where multiple threads still having ticks to spend on the CPU are dispatched in an
alternate manner. We plan to exploit a kind of batch-processing for enabling a worker thread
to process events of the simulation objects reducing the alternance. However, our solution
also needs to take into account aspects that are not considered at the level of the operating
system technology, like the need for avoiding timestamp order violations as much as
possible, in order to reduce the incidence of wasted computation and rollbacks in the parallel
run.

Section 2: Cooperations between groups
In this section we summarize some of the connections that have been created or
strengthened within the project. Most connections have already been detailed in Section 1,
therefore we provide a brief sketch here. We refer to the connections between units of the
project, as well as with external research groups.

INAF collaborates with UNICT, UNITO, CINECA.

UNIPD collaborates with:
ETH
IT Univ. of Copenhagen
with Massimo Bernaschi, CNR, on the development of a GPU-accelerated sparse matrix
times sparse matrix kernel for distributed memory systems able to scale to hundreds of
compute nodes by overlapping computation and communication

Regarding UNIPI, part of the survey work on the algorithms for the solution of sparse linear
systems and on the implementation of the new functions of the PSCToolkit library was
carried out in collaboration with the research unit at the University of Rome "Tor Vergata".

 26

IIT cooperates with other groups within the scope of Spoke 1:
MOX POLIMI (Prof. De Falco)
UNITO (Prof. Aldinucci)
UNIPI (Prof. Ferragina)

UNIFE cooperates with:
RWTH Aachen University (Prof. Michael Herty, collaboration on optimization method and
applications to traffic flows)
TU Munich (Prof. Massimo Fornasier, collaboration on optimization methods and machine
learning)
U. Lille (Prof. Thomas Rey, collaboration on numerical simulations of the Boltzmann
equation)
U. Toulouse (Prof. F. Filbet, collaboration on numerical methods in plasma physics)
GSSI L’Aquila (Prof. N. Guglielmi, collaboration on numerical methods in biomedical and
epidemiological applications)
U. Catania (Prof. G. Russo, collaboration on numerical methods for kinetic equations with
multiple scales)

UNICAL cooperates with:
UPC Barcelona TECH – Spain
BSC Supercomputing Center – Barcelona - Spain
ICAR – CNR - Italy

 27

Section 3: Reference list

Reference list

1. Sciacca, Eva, et al. "An integrated visualization environment for the virtual
observatory: Current status and future directions." Astronomy and Computing 11
(2015): 146-154.

2. Vitello, F., et al. "Vialactea visual analytics tool for star formation studies of the galactic

plane." Publications of the Astronomical Society of the Pacific 130.990 (2018):
084503.

3. Vecchiato, Alberto, et al. "The global sphere reconstruction for the gaia mission in the

astrometric verification unit." Software and Cyberinfrastructure for Astronomy II. Vol.
8451. SPIE, 2012.

4. Cesare, Valentina, et al. "The Gaia AVU–GSR parallel solver: Preliminary studies of a

LSQR-based application in perspective of exascale systems." Astronomy and
Computing 41 (2022): 100660.

5. Springel, Volker, Naoki Yoshida, and Simon DM White. "GADGET: a code for

collisionless and gasdynamical cosmological simulations." New Astronomy 6.2
(2001): 79-117.

6. Mignone, Andrea, et al. "PLUTO: a numerical code for computational astrophysics."

The Astrophysical Journal Supplement Series 170.1 (2007): 228.

7. Mignone, Andrea, et al. "The PLUTO code for adaptive mesh computations in
astrophysical fluid dynamics." The Astrophysical Journal Supplement Series 198.1
(2011): 7.

8. M. Volpi, U. Locatelli, M. Sansottera.: A reverse KAM method to estimate unknown
mutual inclinations in exoplanetary systems. Cel. Mech. \& Dyn. Astr., 130:36 (2018).

9. C. Caracciolo, U.Locatelli, M.~Sansottera, M.~Volpi.: Librational KAM tori in the
secular dynamics of the upsilon-Andromedae planetary system. MNRAS, 510, 2147-
-2166 (2022).

10. A. Giorgilli, M. Sansottera.: Methods of algebraic manipulation in perturbation theory.
In P.M. Cincotta, C.M. Giordano, C. Efthymiopoulos (eds.): “Chaos, Diffusion and
Non-integrability in Hamiltonian Systems --Applications to Astronomy”, Proceedings
of the Third La Plata International School on Astronomy and Geophysics,
Universidad Nacional de La Plata and Asociacion Argentina de Astronomia
Publishers, La Plata (2012).

 28

11. U. Locatelli, C.Caracciolo, M. Sansottera, M.Volpi.: A numerical criterion evaluating
the robustness of planetary architectures; applications to the upsilon-Andromedae
system, In A. Celletti, C. Galeş, C. Beaugé, A. Lemaitre, eds., Multi-scale (time and
mass) dynamics of space objects, Proceedings of the International Astronomical
Union Symposium No. 364, Book Series, Volume 15, 65--84 (2021).

12. Amestoy P.R., Duff I.S., L’Excellent J.-Y., Koster J., MUMPS: a general purpose
distributed memory sparse solver International Workshop on Applied Parallel
Computing, Springer (2000), pp. 121-130

13. Ghysels P., Synk R., High performance sparse multifrontal solvers on modern GPUs,
Parallel Computing 110 (2022) pp. 102897.

14. Sumikoshi K. et al., “A Fast Protein-Protein Docking Algorithm Using Series Expansion
in Terms of Spherical Basis Functions”, Genome Informatics,16(2): 161–173 (2005).

15. S.-Y. Huang, “Search strategies and evaluation in protein–protein docking: principles,
advances and challenges”, Drug Discovery Today, 19(8), 1081-1096, (2014).

16. Friedrich Förster, “Subtomogram analysis: The sum of a tomogram’s particles reveals
molecular structure in situ”, J. Structural Biology, X, 6, 100063, 2022.

17. A.S. Frangakis et al., “Identification of macromolecular complexes in cryoelectron
tomograms of phantom cells”, PNAS, 99 (22) 14153-14158

18. S. Decherchi et al., “Between algorithm and model: different Molecular Surface
definitions for the Poisson-Boltzmann based electrostatic characterization of
biomolecules in solution”, Comm. Comp. Phys., 13(1), 61-89, 2013

19. L. Gagliardi and W. Rocchia, ”SiteFerret: beyond simple pocket identification in
proteins”, arXiv preprint arXiv:2212.11888, 2022

20. GreatSPN enhanced with decision diagram data structures. Babar, J., Beccuti, M.,
Donatelli, S., Miner, A.S. In: Application and Theory of Petri Nets.PETRI NETS 2010.
LNCS, vol. 6128, pp. 308–317 (2010)

21. Impacts of reopening strategies for COVID-19 epidemic: a modeling study in
Piedmont region. S. Pernice, P. Castagno, L. Marcotulli, M. M. Maule, L. Richiardi, G.
Moirano, M. Sereno, F. Cordero and M. Beccuti. BMC Infectious Diseases, Volume
20, Article number: 798 (2020).

22. Multiple Sclerosis disease: a computational approach for investigating its drug
interactions. S. Pernice, M. Beccuti, G. Romano, M. Pennisi, A. Maglione, S. Cutrupi,
F. Pappalardo, L. Capra, G. Franceschinis, M. De Pierro, G. Balbo, F.Cordero and R.
Calogero. Proceeding of 16th Int. Conference Computational Intelligence methods for
Bioinformatics and Biostatistics (CIBB 2019), volume 12313 LNBI, pp. 299-308,
Bergamo, Italy, September 4-6, 2019.

23. Estimating Daclizumab effects in Multiple Sclerosis using Stochastic Symmetric Nets.

S. Pernice, M. Beccuti, P. Do’, M. Pennisi, and F. Pappalardo. In 2nd Int. Workshop
on Computational Methods for the Immune System Function (CMISF 2018),
December 3 - 6, 2018, Madrid, Spain, Article number 8621259, Pages 1393-1400.

 29

24. Exploiting Stochastic Petri Net formalism to capture the Relapsing Remitting Multiple
Sclerosis variability under Daclizumab administration. S. Pernice, G. Romano, G.
Russo, M. Beccuti, M. Pennisi, and F. Pappalardo. In 3rd Int. Workshop on
Computational Methods for the Immune System Function (CMISF 2019), San Diego,
USA, November 2019.

25. A computational framework for modeling and studying pertussis epidemiology and
vaccination. P. Castagno, S. Pernice, G. Ghetti, M. Povero, L. Pradelli, D. Paolotti, G.
Balbo, M. Sereno and M. Beccuti. BMC Bioinformatics, Volume 21, 16 September
2020, Page 344.

26. A methodology for performing global uncertainty and sensitivity analysis in systems
biology. Marino, S., Hogue, I.B., Ray, C.J., Kirschner, D.E. Journal of Theoretical
Biology 254(1), 178–196 (2008)

27. S. Páll, A. Zhmurov, P. Bauer, M. Abraham, M. Lundborg, A. Gray, B. Hess, E. Lindhal
(2020). Heterogeneous parallelization and acceleration of molecular dynamics
simulations in GROMACS. The Journal Of Chemical Physics, 153(13), 134110. doi:
10.1063/5.0018516

28. S. Pronk, S. Páll, R. Schulz, P. Larsson, P., Bjelkmar, R. Apostolov, et al. (2013).
GROMACS 4.5: a high-throughput and highly parallel open source molecular
simulation toolkit. Bioinformatics, 29(7), 845-854. doi: 10.1093/bioinformatics/btt055

29. C. Li, W. Chen, Y, Zhang, Q. Bai . Analyses on Performance of Gromacs in Hybrid
MPI+OpenMP+CUDA Cluster. (2014)., 2014 IEEE International Conference on High
Performance Computing and Communications (HPCC), 2014 IEEE 6th International
Symposium on Cyberspace Safety and Security (CSS) and 2014 IEEE 11th
International Conference on Embedded Software and Systems (ICESS). doi
10.1109/HPCC.2014.157

30. M. Gecht, M. Siggel, M. Linke, G. Hummer, J. Köfinger MDBenchmark: A toolkit to
optimize the performance of molecular dynamics simulations. J. Chem. Phys. 153,
144105 (2020); doi 10.1063/5.0019045

31. M. Geimer, F. Wolf, B. J.N. Wylie , E. Abraham , D. Becker , B. Mohr. The Scalasca
performance toolset architecture. (2010). Concurrency Computat.: Pract. Exper. 22,
702–719; doi 10.1002/cpe.1556.

32. V. Besozzi; M. Della Bartola; L. Gemignan; Experimental Study of a Parallel Iterative
Solver for Markov Chain Modeling. International Conference on Computational
Science, ICCS-2023. Springer (2023). In press

33. D'Ambra, P.; Durastante, F.; Filippone, S.. AMG Preconditioners for Linear Solvers
towards Extreme Scale. SIAM J. Sci. Comput. 43 (2021), no. 5, S679-S703.
MR4331965

34. D’Ambra, P.,; Durastante F.; Filippone, S.. Parallel Sparse Computation Toolkit"
Software Impacts (2023): 100463.

35. Emmanuel Agullo, Olivier Aumage, Mathieu Faverge, Nathalie Furmento, Florent
Pruvost, Marc Sergent, and Samuel Paul Thibault. 2017. Achieving High Performance
on Supercomputers with a Sequential Task-based Programming Model. IEEE

 30

Transactions on Parallel and Distributed Systems (2017), 1–1.
https://doi.org/10.1109/TPDS.2017.2766064

36. Emmanuel Agullo, Alfredo Buttari, Abdou Guermouche, Julien Herrmann, and Antoine
Jego. 2023. Task-Based Parallel Programming for Scalable Matrix Product
Algorithms. ACM Trans. Math. Softw. (feb 2023). https://doi.org/10.1145/3583560

37. P. D'Ambra, F. Durastante, S. Filippone AMG Preconditioners for Linear Solvers

towards Extreme Scale SIAM J. Sci. Comput., SPECIAL SECTION Copper Mountain
2020, Vol. 43, No. 5, 2021, pp. S673-S703

38. P. D'Ambra, F. Durastante, and S. Filippone: Parallel Sparse Computation Toolkit
Software Impacts 2023,

39. Salvatore Filippone, Valeria Cardellini, Davide Barbieri and Alessandro Fanfarillo:
Sparse Matrix-Vector Multiplication on GPGPUs ACM Transactions on Mathematical
Software (TOMS), Volume 43 Issue 4, December 2016, Article No. 30,

40. V. Cardellini, S. Filippone, D. Rouson: Design Patterns for sparse-matrix computations
on hybrid CPU/GPU platforms. Scientific Programming, 22 (2014), pp. 1-19.

41. Christos Psarras, Henrik Barthels, and Paolo Bientinesi. 2022. The Linear Algebra
Mapping Problem. Current State of Linear Algebra Languages and Libraries. ACM
Trans. Math. Softw. 48, 3, Article 26 (sep 2022), 30 pages.
https://doi.org/10.1145/3549935

42. Kunal Agrawal, Michael A. Bender, Rathish Das, William Kuszmaul, Enoch Peserico
and Michele Scquizzato. Tight bounds for parallel paging and green paging.
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA),
2021.

43. Kunal Agrawal, Michael A. Bender, Rathish Das, William Kuszmaul, Enoch Peserico
and Michele Scquizzato. Online parallel paging with optimal makespan. Proceedings
of the 34th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
2022.

44. Thomas D. Ahle and Francesco Silvestri. Similarity Search with Tensor Core Units. In
Proc. 13th International Conference on Similarity Search and Applications (SISAP),
2020.

45. Rezaul Chowdhury, Francesco Silvestri and Flavio Vella. Algorithm design for Tensor
Units. In Proc. 27th International European Conference on Parallel and Distributed
Computing (EURO-PAR), 2021. Extended version of SPAA 2020 Brief Announcement

46. Abdul Dakkak, Cheng Li, Jinjun Xiong, Isaac Gelado, and Wen-mei Hwu. Accelerating
reduction and scan using tensor core units. In Proceedings of the ACM International
Conference on Supercomputing (ICS '19). 2019

47. Hongbo Kang, Phillip B. Gibbons, Guy E. Blelloch, Laxman Dhulipala, Yan Gu, and
Charles McGuffey. 2021. The Processing-in-Memory Model. In Proceedings of the

https://doi.org/10.1145/3549935

 31

33rd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA '21).
Association for Computing Machinery, New York, NY, USA, 295–306, 2021.

48. Michele Scquizzato. Paging on Complex Architectures. PhD Thesis, University of
Padova, 2013.

49. Harold S. Stone and John Turek and Joel L. Wolf. Optimal partitioning of cache
memory. IEEE Transactions on Computers, 1992.

50. Vasileios Zois, Divya Gupta, Vassilis J. Tsotras, Walid A. Najjar, and Jean-Francois
Roy. Massively parallel skyline computation for processing-in-memory architectures.
In Proceedings of the 27th International Conference on Parallel Architectures and
Compilation Techniques (PACT '18), 2018.

51. F. Cicirelli, A. Forestiero, A. Giordano, and C. Mastroianni, “Parallelization of space-
aware applications: Modeling and performance analysis,” Journal of Network and
Computer Applications, vol. 122, pp. 115–127, 2018.

52. J. Was, H. Mr´oz, and P. Topa, “Gpgpu computing for microscopic simulations of crowd
dynamics,” Computing and Informatics, vol. 34, no. 6, pp. 1418–1434, 2016.

53. Gerakakis, P. Gavriilidis, N. I. Dourvas, I. G. Georgoudas, G. A. Trunfio, and G. C.
Sirakoulis, “Accelerating fuzzy cellular automata for modeling crowd dynamics,”
Journal of Computational Science, vol. 32, pp. 125–140, 2019.

54. Giordano, A. De Rango, D. D’Ambrosio, R. Rongo, and W. Spataro, “Strategies for
parallel execution of cellular automata in distributed memory architectures,” in 2019
27th Euromicro International Conference on Parallel, Distributed and Network-Based
Processing (PDP). IEEE, 2019, pp. 406–413.

55. Giordano, D. D’Ambrosio, A. De Rango, A. Portaro, W. Spataro, and R. Rongo,
“Exploiting distributed discrete event simulation techniques for parallel execution of
cellular automata,” in Artificial Life and Evolutionary Computation, F. Cicirelli, A.
Guerrieri, C. Pizzuti, A. Socievole, G. Spezzano, and A. Vinci, Eds. Cham: Springer
International Publishing, 2020, pp. 66–77.

56. M. Cannataro, S. Di Gregorio, R. Rongo, W. Spataro, G. Spezzano, and D. Talia, “A
parallel cellular automata environment on multicomputers for computational science,”
Parallel Computing, vol. 21, no. 5, pp. 803–823, 1995.

57. Giordano, A. De Rango, D. Spataro, D. D’Ambrosio, C. Mastroianni, G. Folino, and W.
Spataro, “Parallel execution of cellular automata through space partitioning: the
landslide simulation sciddicas3-hex case study,” in 2017 25th Euromicro International
Conference on Parallel, Distributed and Networkbased Processing (PDP). IEEE,
2017, pp. 505–510

58. R. V. Hanxleden and L. R. Scott, “Load balancing on message passing architectures,”
J. Parallel Distrib. Comput., vol. 13, no. 3, pp. 312–324, 1991.

59. X. Li, X. Zhang, A. Yeh, and X. Liu, “Parallel cellular automata for large-scale urban
simulation using load-balancing techniques,” Int. J. Geographical Inf. Sci., vol. 24, no.
6, pp. 803–820, 2010.

60. M. Cannataro, S. Di Gregorio, R. Rongo, W. Spataro, G. Spezzano, and D. Talia, “A
parallel cellular automata environment on multi-computers for computational science,”
Parallel Comput., vol. 21, no. 5, pp. 803–823, 1995.

61. D. M. Nicol and J. H. Saltz, “An analysis of scatter decom-position,” IEEE Trans.
Comput., vol. 39, no. 11, pp. 1337–1345, Nov. 1990.

 32

62. G. Cybenko, “Dynamic load balancing for distributed memory mul-tiprocessors,” J.
Parallel Distrib. Comput.,vol.7,no.2,pp.279–301, 1989.

63. F. C. H. Lin and R. M. Keller, “The gradient model load balancing method,” IEEE Trans.
Softw. Eng., vol. SE-13, no. 1, pp. 32–38, Jan. 1987.

64. D. A. Reed and J. J. Dongarra: “Exascale computing and big data”, Commun. ACM, Vol 58,
No 7, 2015, https://doi.org/10.1145/2699414

65. R. Fujimoto and K. Panesar: “Buffer Management in Shared-Memory Time Warp Systems”,
Proc. of Ninth Workshop on Parallel and Distributed Simulation, 1995,
https://doi.org/10.1145/214282.214330

66. B. Swenson and G. Riley: “A New Approach to Zero-Copy Message Passing with Reversible
Memory Allocation in Multi-Core Architectures”, Proc. of the 2012 ACM/IEEE/SCS 26th
Workshop on Principles of Advanced and Distributed Simulation, 2012,
https://doi.org/10.1109/PADS.2012.3

67. C.J. Ross, C. D. Carothers, M.Mubarak, R. B. Ross, J. Kelvin Li and K. Ma: “Leveraging
Shared Memory in the Ross Time Warp Simulator for Complex Network simulations”, Proc.
of the 2018 Winter Simulation Conference, {WSC} 2018,
https://doi.org/10.1109/WSC.2018.8632333.

68. R.Vitali, A.Pellegrini and F. Quaglia: “Towards Symmetric Multi-threaded Optimistic Simulation
Kernels”, Proc. of the 26th {ACM/IEEE/SCS} Workshop on Principles of Advanced and
Distributed Simulation, PADS 2012, https://doi.org/10.1109/PADS.2012.46

69. R. Fujimoto: “Time Warp on a Shared Memory Multiprocessor”, Proc.of the International
Conference on Parallel Processing, IICPP '89, 1989

70. J. Wang, D. Jagtap, N. Abu-Ghazaleh and D. Ponomarev: “Parallel discrete event simulation
for multi-core systems: Analysis and optimization”, IEEE Transactions on Parallel and
Distributed Systems, Vol 25, no 6, pp 1574-1584, https://doi.org/10.1109/TPDS.2013.193

71. R. Vitali, A.Pellegrini and F. Quaglia: “Load sharing for optimistic parallel simulations on multi
core machines”, ACM SIGMETRICS Performance Evaluation Review, Vol. 40, no. 3, 2012,
https://doi.org/10.1145/2425248.2425250

72. A. Pellegrini and F. Quaglia:”NUMA Time Warp”, Proc. of the 3rd ACM SIGSIM Conference
on Principles of Advanced Discrete Simulation,2015,
https://doi.org/10.1145/2769458.2769479

73. M. Ianni, R. Marotta, D. Cingolani, A. Pellegrini, F. Quaglia:”The Ultimate Share-Everything
PDES System”, Proc.of the 2018 ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation, 2018, https://doi.org/10.1145/3200921.3200931

74. T. Wenjie, Y. Yiping, L. Tianlin, S. Xiao and Z. Feng:”An Adaptive Persistence and
Work-stealing Combined Algorithm for Load Balancing on Parallel Discrete Event
Simulation”, ACM Trans. Model. Comput. Simul., Vol. 30, No. 2, 2020,
https://doi.org/10.1145/3364218

https://doi.org/10.1145/2699414
https://doi.org/10.1145/214282.214330
https://doi.org/10.1109/PADS.2012.3
https://doi.org/10.1109/WSC.2018.8632333
https://doi.org/10.1109/PADS.2012.46
https://doi.org/10.1109/TPDS.2013.193
https://doi.org/10.1145/2425248.2425250
https://doi.org/10.1145/2769458.2769479
https://doi.org/10.1145/3200921.3200931
https://doi.org/10.1145/3364218

 33

75. R. Vitali, A.Pellegrini, G.Cerasuolo: ”Cache-aware memory manager for optimistic
simulations”, ICST Conference on Simulation Tools and Techniques, SIMUTOOLS '12, 2012,
https://doi.org/10.4108/icst.simutools.2012.247766

76. C. D. Carothers, K.S. Perumalla and R.Fujimoto: “The effect of state-saving in optimistic
simulation on a cache-coherent non-uniform memory access architecture”, Proc.of the 31st
conf. on Winter simulation, 1999, Phoenix, AZ, USA,
https://doi.org/10.1109/WSC.1999.816902

77. “Interacting Multiagent Systems:Kinetic equations and Monte Carlo methods”, by L.
Pareschi, G. Toscani, Oxford University Press (2013)

78. “Survey of multifidelity methods in uncertainty propagation, inference, and optimization” by
B. Peherstorfer, K. Willcox, M. Gunzburger, SIAM Review (2018)

79. “Uncertainty quantification for hyperbolic equations” by S. Jin, L. Pareschi (Eds), in SEMA-
SIMAI Springer Series (2018)

https://doi.org/10.4108/icst.simutools.2012.247766
https://doi.org/10.1109/WSC.1999.816902

